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A hybrid text/citation-based method is used to cluster journals covered by the Web of Sci-
ence database in the period 2002–2006. The objective is to use this clustering to validate
and, if possible, to improve existing journal-based subject-classification schemes. Cross-
citation links are determined on an item-by-paper procedure for individual papers
assigned to the corresponding journal. Text mining for the textual component is based
on the same principle; textual characteristics of individual papers are attributed to the
journals in which they have been published. In a first step, the 22-field subject-classifica-
tion scheme of the Essential Science Indicators (ESI) is evaluated and visualised. In a second
step, the hybrid clustering method is applied to classify the about 8300 journals meeting
the selection criteria concerning continuity, size and impact. The hybrid method proves
superior to its two components when applied separately. The choice of 22 clusters also
allows a direct field-to-cluster comparison, and we substantiate that the science areas
resulting from cluster analysis form a more coherent structure than the ‘‘intellectual” ref-
erence scheme, the ESI subject scheme. Moreover, the textual component of the hybrid
method allows labelling the clusters using cognitive characteristics, while the citation
component allows visualising the cross-citation graph and determining representative
journals suggested by the PageRank algorithm. Finally, the analysis of journal ‘migration’
allows the improvement of existing classification schemes on the basis of the concordance
between fields and clusters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The history of cognitive mapping of science is as long as the history of computerised scientometrics itself. While the first
visualisations of the structure of science were considered part of information services, i.e., an extension of scientific review
literature (Garfield, 1975, 1988), bibliometricians soon recognised the potential value of structural science studies for science
policy and research evaluation as well. At present, the identification of emerging and converging fields and the improvement
of subject delineation are in the foreground.

The main bibliometric techniques are characterised by three major approaches, particularly the analysis of citation links
(cross-citations, bibliographic coupling, co-citations), the lexical approach (text mining), and their combination. The widely
used method of co-citation clustering was introduced independently by Small (1973, 1978) and Marshakova (1973).
. All rights reserved.
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Although the principle of bibliographic coupling had already been discovered earlier by Fano (1956) and Kessler (1963), cou-
pling-based techniques have been used for mapping the structure of science only decades after co-citation analysis had be-
come a standard tool in visualising the structure of science (e.g., Glänzel & Czerwon, 1996; Small, 1998). Cross-citation-based
cluster analysis for science mapping has to be distinguished from the previous two methods; while the former two types can
be – and usually are – based on links connecting individual documents, the latter approach requires aggregation of docu-
ments to units like journals, subject categories, etc., among which cross-citation links are established. The obvious advanta-
ges of this method (e.g., the possibility to analyse directed information flows among these units or the assignment/
aggregation of units to larger structures) are contrasted by some limitations and shortcomings such as possible biases caused
by the use of predefined units. Thus, for instance, Leydesdorff (2006), Leydesdorff and Rafols (2009), and Boyack, Börner, and
Klavans (2009) used journal cross-citation matrices, while Moya-Anegon et al. (2007) used subject co-citation analysis to
visualise the structure of science and its dynamics.

Earlier, a completely different approach was introduced by Callon, Courtial, Turner, and Bauin (1983) and Callon, Law, and
Rip (1986). Their mapping and visualisation tool Leximappe was based on a lexical approach, particularly, co-word analysis.
The notion of lexical approach, which was originally based on extracting keywords from records in indexing databases, was
later on deepened and extended by using advanced text-mining techniques in full texts (cf. Glenisson, Glänzel, Janssens, & De
Moor, 2005; Glenisson, Glänzel, & Persson, 2005; Kostoff, Buchtel, Andrews, & Pfeil, 2005; Kostoff, Toothman, Eberhart, &
Humenik, 2001).

Whatever method is used to study the structure of science, cluster algorithms have beyond doubt become the most pop-
ular technique in science mapping. The sudden, large interest the application of these techniques has found in the commu-
nity is contrasted by objections and criticism from the viewpoint of information use in the framework of research evaluation
(e.g., Noyons, 1999; Jarneving, 2005). For instance, clustering based on co-citation and bibliographic coupling has to cope
with several severe methodological problems. This has been reported, among others by Hicks (1987) in the context of co-
citation analysis and by Janssens, Glänzel, and De Moor (2008) with regard to bibliographic coupling. One promising solution
is to combine these techniques with other methods such as text mining (e.g., combined co-citation and word analysis: Bra-
am, Moed, & Van Raan, 1991a; combination of coupling and co-word analysis: Small (1998); hybrid coupling-lexical ap-
proach: Janssens, Glänzel, & De Moor, 2007; Janssens et al., 2008). Most applications were designed to map and visualise
the cognitive structure of science and its change in time, and, from a policy-relevant perspective, to detect new, emerging
disciplines. Improvement of subject-classification schemes was in most cases not intended. Jarneving (2005) proposed a
combination of bibliometric structure–analytical techniques with statistical methods to generate and visualise subject
coherent and meaningful clusters. His conclusions drawn from the comparison with ‘intellectual’ classification were rather
sceptical. Despite several limitations, which will be discussed further in the course of the present study, cognitive maps
proved useful tools in visualising the structure of science and can be used to adjust existing subject-classification schemes
even on the large scale as we will demonstrate in the following.

The main objective of this study is to compare (hybrid) cluster techniques for cognitive mapping with traditional ‘intel-
lectual’ subject-classifications schemes. The most popular subject-classification schemes created by Thomson Scientific
(Philadelphia, PA, USA) are based on journal assignment. Therefore, journal cross-citation analysis puts itself forward as
underlying method and we will cluster the document space using journals as predefined units of aggregation. In contrast
to the method applied by Leydesdorff (2006), who uses the Journal Citation Reports (JCR), we calculate citations on a pa-
per-by-paper basis and then assign individual papers indexed in the Web of Science (WoS) database to the journals in which
they have been published. The use of the JCR would confine us to data as available in the JCR and prevent us from combining
cross-citation analysis with a textual approach. What is more, proceeding from the document level allows us to control for
document types and citation windows, and to combine bibliometrics-based techniques with other methods such as text
mining. This results in a higher precision since irrelevant document types and ‘low-weight journals’ can be excluded. This
way we can present the results of a hybrid (i.e., combined/integrated) citation–textual cluster analysis to compare those with
the structure of an existing ‘intellectual’ subject-classification scheme created and used by Thomson Scientific. The aim of
this comparison is exploring the possibility of using the results of the cluster analysis to improve the subject-classification
scheme in question.

1.1. Related research

The idea of hybrid clustering is not new. For example, Weiss et al. (1996) introduced the HyPursuit system, a hierarchical
network search engine which exploits content-link clustering of hypertext documents for browsing and search activities. The
complete link hierarchical agglomerative clustering method was used and the similarity between documents was based on
the number of terms, ancestors, and descendants in common, as well as whether they point to one another. In the presented
prototype, the integrated document similarity function was limited to selecting the maximal value of the text-based and
hyperlink similarities, which already offered benefits to the hypertext document clustering.

Modha and Spangler (2000) introduced the toric k-means algorithm for clustering hypertext documents using words, out-
links and in-links. The relative importance of these information sources was determined by searching the parameter space
for an optimal figure-of-merit. Similarity was calculated as a weighted sum of the inner products between the individual
text-based or link-based components. In the present work we also adopt a sum of document similarities, but combine the
method with a hierarchical clustering algorithm instead of k-means.



F. Janssens et al. / Information Processing and Management 45 (2009) 683–702 685
He, Ding, Zha, and Simon (2001), He, Zha, Ding, and Simon (2002) discussed Web document clustering by incorporating
information from hyperlink structure, co-citation patterns, and textual contents of documents. The hyperlink structure was
used as the dominant factor in the combined similarity measure, and the textual content was used to modulate the strength
of each hyperlink. However, textual similarity between pages was neglected if both were not connected by a hyperlink. Inte-
gration with co-citation was achieved by a linear combination of co-citation and the weighted adjacency matrix of the graph.
The resulting weighted graph was the input to a spectral clustering method.

Wang and Kitsuregawa (2002) evaluated a contents-link coupled clustering algorithm for retrieved Web pages and stud-
ied the effect of out-links, in-links, specific terms, and their combination. Results suggested that both links and contents are
important for Web page clustering and that better results are achieved with appropriate integration weights.

By using a Bayesian network model, Calado et al. (2006) combined link-based similarity measures with text-based clas-
sifiers to improve classification results for Web collections. In their experiments on Web pages, the link information alone
outperformed the text-only classifier, but the combination could improve results.

Finally, Zhang et al. (2005) applied genetic programming techniques to discover the best fusion framework to integrate
citation-based information and structural content in order to improve document classification.

Except for the latter study, all mentioned related research was applied to hyperlink documents, while the present study is
applied to scientific literature.

In a first study by authors related to the current work, the pilot study of Glenisson, Glänzel, & Persson (2005), further ex-
tended and confirmed by Glenisson, Glänzel, Janssens et al. (2005), full-text analysis and traditional bibliometric methods
were serially combined to improve the efficiency of the individual methods. It was clear that clusters found through appli-
cation of text mining provided additional information that could be used to extend and explain structures found by biblio-
metric methods, and vice versa. However, the integration was still limited to serial combination. Real hybrid methodologies
were therefore developed in subsequent studies and proved even more valuable tools to facilitate endeavours in mapping
fields of science or technology.

In a previous study of Janssens, Leta, Glänzel, and De Moor (2006), the concept structure of library and information science
(LIS) was obtained by full-text mining of almost 1000 articles and notes published in the period 2002–2004 in 5 representative
journals with strong focus on information science. Only the ‘pure’ text corpus was analysed, excluding any bibliographic or
bibliometric components. However, the authors have assessed the performance of clustering and classification algorithms
using various data integration schemes on multiple data sets (Janssens, 2007). The best outcome was obtained by hybrid
methods that exploited both text and citations. An integration method based on Fisher’s inverse chi-square and another
one based on linear combination of distance matrices were among the best methods and significantly outperformed corre-
sponding text-only and link-only methods, as well as a concatenation of vectors. In (Janssens et al., 2008), we used these meth-
ods to achieve an updated, hybrid mapping of information science by using the full-text information as well as citations, and
we compared the results with the text-only clustering. The same techniques from text mining, Web mining and bibliometrics
were also applied to a data set containing bioinformatics research articles (Janssens et al., 2007).

While the analyses of Glenisson, Glänzel, & Persson (2005), Glenisson, Glänzel, Janssens et al. (2005) and Janssens, Leta
et al. (2006), Janssens et al. (2008) were based on the full text extracted from scientific articles, the textual component of
the current study is based on titles, abstracts and keywords. The present analysis also differs from the previous studies in
that it is situated on the journal instead of the paper level, i.e., here we cluster journals, not papers. The underlying paper
set is also at least two orders of magnitude larger (over 6 million papers). Furthermore, the link component of the integration
used here is based on journal cross-citations, whereas bibliographic coupling was used in other studies (Janssens et al., 2008;
Janssens et al., 2007). The actual integration is achieved by linear combination of the corresponding distance matrices,
whereas (Janssens et al., 2008) and (Janssens et al., 2007) used the method based on Fisher’s inverse chi-square.

In the present study, we decided to somewhat modify our earlier approach by the following reason. Bibliographic cou-
pling used in previous studies has certainly advantages in detecting cognitive links especially as compared to co-citation
analysis (cf. Glänzel & Czerwon, 1996; Hicks, 1987), however, its bias towards a polarisation between strong and weak links
which is already reflected by the extremely sparse coupling matrices (Janssens, Tran Quoc, Glänzel, & De Moor, 2006) sug-
gests to use a different approach. Thus the cross-citation approach promises to combine the advantages of references and
citation or – using the parlance of Webometrics – the advantages of in-links and out-links. The linear combination of
cross-citations and text mining allows for smoothly adjusting the weight of both components.

1.2. Cognitive mapping vs. subject classification

The objective of the present study is twofold. The first task is not merely visualising the field structure of science by pre-
senting yet another map based on an alternative approach, but to validate and improve existing subject classifications used
for research evaluation. In particular, the question arises of in how far observed ‘migration’ of journals among science fields
can be adopted to improve classification. The second issue is a methodological one; namely, to evaluate improved methods
of hybrid clustering techniques.

The 22-field subject-classification scheme of the Essential Science Indicators1 (ESI) of Thomson Scientific, which actually
forms a partition of the Web of Science universe with practically unique subject assignment, is used as the ‘‘control structure”.
1 http://www.esi-topics.com/fields/index.html.
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In particular, we propose the following approach in seven steps to solve the integration of cluster analysis and cognitive map-
ping into subject classification.

1. Evaluation of existing subject-classification schemes and visualisation of their cross-citation graph.
2. Labelling subject fields using cognitive characteristics.
3. Studying the cognitive structure based on hybrid cluster analysis and visualisation of the cross-citation graph.
4. Evaluation of science areas resulting from cluster analysis.
5. Labelling clusters using cognitive characteristics and representative journals suggested by the PageRank algorithm.
6. Comparison of subject fields and cluster structure.
7. Migration of journals among subject fields.
2. Data sources and data processing

In order to accomplish the above objectives, more than six million papers of the type article, letter, note and review in-
dexed in the Web of Science (WoS) in the period 2002–2006 have been taken into consideration. Citations to individual pa-
pers have been aggregated from the publication year till 2006. The complete database has been indexed and all terms
extracted from titles, abstracts and keywords have been used for ‘‘labelling” the obtained clusters.

Citations received by these papers have been determined for a variable citation window beginning with the publication
year, up to 2006, on the basis of an item-by-item procedure using special identification-keys made up of bibliographic data
elements extracted from first-author names, journal title, publication year, volume and first page.

In a first step, journals had to be checked for name changes, merging or splitting and identified accordingly. Journals
which were not covered in the entire period have been omitted. Furthermore, only journals that have published at least
50 papers in the period under study were considered. A second threshold was used afterwards to remove all journals for
which the sum of references and citations was lower than 30. The resulting number of retained journals was 8305. Most
of the subsequent analyses were performed in Java and MATLAB. We also made use of the MATLAB Tensor Toolbox (Bader
& Kolda, 2006).
3. Methods

In this section we briefly describe the methodological background and the algorithms and procedures that have been ap-
plied. The first subsection refers to the outlines of the textual approach; this is followed by the description of the cross-cita-
tion analysis. The journal clustering techniques described in the subsequent paragraphs are applied to the textual and
citation data separately and used for combined (hybrid) clustering as well. This procedure is described in the following step
by step.

3.1. Text analysis

All textual content was indexed with the Jakarta Lucene platform (Hatcher & Gospodnetic, 2004) and encoded in the Vec-
tor Space Model using the TF-IDF weighting scheme reviewed by Baeza-Yates & Ribeiro-Neto (1999). Stop words were ne-
glected during indexing and the Porter stemmer was applied to all remaining terms from titles, abstracts, and keyword fields.
The resulting term-by-document matrix contained nine and a half million term dimensions (9,473,061), but by ignoring all
tokens that occurred in one sole document, only 669,860 term dimensions were retained. Those ignored terms with docu-
ment frequency equal to one are useless for clustering purposes. The dimensionality was further reduced from 669,860 term
dimensions to 200 factors by Latent Semantic Indexing (LSI) (Berry, Dumais, & O’brien, 1995; Deerwester, Dumais, Furnas,
Landauer, & Harshman, 1990), which is based on the Singular Value Decomposition (SVD). The reduction of the number of
features in a vector space by application of LSI improves the performance of retrieval, clustering, and classification algo-
rithms. Typical values for the number of factors found in literature range from 100 (Deerwester et al., 1990) (for less than
2000 abstracts and 7000 terms) to about 300 (Berry, Dumais, & O’brien, 1995) (for about 12,000 documents and 40,000
terms). On a dual Opteron 250 with 16 Gb RAM, the processor time needed to calculate the LSI was about 105 minutes.
Text-based similarities were calculated as the cosine of the angle between the vector representations of two papers (Salton
& Mcgill, 1986). For simplicity and efficiency, the method used to summarise the subject of a field or cluster is based on
selecting the terms with the highest mean TF-IDF weights over all journal papers in the field or cluster, where the IDF factor
is calculated on the complete term-by-paper matrix (more than six million papers). Other, more advanced term selection
methods exist. For example, Treeratpituk and Callan (2006) automatically select and assign a few concise labels to hierar-
chical clusters by combining statistical features from the cluster, parent cluster, and a corpus of general English into a
descriptive score. Geraci, Maggini, Pellegrini, and Sebastiani (2008) label clusters by combining intra-cluster and inter-clus-
ter term extraction based on a variant of the information gain measure, and by looking within the titles of Web pages for the
substring that best matches the selected top-scoring words. Each cluster gets assigned a set of descriptive and discriminative
words and clusters sharing the same signature are merged.
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3.2. Citation analysis

Since the present study analyses the structure of science on the level of journals, all local citations between papers are
aggregated to form a journal cross-citation graph. For cluster analysis we ignored the direction of citations by symmetrising
the journal cross-citation matrix; intra-cluster ‘self-citations’ are counted only once. At the level of journal clusters, the jour-
nal cross-citations can be further aggregated into inter-cluster citations.

From the raw number of cross-citations Cij between two journals (or clusters) i and j, a normalised similarity can be cal-
culated as:
CijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kCik:

P
kCjk

p ð1Þ
For visualisation of the networks we use the similarities just described as edge weights between two clusters or fields
(see Fig. 2 for an example). For clustering, however, we calculated the similarity of two journals somewhat differently be-
cause we didn’t want to ignore, for instance, that both journals could be highly cited by a third one. The similarities Sij used
for clustering were found by calculating the cosine of the angle between the pair of vectors containing all symmetric jour-
nal cross-citation values between the two respective journals (i and j) and all other journals (i.e., row or column of the
matrix C):
Sij ¼
P

kCik � CjkffiffiffiffiffiffiffiffiffiffiffiffiffiP
kC2

ik

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

kC2
jk

q ð2Þ
Fig. 2. Network of the 22 ESI fields based on cross-citation links.

Fig. 1. Silhouette plot for 22 ESI fields based on journal cross-citations (left) and based on text (right).



688 F. Janssens et al. / Information Processing and Management 45 (2009) 683–702
Hence, the ultimate similarity of two journals is based on their respective similarities with all other journals. In the
remainder of this article we will refer to these similarities as ‘‘cosine similarities of cross-citation vectors”.

The journal cross-citation graph is also analysed to identify important high-impact journals. We use the PageRank algo-
rithm (Brin & Page, 1998) to determine representative journals in each cluster. Besides, the graph can also be used to eval-
uate the quality of a clustering outcome.
Fig. 3. Performance evaluation of text-based, citation-based and hybrid clustering based on (1) modularity calculated from the journal cross-citation graph,
and based on Silhouette curves calculated from (2) journal cross-citations, (3) cosine similarities of cross-citation vectors, (4) text-based distances, and (5)
linearly combined distances. For an additional ‘external validation’ of clustering results compared to ISI Subject Categories, the lower-right Fig. (6) uses
modularity computed from a network containing all journals as nodes, but with edge weights equal to the number of ISI Subject Categories commonly
assigned to the corresponding journals by ISI/Thomson Scientific (out of the total of 254 categories).
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3.3. Clustering

In order to subdivide the journal set into clusters we used the agglomerative hierarchical cluster algorithm with Ward’s
method (Jain & Dubes, 1988). It is a hard clustering algorithm, which means that each individual journal is assigned to ex-
actly one cluster. Starting from singleton clusters (each object represents one cluster), agglomerative hierarchical clustering
proceeds by iteratively grouping those objects or clusters that are least distant from each other according to a linkage cri-
terion. In Ward’s method, at each iteration step those objects are grouped such that the increase in total within-cluster
sum of squares over all clusters is minimized. This iterative merging continues until all objects are in one big cluster.

3.3.1. Number of clusters
Determination of the optimal number of clusters in a data set is a difficult issue and depends on the adopted validation

and chosen similarity measures, as well as on data representation. In general, the number of clusters is determined by com-
paring the quality of different clustering solutions based on various numbers of clusters. Cluster quality can be assessed by
internal or external validation measures. Internal validation solely considers the statistical properties of the data and clus-
ters, whereas external validation compares the clustering result to a known gold standard partition. Halkidi, Batistakis and
Vazirgiannis (2001) gave an overview of quality assessment of clustering results and cluster validation measures. The strat-
egy that we adopted to determine the number of clusters is a combination of distance-based and graph-based methods. This
compound strategy encompasses observation of a dendrogram, text- and citation-based mean Silhouette curves, and mod-
ularity curves. Besides, the Jaccard similarity coefficient is used to compare the obtained results with an intellectual classi-
fication scheme. Other methods exist to estimate the number of clusters in a collection. For example, the stability-based
method of Ben-Hur, Elisseeff, and Guyon (2002), which allow for visually and quantitatively detecting the most stable num-
ber of clusters from a stability diagram. The method can be used with any clustering algorithm and can also detect lack of
structure in data. The main idea is that perceived structure should remain stable if only a subsample of objects is available, or
if noise objects are added to the data set.

3.3.2. Dendrogram
A preliminary judgment is offered by a dendrogram, which provides a visualisation of the distances between (sub-) clus-

ters (see Fig. 4 for an example). It shows the iterative grouping or splitting of clusters in a hierarchical tree. The horizontal
lines connect clusters and the line length represents the distance between two connected clusters. A candidate number of
clusters can be determined visually by looking for a cut-off point where an imaginary vertical line would cut the tree such
that resulting clusters are well separated, i.e., all horizontal lines that are crossed by the vertical line are relatively long. The
tree can be cut off at different levels, tuning the granularity of categorizations, without the need for reclustering. Because of
the difficulty to define the optimal cut-off point on a dendrogram (Jain & Dubes, 1988), we complement this method with
other techniques.

3.3.3. Silhouette curves
A second appraise for the number of clusters is given by the curve with mean Silhouette values. The Silhouette value S(i)

for an object i ranges from �1 to +1 and measures how similar it is to objects in its own cluster vs. objects in other clusters
(Rousseeuw, 1987). S(i) is defined as follows:
Fig. 4. Cluster dendrogram for hybrid hierarchical clustering of 8305 journals, cut off at 22 clusters on the left-hand side. Two other vertical lines indicate
the cut-off points for 7 and 3 clusters.
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SðiÞ ¼ minjðBði; CjÞÞ �WðiÞ
maxfminjðBði;CjÞÞ;WðiÞg

; ð3Þ
where W(i) is the average distance from object i to all other objects within its cluster, and B(i, Cj) is the average distance from
object i to all objects in another cluster Cj.

The average Silhouette value for all clustered objects (e.g., journals) is an intrinsic measurement of the overall quality of a
clustering solution with a specific number of clusters. Since Silhouette values are based on distances, depending on the cho-
sen distance measure and reference data different Silhouette values can be calculated. For instance, we use the complement
of cosine similarity applied to text and citation data.

The quality of a specific partition can be visualised in a Silhouette plot. In a Silhouette plot (see Figs. 1 and 5), the sorted
Silhouette values of all members of each cluster (or field) are indicated with horizontal lines. The more the Silhouette profile
of a cluster (field) is to the right of the vertical line at the value 0, the more coherent the cluster (field) is, whereas negative
values indicate that the corresponding objects should rather belong to another cluster (field).

3.3.4. Modularity curves
The quality of a clustering can also be evaluated by calculating the modularity of the corresponding partition of the cross-

journal citation graph (Newman, 2006; Newman & Girvan, 2004). Up to a multiplicative constant, modularity measures the
number of intra-cluster citations minus the expected number in an equivalent network with the same clusters but with cita-
tions given at random. Intuitively, in a good clustering there are more citations within (and fewer citations between) clusters
than could be expected from random citing. The expected number of citations between two journals is based on their respec-
tive degrees and on the total number of citations in the network.

Newman and Girvan (2004) defined modularity as follows. A k � k symmetric matrix e is defined whose element eij is the
fraction of all edges in the network that link vertices (journals) in community or cluster i to journals in cluster j. The trace of
this matrix trace(e) =

P
ieii gives the fraction of edges in the network that connect vertices in the same cluster. The row (or

column) sums ai =
P

jeij are further defined, which represent the fraction of edges that connect to vertices in cluster i. Mod-
ularity Q is then defined as follows:
Q ¼
X

i

ðeii � a2
i Þ ¼ traceðeÞ � ke2k ð4Þ
where ||x|| indicates the sum of the elements of the matrix x.
For an additional ‘external validation’ of clustering results, we also use modularity curves computed from a network con-

taining all journals as nodes, but with edge weights equal to the number of ISI Subject Categories commonly assigned to both
journals by Thomson Scientific (out of the total of 254).

3.3.5. Jaccard similarity coefficient
The Jaccard index is the ratio of the cardinality of the intersection of two sets and the cardinality of their union. The Jac-

card similarity coefficient is an extension of the Jaccard index and can be used as a measure for external cluster validation. It
is used to compare a clustering result C = {C1, C2, . . ., Ck} with an external partitioning P = {P1, P2, . . ., Pl}, where k and l repre-
sent the number of clusters and partitions, respectively. For C and P we define n � n matrices MC and MP, where n is the total
number of documents. Each Boolean value MC

ij indicates whether documents i and j belong to the same cluster in C, while MP

indexes all documents that are in the same partition in P. Let N00 represent the number of pairs of documents that do not
belong to the same cluster in C, nor in P, i.e., the number of elements (i, j) for which MC

ij ¼ MP
ij ¼ 0. Likewise, N 01 counts

the number of elements for which MC
ij ¼ 0 and MP

ij ¼ 1. N10 and N11 are defined analogously. The Jaccard coefficient is then
defined as follows:
JðC; PÞ ¼ N11

N11 þ N01 þ N10
ð5Þ
The resulting value between 0 and 1 quantifies the correlation between the two binary matrices, while disregarding neg-
ative agreements (N00). In Fig. 8, we use the Jaccard index to compare each cluster with every field from the intellectual ESI
classification, in order to detect the best-matching fields for each cluster.

3.3.6. Hybrid clustering
As mentioned at the outset, in general four major approaches are used for clustering sets of scientific papers, particularly,

the lexical approach and three citation-based methods, namely cross-citation, bibliographic coupling, and co-citation anal-
ysis. Each of the methods alone suffers from severe shortcomings. For example, typical problems with bibliographic coupling
and co-citations are sparse matrices, the lack of consensual referencing in some areas (Braam, Moed, & Van Raan, 1991b;
Jarneving, 2007), document types with insufficient number of references (e.g., letters) that have to be excluded (biblio-
graphic coupling), the incompleteness due to missing citations to recent years (co-citation analysis), the missing ‘critical
mass’ for emerging field detection (co-citation analysis, cf. Hicks, 1987), and the bias towards high-impact journals (co-cita-
tion analysis). If strict citation-based criteria are applied, then the resulting citations-by-document matrix is extremely
sparse. In this case, rejection of relationship between two entities (e.g., journals or documents) tends to be unreliable. On



Table 1
The 22 broad science fields according to the Essential Science Indicators (ESI).

Field # ESI field Field # ESI field

1 Agricultural sciences 12 Mathematics
2 Biology and biochemistry 13 Microbiology
3 Chemistry 14 Molecular biology and genetics
4 Clinical medicine 15 Multidisciplinary
5 Computer science 16 Neuroscience and behavior
6 Economics and business 17 Pharmacology and toxicology
7 Engineering 18 Physics
8 Environment/ecology 19 Plant and animal science
9 Geosciences 20 Psychology/psychiatry

10 Immunology 21 Social sciences
11 Materials sciences 22 Space science
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the other hand, any lexical (text-based) approach is usually based on rather rich vocabularies and peculiarities of natural
language. The result is, according to our observations, a rather ‘smooth’ or gradual transition between what is related and
what is not. Therefore, the relationship is somewhat fuzzy and not always reliable. Hence, both the textual and citation-
based approaches provide different perceptions of similarities among the same data. Textual information might indicate
similarities that are not visible to bibliometric techniques, but true document similarity can also be obscured by differences
in vocabulary use, or spurious similarities might be introduced as a result of textual pre-processing, or because of polyse-
mous words or words with little semantic value. The combination of the two worlds helps to improve the reliability of rela-
tionship and therefore of the clustering algorithm as well.

Therefore, the present study combines cross-citation analysis with text mining. The former can be applied to directed
links as well as to the symmetrised transaction matrix. Symmetrisation also compensates for the incompleteness caused
by the lack of citations to recent years and allows for considering links between journals strong and subject-relevant even
if these are asymmetric or even unidirectional. In order to reduce noise caused by ‘small’ journals and extremely weak cita-
tion links, thresholds have been applied to both citation links and number of papers (see previous section).

The text mining analysis supplements the citation analysis. In particular, the textual information is integrated with the
bibliometric information before the clustering algorithm is applied. In the present study, the actual integration is achieved
by a sum of the corresponding similarity matrices. The methodology and advantages of hybrid clustering have been substan-
tiated in more detail in earlier studies devoted to the analysis of different research fields (see Glenisson, Glänzel, Janssens et
al. (2005); Janssens, 2007; Janssens et al., 2007, 2008). In addition, the lexical approach allows to ‘label’ clusters using auto-
matically detected salient terms.

In Section 4.3, Silhouette and modularity curves will be used to compare results of text-based, citation-based and hybrid
clustering, and we will substantiate that the hybrid method in general outperforms the other two.

3.4. Multidimensional scaling

Multidimensional scaling (MDS) can be used to represent high-dimensional vectors (for example, the centroids of journal
clusters) in a lower dimensional space by explicitly requiring that the pairwise distances between the points approximate
the original high-dimensional distances as precisely as possible (Mardia, Kent, & Bibby, 1979). If the dimensionality is re-
duced to two or three dimensions, these mutual distances can directly be visualised. It should, however, be stressed that
interpretations concerning such a low-dimensional approximation of very high-dimensional distances must be handled with
care.

4. Results

4.1. Evaluation of existing ‘intellectual’ subject-classification schemes

The multidisciplinary databases Science Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) of Thomson-
Reuters (formerly Institute for Scientific Information, ISI, Philadelphia, PA, USA) traditionally did not provide a direct subject
assignment for indexed papers. The annual Science Citations Index Guides, the Journal Citation Reports (JCR) and more re-
cently the Website of Thomson Scientific, however, contain regularly updated lists of (S)SCI journals assigned to one or more
subject matters (ISI Subject Categories) each. For lack of an appropriate subject-heading system, more or less modified ver-
sions of this Subject Category scheme were often used in bibliometric studies too, namely as an indirect subject assignment
to individual papers based on the journals in which they had been published. Such assignment systems based on journal
classification have been developed among others by Narin and Pinski (see, for instance, Narin, 1976; Pinski & Narin,
1976). This was followed by classification schemes developed by other institutes as well. Nowadays two ISI systems are
widely used, in particular, the ISI Subject Categories, which are available in the JCR and through journal assignment in
the Web of Science as well, and the Essential Science Indicators (ESI).
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While the first system assigns multiple categories to each journal and is too fine grained (254 categories) for comparison
with cluster analysis, the ESI scheme is forming a partition (with practically unique journal assignment) and the 22 fields are
large enough. Therefore the ESI classification seems to be a good choice for our analysis.

Subject fields will be considered like automatically generated clusters. One precondition for easy comparison with results
from hard clustering is that the reference classification system must form a partition of the WoS universe, while most
schemes allow multiple assignments (e.g., the above-mentioned ISI Subject Categories). The only commonly known subject
scheme for ISI products that meets the criterion is the ESI classification system. This subject-classification scheme is in prin-
ciple based on unique assignment; only about 0.6% of all journals were assigned to more than one field over a 5-year period.
For the present exercise, assignment has to be de-duplicated in the case of journals which merged or split up during the per-
iod of 5 years, declaredly a somewhat arbitrary procedure. Nonetheless, the assignment remains correct and results in no
more than a slightly narrower scope for several journals. The field structure of the ESI scheme is presented in Table 1.

The question arises whether field classification according to the ESI scheme could still be improved. In particular, we will
analyse whether journal assignments to fields can be considered optimum. Fig. 1 presents the evaluation of the 22 ESI fields
based on the cross-citation- (left) and text-based (right) Silhouette values (see Section 3.3.3). Since the ESI fields form a par-
tition, this approach allows to evaluate their consistency as if the fields were results of a clustering procedure. Multi-, inter-
and cross-disciplinarity of journals can certainly affect the results. Several fields seem not to be coherent enough from both
perspectives (i.e., the cross-citation and textual approach). Above all, the Silhouette values of field #2 (Biology and Biochem-
istry), #4 (Clinical Medicine), #7 (Engineering), #19 (Plant and Animal Science) and #21 (Social Sciences) substantiate that at
least five of the 22 fields are not sufficiently coherent.
Table 2
The best 30 TF-IDF terms describing the 22 ESI fields.

Field Best 30 terms

1 Soil; crop; milk; fruit; seed; cultivar; wheat; dry; rice; ha; chees; diet; fat; ferment; nutrit; meat; farm; grain; starch; fertil; irrig; agricultur; dietari;
intak; wine; flour; antioxid; sensori; fatti; sugar

2 Enzym; DNA; receptor; rat; peptid; metabol; lipid; genom; insulin; muscl; transcript; ca2; amino; glucos; mutat; RNA; molecul; diabet; kinas;
inhibitor; hormon; mice; mRNA; neuron; fluoresc; mutant; cancer; assai; serum; vitro

3 Polym; catalyst; crystal; ion; bond; molecul; solvent; atom; ligand; hydrogen; film; polymer; adsorpt; aqueou; poli; nmr; methyl; spectroscopi;
thermal; chemistri; bi; electrod; spectra; cu; catalyt; cation; mol; copolym; anion; angstrom

4 Cancer; therapi; tumor; infect; surgeri; pain; hospit; arteri; syndrom; diabet; injuri; bone; lesion; chronic; symptom; surgic; renal; breast;
carcinoma; serum; transplant; lung; mortal; muscl; liver; coronari; cardiac; physician; rat; hypertens

5 Web; queri; internet; graph; schedul; wireless; semant; logic; node; busi; video; processor; traffic; execut; fuzzi; server; machin; packet; finit;
fault; ltd; grid; hardwar; messag; cach; mesh; xml; multimedia; qo; bandwidth

6 Firm; price; trade; economi; busi; capit; invest; wage; tax; financi; organiz; incom; bank; compani; sector; corpor; employ; stock; monetari;
custom; labor; privat; strateg; welfar; incent; asset; profit; employe; polit; household

7 Nonlinear; fuzzi; finit; machin; robot; sensor; motion; veloc; nois; crack; thermal; ltd; circuit; vehicl; neural; fuel; voltag; vibrat; elast; beam;
shear; turbul; schedul; fault; deform; film; plane; stochast; iter; steel

8 Soil; forest; habitat; river; sediment; ecolog; lake; pollut; land; ecosystem; climat; season; veget; fish; seed; landscap; biomass; nutrient; predat;
agricultur; sludg; toxic; groundwat; bird; stream; wast; sea; island; wastewat; wetland

9 Rock; basin; sediment; sea; fault; ocean; miner; seismic; climat; isotop; earthquak; ic; tecton; ma; soil; southern; volcan; atmospher; mantl;
geolog; wind; northern; reservoir; metamorph; precipit; river; cretac; lake; faci; eastern

10 Immun; il; infect; antigen; antibodi; mice; vaccin; receptor; cytokin; hiv; cd4; lymphocyt; ifn; autoimmun; dc; cd8; macrophag; viru; inflammatori;
peptid; hla; mhc; tnf; nk; ig; molecul; tumor; lp; serum; tcr

11 Alloi; steel; film; coat; corros; glass; crack; microstructur; ceram; powder; fiber; grain; thermal; sinter; polym; crystal; deform; fabric; weld; fibr;
fatigu; concret; fractur; si; specimen; cast; tensil; melt; cement; ni

12 Algebra; theorem; finit; asymptot; infin; manifold; let; polynomi; graph; nonlinear; invari; omega; inequ; singular; lambda; convex; proof;
compact; ellipt; conjectur; bar; epsilon; infinit; sigma; phi; symmetr; stochast; hyperbol; banach; topolog

13 Infect; bacteria; viru; bacteri; pathogen; DNA; genom; pcr; parasit; coli; enzym; mutant; yeast; microbi; viral; hiv; RNA; vaccin; immun; encod;
virul; antibiot; transcript; sp; assai; escherichia; virus; plasmid; clone; candida

14 DNA; chromosom; genom; transcript; mutat; receptor; kinas; mous; mice; RNA; allel; mutant; apoptosi; cancer; mRNA; rat; phenotyp; muscl;
polymorph; embryo; tumor; drosophila; phosphoryl; ca2; neuron; actin; clone; encod; prolifer; mitochondri

15 DNA; genom; scientist; receptor; brain; soil; climat; earth; molecul; neuron; RNA; chromosom; mice; mutat; africa; transcript; biologi; ocean;
infect; fossil; india; sea; evolutionari; rock; fuel; logic; southern; island; enzym; marin

16 Neuron; brain; rat; receptor; cortex; motor; cognit; cortic; cerebr; mice; neural; stroke; sleep; nerv; lesion; synapt; seizur; epilepsi; axon;
schizophrenia; hippocamp; spinal; symptom; pain; alzheim; hippocampu; dopamin; injuri; parkinson; neurolog

17 Rat; receptor; inhibitor; toxic; therapeut; cancer; metabol; vitro; mice; liver; pharmacokinet; oral; therapi; pharmaceut; enzym; antagonist; assai;
vivo; pharmacolog; DNA; tablet; inflammatori; tumor; metabolit; lipid; brain; agonist; diabet; cytotox; antioxid

18 quantum; laser; film; beam; spin; atom; scatter; crystal; ion; nonlinear; excit; photon; lattic; nois; thermal; oscil; dope; symmetri; veloc; emiss;
finit; decai; spectra; wavelength; si; diffract; neutron; nm; plane; acoust

19 fish; dog; egg; forest; genu; breed; habitat; seed; infect; diet; sp; season; larva; reproduct; leaf; bird; nest; hors; cow; soil; predat; sea; cat; taxa;
flower; fruit; veget; parasit; pig; milk

20 Psycholog; cognit; emot; student; mental; adolesc; anxieti; symptom; school; item; child; psychiatr; gender; sexual; attitud; cope; mother;
interview; schizophrenia; suicid; skill; questionnair; belief; abus; therapi; men; word; psychotherapi; aggress; mood

21 Polit; student; school; teacher; gender; urban; nurs; court; reform; war; legal; discours; profession; parti; disabl; interview; capit; rural; attitud;
child; ethnic; privat; welfar; democraci; democrat; ethic; employ; justic; feder; violenc

22 Star; galaxi; solar; orbit; radio; telescop; emiss; stellar; veloc; disk; galact; earth; planet; flux; atmospher; satellit; wind; mar; cosmic; binari; cloud;
flare; dust; spectral; luminos; redshift; jet; accret; dwarf; planetari
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4.2. Labelling subject fields using cognitive characteristics and visualisation of the cross-citation network

Simultaneously to the above validation, the textual approach also provides the best TF-IDF terms – out of a vocabulary of
669,860 terms – describing the individual fields. These terms are presented in Table 2. Although these terms already provide
an acceptable characterisation of the topics covered by the 22 fields, considerable overlaps are apparent between pairs of
fields, respectively: Engineering (#7) and Computer Science (#5), Chemistry (#3) and Materials Science (#11), Plant and Ani-
mal Science (#19) and Environment/Ecology (#8), as well as Biology and Biochemistry (#2), Molecular Biology and Genetics
(#14) and Clinical Medicine (#4). In addition, the terms characterising the social sciences (#21) reflect a pronounced heter-
ogeneity of the field. The structural map of the 22 ESI fields based on cross-citation links is presented in Fig. 2. For the visu-
alisation we used Pajek (Batagelj & Mrvar, 2003). The network map confirms the strong links we have found based on the
best terms between fields #2 and #14, #3 and #11, #5 and #7, and #8 and #19, respectively.

4.3. Cluster analysis: text-based, citation-based and hybrid

Fig. 3 compares the performance of text-based, cross-citation and hybrid clustering by several evaluation methods, for
various numbers of clusters. For each of the three clustering types, Fig. 3(1) presents for various cluster numbers (2–30)
the modularity calculated from the journal cross-citation graph. Since this evaluation is based on cross-citation data, it is
not a surprise that the text-only clustering provides worse results than cross-citation clustering, which performs best here.
However, very interesting to note is that the hybrid clustering (integrated text and cross-citation information) provides re-
sults highly comparable to those from cross-citation clustering, especially for 7 or more than 12 clusters. The modularity
scores for cross-citation clustering indicate that any number of clusters larger than 9 is acceptable. On the other hand,
the modularity curve for text-only clustering contains a maximum for eight clusters.

In Fig. 3(2), Silhouette curves based on (the complement of) cross-citation values show the somewhat counter-intuitive
but beneficial result that hybrid clustering always performs better than cross-citation clustering, although the evaluation
only considers citations here. This demonstrates the power of hybrid clustering: the combined heterogeneous citation–tex-
tual approach is superior to both methods applied separately. Nevertheless, this figure does not provide a clear clue with
respect to the number of clusters to choose.

Silhouette curves based on the complement of cosine similarities of cross-citation vectors are shown in Fig. 3(3). Again,
the hybrid clustering almost always performs best.

In Fig. 3(4), the Silhouette values are computed only from textual distances. Naturally, the citation-based clustering per-
forms worst here, while the integrated clustering scores almost as good as the text-only clustering and for some cluster num-
bers even better.

Fig. 3(5) shows Silhouette curves based on linearly combined text-based and citation-based distances (with equal
weight). Here, combined data and mere citations give comparable results, which might be an indication that there is a pre-
ponderance of citation over text data in the combined Silhouette values.

Finally, Fig. 3(6) provides an external validation of clustering results by expert knowledge available in the ISI Subject Cat-
egories assigned to journals by ISI/Thomson Scientific. The modularity curves are computed from a network containing all
journals as nodes, but with edge weights equal to the number of ISI Subject Categories in common (out of the total of 254
categories). Again very interesting to see is that hybrid clustering outperforms text-only and citation-based clustering. The
optimal number of clusters according to this type of evaluation is 7.

In Table 3 we compare the quality of the partition of 22 ESI fields with the quality of the 22 clusters resulting from cita-
tion-based, text-based and hybrid clustering. The only evaluation measure for which the 22 human-made ESI fields score
best is modularity based on ISI Subject Categories. As already explained before, this evaluation type computes modularity
from a network containing all journals as nodes and with edge weights equal to the number of ISI Subject Categories com-
monly assigned to the corresponding journals by ISI/Thomson Scientific (out of the total of 254 categories). Since there is a
direct correspondence between the 22 ESI fields and these 254 Subject Categories (a field is an aggregation of multiple
Table 3
Evaluation of 22 ESI fields and 22 citation-based, text-based and hybrid clusters by modularities and mean Silhouette values (MSV). Highest values in each
column are shown in bold.

Fields and
clusters

Modularity based on
journal cross-citation
graph

Modularity based on
common ISI subject
categories

MSV based on
textual distances

MSV based on cosine
similarities of cross-citation
vectors

MSV based on linearly
combined distances

22 ESI fields 0.47533 (0.52604) 0.057237 0.016017 0.062807
22 Citation-

based
clusters

0.54676 0.44244 0.09319 0.057337 0.18938

22 Text-based
clusters

0.50451 0.45091 0.11829 0.035447 0.12987

22 Hybrid
clusters

0.54677 0.48839 0.1206 0.05453 0.18951
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subject categories), it is not at all surprising (not to mention unfair) that the ESI fields outperform the clusters for this type of
evaluation. For all other data-driven evaluation types it is clear that automatic clustering does better than human expert
classification. Hybrid clustering always performs at least as good as text-based or citation-based clustering, except for eval-
uation by cosine similarities of cross-citation vectors. A standard t-test for the difference in means revealed that all differ-
ences between mean Silhouette values are statistically significant at the 1% significance level (p-value < 10–8). The
modularity (based on journal cross-citation graph) of hybrid and citation-based clustering is 15% higher than that of the
22 ESI fields. The modularity of text-based clustering is 6.1% higher than that of the 22 ESI fields. Modularity of hybrid clus-
tering is 8.4% higher than that of text-based clustering.

The modularity based on common ISI Subject Categories for hybrid clustering is also 8.3% and 10.4% higher than for text-
based and citation-based clustering, respectively. It should be noted that the values in Table 3 can differ somewhat from the
values in Fig. 3 because, for the sake of a fair comparison with ESI fields, in the table only 7729 journals were considered for
which a field assignment was available.
Fig. 5. Evaluation of the hybrid clustering solution with 22 clusters by citation-based Silhouette plot (left), text-based Silhouette plot (centre) and the plot
with Silhouette values based on combined data (right).

Table 5
Best 30 TF-IDF terms describing the 7 top-level clusters.

Cluster (# journals) Best 30 terms

1 (n = 1384) Polit; firm; war; price; trade; economi; capit; busi; reform; urban; court; parti; gender; privat; invest; organiz; sector; corpor;
employ; moral; labor; legal; incom; financi; discours; tax; music; compani; contemporari; welfar

2 (n = 1264) Soil; forest; sediment; fish; seed; habitat; sea; season; river; lake; sp; basin; rock; genu; veget; crop; leaf; climat; southern; ecolog;
egg; land; ocean; fruit; dry; island; biomass; northern; miner; nutrient

3 (n = 1558) Cancer; infect; tumor; receptor; DNA; rat; therapi; mice; mutat; immun; il; antibodi; liver; serum; genom; enzym; transcript; hiv;
diabet; assai; inhibitor; viru; antigen; vaccin; peptid; apoptosi; metabol; carcinoma; lung; renal

4 (n = 1334) Film; ion; crystal; polym; thermal; atom; alloi; laser; bond; coat; quantum; beam; steel; hydrogen; catalyst; crack; glass; fiber;
molecul; nm; spectroscopi; spectra; veloc; ltd; finit; cu; vibrat; solvent; deform; electrod

5 (n = 849) Algebra; finit; nonlinear; graph; theorem; asymptot; polynomi; fuzzi; infin; manifold; let; invari; stochast; schedul; inequ; convex;
robot; singular; proof; logic; omega; machin; iter; topolog; nois; traffic; infinit; metric; motion; lambda

6 (n = 760) Student; school; cognit; psycholog; teacher; mental; adolesc; emot; child; symptom; anxieti; gender; psychiatr; skill; attitud;
abus; teach; item; word; interview; disabl; mother; schizophrenia; sexual; alcohol; speech; instruct; belief; cope; english

7 (n = 1156) Pain; therapi; hospit; injuri; arteri; nurs; brain; surgeri; neuron; symptom; physician; syndrom; muscl; bone; diabet; rat; lesion;
coronari; chronic; stroke; cancer; mortal; cardiac; surgic; receptor; infect; nerv; hypertens; men; infant

Table 4
Best 30 TF-IDF terms describing the 3 top-level clusters.

Cluster (# journals) Best 30 terms

1 (n = 2144) Polit; student; school; firm; cognit; psycholog; war; gender; price; emot; mental; capit; teacher; trade; economi; reform; adolesc;
child; busi; discours; attitud; urban; skill; court; organiz; moral; text; employ; privat; interview

2 (n = 3447) Soil; finit; film; nonlinear; thermal; ion; crystal; algebra; polym; ltd; forest; atom; veloc; sediment; laser; quantum; motion;
graph; theorem; seed; alloi; asymptot; deform; sea; fish; bond; coat; grain; sensor; beam

3 (n = 2714) Cancer; infect; therapi; tumor; receptor; rat; DNA; pain; diabet; mice; bone; brain; muscl; hospit; syndrom; chronic; injuri; mutat;
surgeri; serum; lesion; arteri; neuron; immun; liver; hiv; il; symptom; antibodi; metabol
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4.4. Evaluation of hybrid clusters

The cluster dendrogram shows the structure in a hierarchical order (see Fig. 4). We visually find a first clear cut-off point
at three clusters, a second one around seven, and 22 clusters also seemed to be an acceptable/appropriate number. This value
coincides with the number of fields according to the ESI classification scheme. The Silhouette plots in Fig. 5 and the mean
Silhouette values in Table 3 substantiate that the 22 hybrid clusters are furthermore acceptable for both the citation and
the text-mining approach. The same conclusion can be drawn from computed modularity scores.

The number of three clusters results in an almost trivial classification. Intuitively, these three high-level clusters should
comprise natural and applied sciences, medical sciences, and social sciences and humanities. The solutions with 3 and 22
clusters will be analysed in more detail in Section 4.5. The solution comprising of seven clusters results in a non-trivial clas-
sification. The best TF-IDF terms (see Table 5) show that three of these clusters represent the natural/applied sciences,
whereas two classes each stand for the life sciences and the social sciences and humanities. This situation is also reflected
by the cluster dendrogram in Fig. 4. A closer look at the best TF-IDF terms reveals that the social-sciences cluster (#1 of the
3-cluster solution) is split into the cluster #1 (economics, business and political science) and #6 (psychology, sociology,
education), the life-science cluster (#3 in the 3-cluster scheme) is split into clusters #3 (biosciences and biomedical re-
search) and #7 (clinical, experimental medicine and neurosciences) and, finally, the sciences cluster #2 of the 3-cluster
scheme is distributed over three clusters in the 7-cluster solution, particularly, the cluster comprising biology, agriculture
and environmental sciences (#2), physics, chemistry and engineering (#4) as well as mathematics and computer science
(#5).
Table 6
The 30 best TF-IDF terms describing the 22 hybrid citation–lexical clusters.

Cluster Best 30 terms

1 Polit; war; court; music; moral; essai; legal; philosophi; narr; text; literari; book; contemporari; french; religi; write; german; discours; ethic;
civil; reform; christian; philosoph; justic; fiction; coloni; nineteenth; archaeolog; religion; aesthet

2 Rock; basin; sediment; fault; sea; climat; soil; ic; miner; ocean; seismic; atmospher; river; wind; isotop; veloc; earth; star; tecton; earthquak;
solar; precipit; ma; volcan; mantl; southern; lake; satellit; geolog; cloud

3 Receptor; rat; DNA; genom; enzym; transcript; mutat; mice; metabol; peptid; diabet; cancer; insulin; chromosom; kinas; inhibitor; lipid; ca2;
muscl; mRNA; RNA; neuron; molecul; vitro; apoptosi; mous; liver; tumor; glucos; assai

4 Polym; ion; catalyst; crystal; bond; molecul; film; solvent; atom; hydrogen; ligand; nmr; polymer; poli; aqueou; adsorpt; thermal; methyl;
spectroscopi; spectra; copolym; cation; fiber; cu; nm; bi; coat; mol; blend; nanoparticl

5 Crack; finit; concret; veloc; elast; turbul; vibrat; shear; thermal; nonlinear; beam; deform; fuel; motion; ltd; steel; cylind; combust; convect;
flame; fatigu; compress; fractur; vehicl; jet; reynold; plane; wind; stiff; pipe

6 Price; firm; trade; tax; economi; capit; incom; wage; invest; bank; financi; monetari; stock; welfar; labor; inflat; sector; privat; incent;
household; earn; game; asset; employ; insur; forecast; reform; foreign; unemploy; volatil

7 Brain; neuron; rat; stroke; lesion; receptor; pain; cerebr; ct; mri; motor; cognit; injuri; spinal; nerv; mr; seizur; epilepsi; cortex; neurolog;
tumor; arteri; dementia; sleep; cortic; syndrom; muscl; therapi; symptom; parkinson

8 Algebra; finit; theorem; manifold; infin; nonlinear; polynomi; let; graph; asymptot; singular; omega; invari; inequ; lambda; ellipt; convex;
compact; conjectur; epsilon; hyperbol; infinit; proof; bar; symmetr; phi; sigma; topolog; banach; lie

9 Word; cognit; speech; semant; english; linguist; phonolog; stimulu; stimuli; lexic; cue; sentenc; speaker; verb; prime; perceptu; student;
acoust; text; item; discours; verbal; auditori; emot; recal; syntact; brain; hear; skill; deficit

10 Nurs; hospit; physician; therapi; cancer; pain; mortal; pregnanc; infant; symptom; ethic; smoke; diabet; infect; birth; ci; men; interview; hiv;
injuri; profession; chronic; syndrom; questionnair; worker; school; adolesc; student; surgeri; mental

11 Student; school; teacher; teach; classroom; instruct; skill; academ; curriculum; literaci; disabl; learner; profession; colleg; cognit; peer; child;
faculti; gender; reform; write; psycholog; pupil; graduat; attitud; undergradu; text; emot; interview; belief

12 Bone; ey; muscl; sport; athlet; pain; implant; surgeri; fractur; injuri; knee; dental; hip; surgic; nerv; anterior; retin; postop; oral; tendon;
corneal; teeth; flap; periodont; graft; lesion; ocular; posterior; therapi; radiograph

13 Infect; dog; hiv; vaccin; viru; hors; cow; milk; parasit; cat; pig; cattl; antibodi; diet; immun; pcr; calv; breed; viral; herd; sheep; pathogen;
serum; antigen; therapi; farm; malaria; antibiot; veterinari; hospit

14 Firm; organiz; busi; librari; web; internet; custom; compani; employe; job; onlin; brand; team; strateg; journal; career; corpor; satisfact;
student; price; trust; advertis; academ; profession; librarian; attitud; organis; leadership; cognit; enterpris

15 Soil; seed; crop; cultivar; leaf; fruit; bacteria; wheat; dry; rice; enzym; pathogen; shoot; nitrogen; microbi; ferment; bacteri; ha; pollut;
sediment; milk; nutrient; DNA; fertil; germin; biomass; seedl; season; agricultur; coli

16 Cancer; tumor; therapi; il; carcinoma; transplant; breast; immun; infect; lung; liver; renal; antibodi; receptor; antigen; mice; malign; serum;
chronic; prostat; lesion; surgeri; tumor; chemotherapi; mutat; inflammatori; DNA; bone; recurr; surgic

17 Coronari; arteri; cardiac; ventricular; myocardi; hypertens; cardiovascular; aortic; atrial; infarct; diabet; therapi; valv; vascular; stent;
endotheli; surgeri; pulmonari; mortal; cholesterol; systol; bypass; syndrom; lv; graft; diastol; renal; vein; rat; echocardiographi

18 Fuzzi; schedul; robot; logic; machin; graph; nonlinear; traffic; web; asymptot; circuit; neural; nois; finit; stochast; fault; queri; custom;
wireless; video; node; semant; heurist; antenna; motion; markov; polynomi; bayesian; iter; processor

19 Forest; habitat; fish; genu; egg; predat; season; sp; nest; sea; ecolog; larva; reproduct; lake; bird; prei; island; taxa; seed; river; veget; soil;
breed; southern; ecosystem; nov; mate; genera; diet; biomass

20 Film; alloi; laser; quantum; crystal; ion; steel; thermal; atom; beam; coat; glass; si; grain; microstructur; corros; silicon; dope; spin; ceram;
powder; nm; scatter; fabric; neutron; diffract; dielectr; photon; cu; electrod

21 Psycholog; adolesc; mental; emot; cognit; symptom; child; anxieti; psychiatr; abus; student; school; alcohol; schizophrenia; sexual; mother;
gender; attitud; suicid; interview; cope; violenc; therapi; questionnair; youth; disabl; offend; men; belief; item

22 Polit; urban; parti; gender; reform; economi; capit; democrat; democraci; employ; sector; war; land; sociolog; geographi; union; labor; rural;
elect; welfar; ethnic; labor; discours; immigr; privat; actor; trade; civil; poverti; firm
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The hybrid, i.e., the combined citation–textual based clustering yields acceptable results (see Fig. 5), and is distinctly
superior to both methods applied separately. Nonetheless, we must not conceal that we can also find clusters of lesser qual-
ity, notably cluster #1, in the hybrid classification.

4.5. Cognitive characteristics of clusters

As already mentioned in the previous section, another nice point to cut off the dendrogram is at three clusters (cf. the
right-most vertical line in Fig. 4). Although this refers to a rather trivial case, it might be worthwhile to have a look at term
representation of this structure before we deal with ‘labelling’ the 22 clusters that we have obtained from the hybrid algo-
rithm. This will also help us to understand the hierarchical architecture of the subject structure of science. Table 4 lists the
best 30 terms for each of the three top-level clusters which definitely confirm the presence of the expected clusters. Indeed,
cluster #1 comprises the social-sciences, cluster #2 the natural and applied sciences and cluster #3 the medical sciences. The
distribution of journals over clusters is surprisingly well-balanced.

According to the terms in Table 4, economics, business and psychology are the dominant issues in the first cluster which
represents the social sciences. The most characteristic terms of the second cluster represent the full spectrum of the sciences
including mathematics, geosciences and engineering. Also some subfields of agriculture and environment are covered. Clus-
ter #3, finally, covers biosciences, biomedical research, clinical and experimental medicine and neurosciences.

The 30 best TF-IDF terms describing the 22 hybrid citation–lexical clusters are listed in Table 6. Cluster #1 of the 3-cluster
scheme is split up in seven clusters, particularly, in #1, #6, #9, #11, #14, #21 and #22. However, this sub-classification of the
social sciences is less straightforward. Cluster #6 represents economics and business and political science, cluster #9 stands
for psychology and linguistics, cluster #21 covers psychology and psychiatry, #11 comprises sociology and education, and
cluster #1 is rather focussed on the humanities. Cluster #14 and #22 seem to have more heterogeneous profiles among these
‘social and humanity clusters’. Although cluster #14 largely covers information and library science, the terms reflect a large
overlap with other clusters. The same applies to cluster #22, which has obviously an even fuzzier structure. On the other
hand, #9 and #21 are both covering psychology but focussing on different aspects, namely cognitive (#9) and medical
(#21) issues.

Similarly to the structural analysis in Section 4.2, we use now a network with citation links among clusters to study the
relationship of clusters based on hybrid cross-citation/textual information (see Fig. 6). The observations made on the basis of
most characteristic terms are confirmed by the link structure. The social-sciences and humanities clusters form two groups
that are each strongly interlinked; one consists of clusters #1, #6, #14 and #22 with focus on humanities, economics, busi-
ness, political and library science, the other one comprises #9, #11 and #21 with sociology, education and psychology. This is
in line with the hierarchical structure shown in Fig. 4. These two groups correspond to the two social-sciences clusters in the
7-cluster solution (cf. Section 4.4).

In the natural and applied sciences, we have found eight clusters, particularly, #2, #4, #5, #8, #15, #18, #19 and #20. On
the basis of the most important TF-IDF terms (see Table 6) we can assign clusters #2, #15 and #19 to geosciences, environ-
Fig. 6. Network structure of hybrid clusters represented by the three most important terms.
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mental science, biology and agriculture, which, in turn, form a larger group corresponding to the first of the three ‘‘mega-
clusters” in the 7-cluster solution. The graphic network presentation in Fig. 6 confirms this interpretation. These three clus-
ters form a group at the bottom. The other sciences clusters are more clearly recognisable, and distinctly separate fields. Thus
clusters #4 represents chemistry, #20 physics, #5 engineering, #8 mathematics, and cluster #18 computer science. These
science clusters form two groups, #4, #20 and #5 form one group of chemistry, physics and engineering, while #8 and
#18 form the third group comprising mathematics and computer science. The network presentation and the hierarchical
architecture in the dendrogram confirm the term characterisation.

The interpretation of the most characteristic terms of the life-science clusters is somewhat more complicated. Here we
have a biomedical and a clinical group. These two groups are in line with the hierarchical structure of the dendrogram in
Fig. 4 but less clearly distinguished in the graphical network presentation (Fig. 6). Nonetheless, the terms provide an excel-
lent description for at least some of the medical clusters: cluster #7 stands for the neuro- and behavioral sciences, #3 for
bioscience, #10 for the clinical and social medicine, #13 microbiology and veterinary science, #12 non-internal medicine,
#16 hematology and oncology and #17 cardiovascular and respiratory medicine. According to the dendrogram clusters 3,
13, 16 and clusters 7, 10, 12, 17 form one larger cluster each. On the basis of the best terms, we can characterise these groups
as the bioscience–biomedical and the clinical and neuroscience group, respectively.

In order to gain a better understanding of the cluster structure, we have ranked the journals of each of the 22 clusters
according to a modified version of Google’s PageRank algorithm (Brin & Page, 1998) in which the number of citations is taken
into account, normalised by the number of published papers. The following equation was used,
PRi ¼
ð1� aÞ

n
þ a

X
j

PRj
aji=PiP

k
ajk

Pk

ð6Þ
where PRi is the PageRank of journal i, a is a scalar between 0 and 1 (a = 0.9 in our implementation), n is the number of jour-
nals in the cluster, aji the number of citations from journal j to journal i, and Pi is the number of papers published by journal i,
all in the period under study. Both sums iterate over the journals in the same cluster that contains journal i. Journal self-cita-
tions were removed prior to application of the algorithm.

The five journals with highest PageRank are presented in Table 7. The PageRank of a journal can be understood here as the
probability that a random reader will be reading that journal, when he randomly, continuously, and with equal probability
looks up cited references to other journals (different from the current one), but once in a while randomly picks another jour-
nal from the library (cluster). Journals from arts and humanities (according to the ISI Subject Categories) were removed prior
to application of the PageRank algorithm because of the low reliability of citation indicators in these disciplines. Zhang, Glän-
zel, and Liang (2009) have shown that high entropy of journal cross-citations, relatively low impact and high share of journal
self-citation makes it difficult to build reliable citation indicators for the humanities. This has to do with the subject-specific
peculiarities in scholarly communication.

In general, the journals ranking highest represent their cluster in an adequate manner (cf. Table 7). Results of the PageR-
anking thus provide a realistic and representative picture of the hybrid clustering.

4.6. Comparison of subject and cluster structure

In this subsection we compare the structure resulting from the hybrid clustering with the ESI subject classification. This
comparison is based on the centroids of the clusters and fields. The centroid of a cluster or field is defined as the linear com-
bination of all documents in it and is thus a vector in the same vector space. For each cluster and for each field, the centroid
was calculated and the MDS of pairwise distances between all centroids is shown in Fig. 7.

In Fig. 8, we use the Jaccard index to determine the concordance between our clustering solution and the ESI Scheme by
comparing each cluster with every field, in order to detect the best-matching fields for each cluster. The darker a cell in the
matrix, the higher the Jaccard index, and hence the more pronounced the overlap between the corresponding cluster and ESI
field. For example, cluster #4 (Chemistry) definitely corresponds to ESI field #3 (Chemistry). The same applies to field and
cluster #6 (Economics and business). Clearly, ESI field #21 has the least concordance as this field is spread over seven clus-
ters. It is defined as one single field in social sciences. It is not a surprise that the strongest match is found with our some-
what ‘fuzzy’ multidisciplinary social cluster. On the other hand, clusters #13 and #14 are quite similarly spread over four ESI
fields each. The analysis does not result in a one-to-one correspondence between clusters and fields. For example, ESI field 20
(Psychology/Psychiatry) is the best-matching field for both clusters 9 and 11, whereas ESI field 8 (Environment/Ecology) is
not the best-matching field for any cluster. Such deviations from one-to-one correspondence are interesting starting points
to look for possible improvements of the intellectual classification scheme.

4.7. Migration of journals among subject fields and clusters

If clustering algorithms are adjusted or changed, one can observe the following phenomenon. Some units of analysis are
leaving clusters they formerly belonged to and end up in different clusters. This phenomenon is called ‘migration’. We can
distinguish between ‘good migration’ and ‘bad migration’. ‘Good migration’ is observed if the goodness of the unit’s classi-
fication improves, otherwise we speak about ‘bad migration’. We can also apply this notion of migration to the comparison of
clustering results with any reference classification. In the following we will use the ESI scheme as reference classification.



Table 7
The five most important journals of each cluster according to a modified version of Google’s PageRank algorithm (see Formula 6).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

1. Yale Law J 1. Annu Rev Astron Astr 1. Annu Rev Biochem 1. Chem Rev
2. Harvard Law Rev 2. Astrophys J Suppl S 2. Cell 2. Prog Polym Sci
3. Stanford Law Rev 3. Earth-Sci Rev 3. Nat Rev Mol Cell Bio 3. Accounts Chem Res
4. Am Hist Rev 4. Rev Mineral Geochem 4. Annu Rev Cell Dev Bi 4. Annu Rev Phys Chem
5. Columbia Law Rev 5. Annu Rev Earth Pl Sc 5. Annu Rev Genet 5. Adv Drug Deliver Rev

Cluster 5 Cluster 6 Cluster 7 Cluster 8

1. Prog Energ Combust 1. Q J Econ 1. Annu Rev Neurosci 1. J Am Math Soc
2. Annu Rev Fluid Mech 2. J Financ 2. Nat Rev Neurosci 2. Ann Math
3. Prog Aerosp Sci 3. J Econ Lit 3. Neuron 3. Acta Math-Djursholm
4. P Combust Inst 4. J Polit Econ 4. Nat Neurosci 4. Invent Math
5. Combust Flame 5. J Financ Econ 5. Prog Neurobiol 5. Commun Pur Appl Math

Cluster 9 Cluster 10 Cluster 11 Cluster 12

1. Psychol Rev 1. Milbank Q 1. Rev Educ Res 1. Crit Rev Oral BIOL M
2. Behav Brain Sci 2. Annu Rev Publ Health 2. Am Educ Res J 2. Prog Retin Eye Res
3. Cognitive Psychol 3. Jama-J Am Med assoc 3. Educ Eval Policy An 3. Am J Sport Med
4. J Exp Psychol Gen 4. Health Serv Res 4. Educ Psychol-US 4. Periodontol 2000
5. Cognition 5. J Health Soc Behav 5. J Learn Sci 5. Sports Med

Cluster 13 Cluster 14 Cluster 15 Cluster 16

1. J Acq Immun Def Synd 1. Admin Sci Quart 1. Annu Rev Plant Biol 1. Annu Rev Immunol
2. Aids 2. Acad Manage J 2. Plant Cell 2. Nat Rev Immunol
3. Clin Microbiol Rev 3. Organ Sci 3. Curr Opin Plant Biol 3. Nat Immunol
4. J Infect Dis 4. Acad Manage Rev 4. Annu Rev Phytopathol 4. Ca-cancer J Clin
5. Clin Diagn Virol 5. Mis Quart 5. Microbiol Mol Biol R 5. Immunity

Cluster 17 Cluster 18 Cluster 19 Cluster 20

1. Circulation 1. ACM Comput Surv 1. Annu Rev Ecol Evol S 1. Rev Mod Phys
2. Circ Res 2. J ACM 2. Systematic Biol 2. Mat Sci Eng R
3. J Am Coll Cardiol 3. J R Stat Soc B 3. Annu Rev Entomol 3 Annu Rev Nucl Part S
4. Arterioscl Throm Vas 4. Vldb J 4. Oceanogr Mar Biol 4. Phys Rep
5. Cardiovasc Res 5. IEEE T Robotic Autom 5. Trends Ecol Evol 5. Prog Mater Sci

Cluster 21 Cluster 22

1. Psychol Bull 1. Am Polit Sci Rev
2. Annu Rev Psychol 2. World Polit
3. J Pers Soc Psychol 3. Am J Polit Sci
4. Arch Gen Psychiat 4. Am Sociol Rev
5. Pers Soc Psychol Rev 5. Annu Rev Sociol
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Fig. 7. Three-dimensional MDS map visualising distances between the centres (centroids) of the 22 ESI fields and the 22 clusters containing 8305 WoS
journals.
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Fig. 8. Concordance between our clustering solution and the ESI Scheme visualised by grayscale cells representing the Jaccard index for each cluster and
field pair. The darkest cells represent the best-matching pairs of fields and clusters. In the left figure, the Jaccard index is computed from the number of
journals a cluster and a field have in common, while the right figure takes the size of each journal into account by counting the numbers of overlapping
papers.
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In the previous section we visualised the concordance between the clustering and the ESI classification. To determine for
each ESI field the cluster that best matches the field, we used the Jaccard index on basis of the number of overlapping jour-
nals (cf. upper part of Fig. 8). Out of 8305 journals under study, there were more than one third, namely, 3204 journals that
were not assigned to the cluster which best matches their ESI field. As already mentioned above, we call these journals ‘mi-
grated journals’. The largest ‘exodus’ comprising 226 migrating journals occurred from the ESI ‘‘Engineering” field to cluster
#18 (Computer science), whereas the best-matching cluster for the Engineering field is actually cluster #5 (Engineering). The
top 10 strongest patterns of migration are listed in Table 8, which indicate possible improvements of journal assignments.

To measure the quality of migrations, we calculated the differences in Silhouette values before and after migration (based
on textual and citation distances), for each migrated journal. Most migrated journals improved their Silhouette values. In the
following, we will give some examples of good migrations and bad migrations.

‘Good migrations’ are observed if journals improved their Silhouette values after migration. Based on their titles and
scopes (not shown), apparently they should indeed be assigned to the cluster to which they have moved. We observed
numerous good migrations and the following cases will serve just as examples.

The Journal of Analytical Chemistry and Chemia Analityczna migrated from ESI field #7 (Engineering) to cluster 4 (chemis-
try). The best-matching ESI cluster were field #3 (Chemistry) in this case (cf. Fig. 8). Similarly, Land Economics, Developing
Economies and Economic Development and Cultural Change migrated from field #21 (Social Sciences, general) to the more spe-
cific cluster 6 (economics and business). Here, the corresponding ESI field were #6 (Economics and business). In the life sci-
ences, we found the following good migration. The journals Neuropathology, Revista de Neurologia, Current Opinion in
Neurology, Revue Neurologique, Lancet Neurology, European Journal of Neurology, Neurologist, Nervenheilkunde, Visual Neurosci-
ence, Seminars in Neurology, Epilepsy and Behavior and Journal of Neuroimaging migrated from field #4 (Clinical Medicine) to
cluster #7 (neuroscience and behavior) which rather corresponds to ESI field #16 (Neuroscience and behavior). Finally, we
mention a migration between engineering and mathematics. The journals Quarterly of Applied Mathematics, Bit Numerical
Mathematics, Siam Journal on Discrete Mathematics and Discrete Applied Mathematics, which were assigned to the ESI field
Table 8
Top 10 strongest migration patterns.

Migration pattern Number of migrated journals

From ESI field 7 (engineering) to cluster 18 226
From ESI field 14 (molecular biology and genetics) to cluster 3 159
From ESI field 21 (social sciences, general) to cluster 10 145
From ESI field 11 (materials science) to cluster 20 139
From ESI field 4 (clinical medicine) to cluster 7 132
From ESI field 19 (plant and animal science) to cluster 15 108
From ESI field 21 (social sciences, general) to cluster 21 98
From ESI field 7 (engineering) to cluster 20 95
From ESI field 4 (clinical medicine) to cluster 3 86
From ESI field 8 (environment/ecology) to cluster 15 86
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Engineering (field #7), were found in our ‘Mathematics’ cluster (#8) which in turn corresponds to WSI field #12 (Mathemat-
ics). In the case of bad migration, the Silhouette values decreased after migration, that is, their Silhouette values in the ESI
scheme were better than in the hybrid clustering. The reasons for this phenomenon are not always clear. According to their
titles and scopes this migration is not always convincing. For instance, Journal of Astrophysics and Astronomy, New Astronomy,
Astrophysical Journal and Astronomy and Astrophysics migrated from the ESI field 22 (Space Science) to cluster 2 (geosciences)
corresponding to ESI field #9, where we have to admit that journals in astronomy and astrophysics are in general spread over
the geosciences and physics clusters. Viral Immunology migrated from field #10 (Immunology) to cluster #13 (microbiology
and veterinary science) and Canadian Journal of Microbiology migrated from field #13 (Microbiology) to cluster #15 (agricul-
tural and environmental sciences). Both clusters are rather spread over several ESI fields each (see Fig. 8).

The distinction between good and bad makes a target-oriented adjustment of the existing classification scheme possible.
Good migration can be used to reassign journals within the old scheme on the basis of the concordance with the results of
clustering.
5. Conclusions

The hybrid clustering using textual information and cross-citations provided good results and proved superior to its two
components when applied separately. The goodness of the resulting classification was even better than that of the ‘‘intellec-
tual” reference scheme, the ESI subject scheme. Both classification systems form partitions of the Web of Science so that the
direct comparison of clusters and fields was possible. According to our expectations, not all clusters have a unique counter-
part in the ESI scheme and vice versa although the number of clusters coincided with the number of ESI fields. Although the
Silhouette and modularity values substantiate a more coherent structure of the hybrid clustering as compared with the ESI
subject scheme, not all clusters are of high quality. Problems have been found, for instance, in clusters #1 and #12 where
interdisciplinarity and strong links with other clusters distort the intra-cluster coherence. However, intellectual classifica-
tion schemes usually do have a category ‘‘multidisciplinary sciences” as well. Although the result of a hard clustering algo-
rithm often does contain a cluster with objects (journals) not strongly related to any other cluster, forming a
‘‘multidisciplinary sciences” cluster is not an inherent goal of the algorithm, and actually is not really meaningful either
in the light of our outset goal to improve the classification of the sciences. Consequently, real multidisciplinary journals
are scattered around different clusters.

Based on the external validation of clustering results by expert knowledge present in ISI subject categories, seven clusters
seem to yield best results. Although there is no adequate subject-classification scheme with 7 categories to be used as ref-
erence system, a more detailed analysis of this solution will be part of future research. Additional ideas for future research
are a further improvement of the hybrid clustering algorithm by iterative cleaning of clusters as a post-processing step;
allowing multiple assignments by fuzzy clustering; evaluating other algorithms like spectral clustering; and, finally, dynamic
analysis by dynamic hybrid clustering.

The continuous rise of computing power might one day allow a large-scale mapping of the scientific universe explorable
at various levels of detail. What’s more, application of advanced natural language processing and machine summarisation at
the scale of large bibliographic corpora might offer some insight into semantics beyond mere statistical processing.
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