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Abstract

This paper addresses the problem of simultaneously estimating the state and the input of a linear discrete-time system. A recursive filter,
optimal in the minimum-variance unbiased sense, is developed where the estimation of the state and the input are interconnected. The input
estimate is obtained from the innovation by least-squares estimation and the state estimation problem is transformed into a standard Kalman
filtering problem. Necessary and sufficient conditions for the existence of the filter are given and relations to earlier results are discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Thanks to its applications in fault detection and in state esti-
mation for geophysical processes with unknown disturbances,
the problem of state estimation for linear systems with un-
known inputs has received considerable attention during the
last decades.

For continuous-time systems, necessary and sufficient con-
ditions for the existence of an optimal state estimator are
well-established (Darouach, Zasadzinski, & Xu, 1994; Hou &
Müller, 1992; Kudva, Viswanadham, & Ramakrishna, 1980).
Furthermore, design procedures for the reconstruction of un-
known inputs have received considerable attention (Hou &
Patton, 1998; Xiong & Saif, 2003).

For discrete-time systems, earliest approaches were based
on augmenting the state vector with an unknown input vec-
tor, where a prescribed model for the unknown input is as-
sumed. To reduce computation costs of the augmented state
filter, Friedland (1969) proposed the two-stage Kalman filter
where the estimation of the state and the unknown input are
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decoupled. Although successfully used in many applications,
both methods are limited to the case where a model for the
dynamical evolution of the unknown input is available.

Kitanidis (1987), on the other hand, developed an optimal
recursive state filter which is based on the assumption that no
prior information about the unknown input is available. His
result was extended by Darouach and Zasadzinski (1997) who
established stability and convergence conditions and developed
a new design method for the optimal state filter.

Hsieh (2000) established a connection between the two-stage
filter and the Kitanidis filter by showing that Kitanidis’ result
can be derived by making the two-stage filter independent of
the underlying input model. Furthermore, his method yields an
estimate of the unknown input. However, the optimality of the
input estimate has not been proved.

This paper is an extension of Kitanidis (1987) and Darouach
and Zasadzinski (1997) to joint minimum-variance unbiased
(MVU) input and state estimation. We propose a recursive filter
where the estimation of the unknown input and the state are in-
terconnected. We prove that this approach yields the same state
update as in Kitanidis (1987) and Darouach and Zasadzinski
(1997) and the same input estimate as in Hsieh (2000), thereby
also showing that the latter input estimate is indeed optimal.

This paper is organized as follows. In Section 2, the prob-
lem is formulated and the structure of the recursive filter is
presented. Section 3 deals with optimal reconstruction of the
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unknown input. Next, the state estimation problem is solved in
Section 4. Finally, a proof of global optimality is provided in
Section 5.

2. Problem formulation

Consider the linear discrete-time system

xk+1 = Akxk + Gkdk + wk , (1)

yk = Ckxk + vk , (2)

where xk ∈ Rn is the state vector, dk ∈ Rm is an unknown input
vector, and yk ∈ Rp is the measurement. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rp are assumed to be
mutually uncorrelated, zero-mean, white random signals with
known covariance matrices, Qk =E[wk wT

k ] and Rk =E[vk vT
k ],

respectively. Results are easily generalized to the case where wk

and vk are correlated by transforming (1)–(2) into an equivalent
system where process and measurement noise are uncorrelated
(Anderson & Moore, 1979, Chapter 5.5).

Throughout the paper, we assume that (Ck, Ak) is observable
and that x0 is independent of vk and wk for all k. Also, we
assume that the following sufficient condition for the existence
of an unbiased state estimator is satisfied.

Assumption 1 (Darouach & Zasadzinski, 1997);Kitanidis,
1987). rank CkGk−1 = rank Gk−1 = m, for all k.

Note that Assumption 1 implies n�m and p�m.
The objective of this paper is to make MVU estimates of the

system state xk and the unknown input dk−1, given the sequence
of measurements Yk = {y0, y1, . . . , yk}. No prior knowledge
about dk−1 is assumed to be available and no prior assumption
is made. The unknown input dk−1 can be any type of signal.

We consider a recursive filter of the form

x̂k|k−1 = Ak−1x̂k−1|k−1, (3)

d̂k−1 = Mk(yk − Ckx̂k|k−1), (4)

x̂�
k|k = x̂k|k−1 + Gk−1d̂k−1, (5)

x̂k|k = x̂�
k|k + Kk(yk − Ckx̂

�
k|k), (6)

where Mk ∈ Rm×p and Kk ∈ Rn×p still have to be determined.
Let x̂k−1|k−1 be an unbiased estimate of xk−1, then x̂k|k−1 is
biased due to the unknown input in the true system. Therefore,
an unbiased estimate of the unknown input is calculated from
the measurement in (4) and used to obtain an unbiased state
estimate x̂�

k|k in (5). In the final step, the variance of x̂�
k|k is

minimized by using an update similar to the Kalman filter.
Conditions on the matrix Mk to obtain unbiased and MVU

estimates of the unknown input, are derived in Section 3. The
gain matrix Kk minimizing the variance of x̂k|k , is computed
in Section 4.

3. Input estimation

In this section, we consider the estimation of the unknown
input. In Section 3.1, we determine the matrix Mk such that (4)

is an unbiased estimator of dk−1. In Section 3.2, we extend to
MVU input estimation.

3.1. Unbiased input estimation

Defining the innovation ỹk by

ỹk�yk − Ckx̂k|k−1, (7)

it follows from (1) to (3) that

ỹk = CkGk−1dk−1 + ek , (8)

where ek is given by

ek = Ck(Ak−1x̃k−1 + wk−1) + vk , (9)

with x̃k�xk − x̂k|k .
Let x̂k−1|k−1 be unbiased, then it follows from (9) that E[ek]=

0 and consequently from (8) that

E[ỹk] = CkGk−1dk−1. (10)

Eq. (10) indicates that an unbiased estimate of the unknown
input dk−1 can be obtained from the innovation.

Theorem 1. Let x̂k−1|k−1 be unbiased, then (3)–(4) is an un-
biased estimator of dk−1 if and only if Mk satisfies

MkCkGk−1 = Im. (11)

Proof. Substituting (8) in (4), yields

d̂k−1 = MkCkGk−1dk−1 + Mkek .

Noting that d̂k−1 is unbiased if and only if Mk satisfies
MkCkGk−1 = Im, concludes the proof. �

The matrix Mk corresponding to the least-squares (LS) so-
lution of (8), satisfies (11). The LS solution is thus unbiased.
However, it does not have minimum-variance because ek does
not have unit variance and thus (8) does not satisfy the as-
sumptions of the Gauss–Markov theorem (Kailath, Sayed, &
Hassibi, 2000, Chapter 3.4.2). Nevertheless, the variance of ek

can be computed from the covariance matrices of the state esti-
mator. An MVU estimator of dk−1 is then obtained by weighted
LS (WLS) estimation with weighting matrix (E[ek eT

k ])−1, as
will be shown in the next section.

3.2. Minimum-variance unbiased input estimation

Denoting the variance of ek by R̃k, a straightforward calcu-
lation yields

R̃k = E[ek eT
k ],

= Ck(Ak−1Pk−1|k−1A
T
k−1 + Qk)C

T
k + Rk , (12)
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where Pk|k�E[x̃k x̃T
k ]. Furthermore, defining

Pk|k−1�Ak−1Pk−1|k−1A
T
k−1 + Qk−1,

it follows that R̃k can be rewritten as

R̃k = CkPk|k−1C
T
k + Rk .

An MVU input estimate is then obtained as follows.

Theorem 2. Let Assumption 1 hold, let x̂k−1|k−1 be unbiased,
let R̃k be positive definite and let Mk be given by

Mk = (FT
k R̃−1

k Fk )−1FT
k R̃−1

k , (13)

where Fk�CkGk−1, then (4) is the MVU estimator of dk−1
given the innovation ỹk . The variance of the corresponding
input estimate, is given by (FT

k R̃−1
k Fk)

−1.

Proof. Under the assumption that R̃k is positive definite, an
invertible matrix S̃k ∈ Rp×p satisfying S̃kS̃

T
k = R̃k, can always

be found, for example by a Cholesky factorization. We now
transform (8) to

S̃−1
k ỹk = S̃−1

k CkGk−1dk−1 + S̃−1
k ek . (14)

Under the assumption that S̃−1
k CkGk−1 has full column rank,

the LS solution d̂k−1 of (14) equals

d̂k−1 = (FT
k R̃−1

k Fk )−1FT
k R̃−1

k ỹk , (15)

where Fk = CkGk−1. Note that solving (14) by LS estimation
is equivalent to solving (8) by WLS estimation with weighting
matrix R̃−1

k . In addition, since the weighting matrix is chosen
such that S̃−1

k ek has unit variance, Eq. (14) satisfies the as-
sumptions of the Gauss–Markov theorem. Hence, (15) is the
MVU estimate of dk−1 given ỹk (Kailath et al., 2000, Chapter
2.2.3). The variance of the WLS solution (15) is given by
(FT

k R̃−1
k Fk )−1. �

This input estimator has a strong connection to the filter
designed in Hsieh (2000).

Theorem 3. Let Mk be given by (13), then we obtain the same
input estimate as in Hsieh (2000, Section III).

In Hsieh (2000, Section III), the input estimate follows by
making the two-stage Kalman filter independent of the under-
lying input model. However, the optimality of the input esti-
mate has not been shown. Here, we obtain the same estimate
from the innovation in an optimal way, showing that the input
estimate of Hsieh is indeed optimal.

4. State estimation

Consider a state estimator for system (1)–(2) which takes the
recursive form (3)–(6). In Section 4.1, we search for a condition
on the gain matrix Kk such that (6) is an unbiased estimator of
xk . In Section 4.2, we extend to MVU state estimation.

4.1. Unbiased state estimation

Defining x̃�
k�xk − x̂�

k|k, it follows from (1) to (3) and (5) that

x̃�
k = Ak−1x̃k−1 + Gk−1d̃k−1 + wk−1, (16)

where d̃k�dk − d̂k . The following theorem is a direct conse-
quence of (16).

Theorem 4. Let x̂k−1|k−1 and d̂k−1 be unbiased, then (5)–(6)
are unbiased estimators of xk for any value of Kk .

This unbiased state estimator has a strong connection to the
filter designed in Kitanidis (1987). Substituting (4) and (5) in
(6), yields

x̂k|k = x̂k|k−1 + Kkỹk + (In − KkCk)Gk−1d̂k−1, (17)

= x̂k|k−1 + Kkỹk + (In − KkCk)Gk−1Mkỹk . (18)

Defining

Lk�Kk + (In − KkCk)Gk−1Mk ,

Eq. (18) is rewritten as

x̂k|k = x̂k|k−1 + Lk(yk − Ckx̂k|k−1), (19)

which is the kind of update considered in Kitanidis (1987).

Theorem 5. Let Mk be given by (13) and Kk by

Kk = Pk|k−1CkR̃
−1
k , (20)

then we obtain the state update of Kitanidis (1987).

In Kitanidis (1987) only state estimation is considered. How-
ever, we conclude from the equivalence of (17) and (19) that
Kitanidis’ filter implicitly estimates the unknown input from
the innovation by WLS estimation.

4.2. Minimum-variance unbiased state estimation

In this section, we calculate the optimal gain matrix Kk as
function of Mk . The derivation holds for any Mk satisfying (11)
and yields the MVU estimate x̂k|k of xk given the value of Mk

used in (4).
First, we search for an expression of d̃k−1. It follows from

(4) and (8)–(9) that

d̃k−1 = (Im − MkCkGk−1)dk−1 − Mkek = −Mkek , (21)

where the last step follows from the unbiasedness of the input
estimator. Substituting (21) in (16), yields

x̃�
k = A�

k−1x̃k−1 + w�
k−1, (22)

where

A�
k−1 = (In − Gk−1MkCk)Ak−1, (23)

w�
k−1 = (In − Gk−1MkCk)wk−1 − Gk−1Mkvk . (24)
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An expression for the error covariance matrix P �
k|k�E[x̃�

k x̃�T
k ]

follows from (22) to (24),

P �
k|k = A�

k−1Pk−1|k−1A
�T
k−1 + Q�

k−1

= (In − Gk−1MkCk)Pk|k−1(In − Gk−1MkCk)
T

+ Gk−1MkRkM
T
k GT

k−1, (25)

where Q�
k�E[w�

k w�T
k ].

Next, we search for an expression of the error covariance
matrix Pk|k . It follows from (6) that

x̃k = (In − KkCk)x̃
�
k − Kkvk . (26)

Substituting (22) in (26), yields

x̃k = (In − KkCk)(A
�
k−1x̃k−1 + w�

k−1) − Kkvk , (27)

where E[w�
k−1 vT

k ] = −Gk−1MkRk . Note that (27) has a close
connection to the Kalman filter. This expression represents the
dynamical evolution of the error in the state estimate of a
Kalman filter with gain matrix Kk for the system (A�

k, Ck),
where the process noise w�

k−1 is correlated with the measure-
ment noise vk . The calculation of the optimal gain matrix Kk

has thus been reduced to a standard Kalman filtering problem.
It follows from (26) and (25) that the error covariance matrix

Pk|k is given by

Pk|k = KkR̃
�
kK

T
k − V �

k KT
k − KkV

�T
k + P �

k|k , (28)

where

R̃�
k = CkP

�
k|kCT

k + Rk + CkS
�
k + S�T

k CT
k ,

V �
k = P �

k|kCT
k + S�

k ,

S�
k = E[x̃�

k vT
k ] = −Gk−1MkRk . (29)

Note that R̃�
k equals the variance of the zero-mean signal ỹ�

k ,
R̃�

k = E[ỹ�
k ỹ�T

k ], where

ỹ�
k�yk − Ckx̂

�
k|k = (Ip − CkGk−1Mk)ek . (30)

Using (30) and (12), (29) can be rewritten as

R̃�
k = (Ip − CkGk−1Mk)R̃k(Ip − CkGk−1Mk)

T.

From Kalman filtering theory, we know that uniqueness of
the optimal gain matrix Kk requires invertibility of R̃�

k . How-
ever, we now show that R̃�

k is singular by proving that Ip −
CkGk−1Mk is not of full rank.

Lemma 6. Let Mk satisfy (11), then Ip −CkGk−1Mk has rank
p − m.

Proof. Because Mk satisfies (11), it is a left inverse of CkGk−1.
Consequently, CkGk−1Mk and Ip −CkGk−1Mk are idempotent
(Bernstein, 2005, Facts 3.8.7 and 3.8.9). The rank of Ip −
CkGk−1Mk is then given by

rank Ip − CkGk−1Mk = p − rank CkGk−1Mk

= p − m,

where the first equality follows from Bernstein (2005,
Fact 3.8.6) and the second equality from Bernstein (2005,
Proposition 2.6.2). �

Consequently, the optimal gain matrix Kk is not unique. Let
r be the rank of R̃�

k, we then propose a gain matrix Kk of the
form

Kk = K̄k�k , (31)

where �k ∈ Rr×p is an arbitrary matrix which has to be chosen
such that �kR̃

�
k�

T
k has full rank. The optimal gain matrix Kk is

then given in the following theorem.

Theorem 7. Let Mk satisfy (11) and let �k ∈ Rr×p, with r =
rank R̃�

k , be an arbitrary matrix, chosen such that �kR̃
�
k�

T
k has

full rank, then the gain matrix Kk of the form (31) minimizing
the variance of x̂k|k , is given by

Kk = (P �
k|kCT

k + S�
k )�

T
k (�kR̃

�
k�

T
k )−1�k . (32)

Proof. Substituting (31) in (28) and minimizing the trace of
Pk|k over K̄k, yields (32). �

Substituting (32) in (28), yields the following update for the
error covariance matrix,

Pk|k = P �
k|k − Kk(P

�
k|kCT

k + S�
k )

T.

We now give the relation to Darouach and Zasadzinski (1997).

Theorem 8. Let Mk satisfy (11) and let Kk be given by (32)
with r = p − m, then we obtain the same state update as
Darouach and Zasadzinski (1997). Furthermore, for Mk given
by (13) and �k =[0 Ir ]UT

k S̃−1
k , where Uk is an orthogonal ma-

trix containing the left singular vectors of S̃−1
k CkGk−1 in its

columns, the Kitanidis filter is obtained.

By parameterizing the unbiasedness conditions in Kitanidis
(1987), Darouach and Zasadzinski (1997) showed that the gain
matrix is not unique. Here, the same result is obtained by a
procedure which has a closer connection to the Kalman filter.

Note that the expression (32) implicitly depends on the
choice of Mk . Given the value of Mk used in (4), (32) yields the
gain matrix Kk for which the variance of x̂k|k is minimal. Our
result does not allow to conclude which value(s) of Mk should
optimally be used in (4) to minimize the variance of x̂k|k .

5. Proof of optimality

In Kerwin and Prince (2000), it is proved that a recursive
MVU state estimator which can be written in the form (3),
(19), minimizes the mean square error of x̂k|k over the class
of all linear unbiased state estimates based on Yk . By a similar
derivation, we now prove that the estimate of dk−1 minimizing
the mean square error over the class of all linear unbiased
estimates based on Yk , can be written in the form (4). The proof
is inspired by the optimality proof in Kerwin and Prince (2000).



S. Gillijns, B. De Moor / Automatica 43 (2007) 111–116 115

We relax the recursivity assumption and consider d̂k−1 to be
the most general linear combination of x̂0|0 and Yk . As pointed
out in Kerwin and Prince (2000), because the innovation ỹk

is itself a linear combination of x̂0|0 and Yk , the most general
estimate of dk−1 can be written in the form

d̂k−1 = Mkỹk +
k−1∑

i=0

Hiỹi + Nx̂0|0, (33)

where we dropped the dependence of Hi and N on k for nota-
tional simplicity. A necessary and sufficient condition for (33)
to be an unbiased estimator of dk−1, is given in the following
lemma.

Lemma 9. The estimator (33) is unbiased if and only if N =0,
Mk satisfies (11) and HiCiGi−1 = 0 for every i < k.

Proof. Sufficiency: It follows from (10) that if HiCiGi−1 = 0
for every i < k, then

∑k−1
i=0 HiE[ỹi] = 0. Furthermore, for Mk

satisfying (11), Mkỹk and consequently also (33), with N = 0,

are unbiased estimators of dk−1.
Necessity: Assume that (33) is an unbiased estimator of dk−1.

Since no prior information about dk−1 is available and since yk

is the first measurement containing information about dk−1, we
conclude that E[Mk ỹk] = dk−1 and that consequently also (11)
must hold. Furthermore, the expected value of the sum of the
last two terms in (33) is zero for any unknown input sequence
d0, d1, . . . , dk−1 if and only if HiCiGi−1 = 0 for every i < k

and N = 0. �

In the remainder of this section, we only consider unbiased
input estimators of the form (33). We now prove that the mean
square error

�2
k−1�E[‖dk−1 − d̂k−1‖2

2] (34)

achieves a minimum when H0 = H1 = · · · = Hk−1 = 0.

Theorem 10. Let d̂k−1 given by (33) be unbiased, then the
mean square error (34) achieves a minimum when H0 = H1 =
· · · = Hk−1 = 0.

In the proof of Theorem 10, we make use of the following
lemma, which provides an orthogonality relationship.

Lemma 11 (see Kerwin & Prince, 2000), Lemma 2). Let ỹi

be defined by (7), then for every i < k and every Hi satisfying
HiCiGi−1 = 0, E[ỹk(Hiỹi)

T] = 0 and E[dk−1(Hiỹi)
T] = 0.

The proof of Theorem 10 is then given as follows.

Proof. Inspired by the proof of Theorem 3 in Kerwin and
Prince (2000), we write dk−1 − d̂k−1 = fM − gH , where
fM�dk−1 − Mkỹk and gH �

∑k−1
i=0 Hiỹi . It follows from

Lemma 11 that E[fM gT
H ] = 0, so that

�2
k−1 = trace{(fM + gH )(fM + gH )T}

= E[‖fM‖2
2] + E[‖gH ‖2

2]. (35)

The second term in (35) is minimized when gH = 0, which
occurs for H0 =H1=· · ·=Hk−1=0. That solution also satisfies
HiCiGi−1 = 0, which completes the proof. �

It follows from Theorem 10 and (33) that the globally opti-
mal linear estimate of dk−1 based on Yk can be written in the
recursive form (4). Furthermore, because the matrix Mk given
by (13) minimizes E[‖fM‖2

2], it follows that (4) yields the glob-
ally optimal linear estimate of dk−1 for this value of Mk . Com-
bining this result with Theorem 5 and the global optimality of
the Kitanidis filter proved in Kerwin and Prince (2000), yields
the following theorem.

Theorem 12. Consider a joint input and state estimator of
the recursive form (3)–(6). Let Mk be given by (13) and let
Kk be given by (20), then (4) and (6) are unbiased estimators
of dk−1 and xk minimizing the mean square error over the
class of all linear unbiased estimates based on x̂0|0 and Yk =
{y0, y1, . . . , yk}.

6. Conclusion

An optimal filter is developed which simultaneously esti-
mates the input and the state of a linear discrete-time system.
The estimate of the input is obtained from the innovation by
least-squares estimation. The state estimation problem is trans-
formed into a standard Kalman filtering problem for a system
with correlated process and measurement noise. We prove that
this approach yields the same state update as in Kitanidis (1987)
and Darouach and Zasadzinski (1997), and the same input es-
timate as in Hsieh (2000). Finally, a proof is included showing
that the optimal input estimate over the class of all linear unbi-
ased estimates may be written in the proposed recursive form.
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