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1. INTRODUCTION

Data assimilation refers to methodologies that esti-
mate the state of an environmental system from in-
complete and inaccurate measurements. The Kalman
filter, well known from linear control theory, is the
optimal algorithm for assimilating measurements into
a linear model. This technique recursively updates the
estimate of the model-state when new measurements
become available. However, for large-scale environ-
mental systems, the task of state-estimation is very
challenging, since the required spatial resolution leads
to large-scale models, obtained by discretising partial
differential equations, with a huge number of state
variables, from 104 to 107 (Verlaan and Heemink,
1997; Groth et al., 2000). As a consequence, the num-
ber of computations and the required storage for the
Kalman filter become prohibitive. Therefore, during
the last decade, several suboptimal filtering schemes
for use in realistic and large-scale data assimilation
applications have been developed.

One of these suboptimal filters, which has succesfully
been used in several applications, is the Reduced Rank
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e Root filter (Verlaan and Heemink, 1997). In
aper, we present a numerically more efficient
on, the Reduced Rank Transform Square Root
nd compare both filters by analyzing their as-
tion results on a magnetohydrodynamic exam-
ich emulates a space storm interacting with the

s magnetosphere.

2. THE KALMAN FILTER

der the linear discrete time model

xk+1 = Akxk + Bkuk + Fkwk (1)

easurements

yk = Ckxk + vk, (2)

xk ∈ R
n is the state, uk ∈ R

mu is the input
∈ R

p is the measurement. The process noise
R

mw and the measurement noise vk ∈ R
p

sumed to be zero-mean white Gaussian and
lly uncorrelated with covariance matrices Qk

k, respectively.



The Kalman filter yields optimal estimates xa
k of the

state xk from noisy measurements yk by minimizing
the trace of the error covariance matrix P a

k ∈ R
n×n,

defined by

P a
k

�
= E

[
(xk − xa

k)(xk − xa
k)T

]
. (3)

The Kalman filter equations can be expressed in two
steps (Anderson and Moore, 1979), the forecast step
(or time-update) where information about the system
is used, and the analysis step (or measurement update)
where information from the measurements is used.
These steps are expressed as:

forecast step:

xf
k+1 = Akxa

k + Bkuk, (4)

P f
k+1 = AkP f

kAT
k + FkQkFT

k , (5)

and, analysis step:

Lk = P f
kCT

k

(
CkP f

kCT
k + Rk

)−1
, (6)

P a
k = P f

k − LkCkP f
k, (7)

xa
k = xf

k + Lk

(
yk − Ckxf

k

)
. (8)

In large-scale environmental applications, the number
of state variables is typically larger than the number of
output variables, which in turn is much larger than the
number of input variables, n ≥ mw, p � mu. Under
this assumptions, the computation time of the Kalman
filter is dominated by (5) and takes O(n3) flops. How-
ever, the system matrix Ak is typically obtained by
discretising PDE’s and hence is sparse. By exploiting
this sparsity, the computational demand is reduced
to O(n2) flops. However, despite the computational
power of present supercomputers, this does not make
real-time estimation with the Kalman filter possible.

3. SUBOPTIMAL KALMAN FILTERS

Several suboptimal filtering schemes for use in large-
scale applications have been developed. The number
of computations and the storage requirements are re-
duced by approximating the Kalman filter equations.

Usually, a square root formulation is adopted. Potter
and Stern (Potter and Stern, 1963) introduced the
idea of factoring the error covariance matrix Pk into
Cholesky factors, Pk = SkST

k , and expressing the
analysis step in terms of the Cholesky factor Sk, rather
than Pk. While these algorithms are numerically better
conditioned than the original Kalman filter equations,
they are not guaranteed to more efficient, in contrast.

Suboptimal square root filters, on the other hand, gain
speed, but loose accuracy by propagating a non-square
Sk ∈R

n×q with very few columns, q�n. This leads
to a huge decrease in computation times and storage
requirements, while the computed error covariance
matrix is still guaranteed to be positive definite.
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THE REDUCED RANK SQUARE ROOT
FILTER (RRSQRT)

educed Rank Square Root filter (RRSQRT)
an and Heemink, 1997) is a square root algo-
based on an optimal lower rank approximation
error covariance matrix. It is assumed that the
FkQkFT

k is of low rank r, with r ≤mw � n,

hat a square root FkQ
1/2
k ∈ R

n×r can easily
nd. The algorithm consists of three steps: the
st step, the analysis step and the reduction step.

cast step
recast step is given by

xf
k+1 = Akxa

k + Bkuk, (9)

Sf
k+1 =

[
AkSa

k FkQ
1/2
k

]
, (10)

Sa
k ∈R

n×q is a square root of the optimal rank-q
imation of the error covariance matrix after the

nalysis step. Notice that the number of columns
covariance square root, and hence the rank of
or covariance matrix grows from q to q+r.

ysis step
RSQRT has been proposed with a scalar anal-
tep (Verlaan and Heemink, 1997). This means
e estimates of the state and the error covariance
root need to be updated p times, one time for

component of the measurement-vector yk. If the
rement noise is correlated, the measurements
to be transformed with R

−1/2
k . The resulting

ndent measurements can the be processed one
e.

ction step
gmentation of the rank during the forecast step,
quickly blow up computation times. Therefore,
mber of columns in S is reduced from q + r
y truncating the error covariance matrix P =
after the q largest eigenvalues and correspond-
genvectors. The eigenvalue decomposition of

efficiently be computed from the one of the
smaller matrix STS ∈ R

(q+r)×(q+r). If the
alue-decomposition of STS equals

STS = XΩXT, (11)

raigthforward to show that

(SXΩ−1/2)Ω(SXΩ−1/2)T (12)

eigenvalue-decomposition of P , and thus

S̃ = [SX]:,1:q (13)

uare root of the optimal rank-q approximation of
ce q, r � n this procedure is much faster than
envalue decomposition directly on P .

the process noise is neglegible, speed-up can
ained by assuming Qk = 0. The update of the
covariance square root and the computation of
lman gain can then efficiently be implemented



by using the QR-decomposition. This leads to the Sin-
gular Square Root Kalman filter (SSQRTKF) (Barrero
and De Moor, 2004).

5. THE REDUCED RANK TRANSFORM
SQUARE ROOT FILTER

The SVD-based reduction is the most time consum-
ing step of the RRSQRT. This motivates research to
speed-up the reduction step. In this section, we pro-
pose a variant of the RRSQRT where the reduction
is interweaved in the analysis step. To this aim, we
adopt an analysis step where all the components of the
measurement-vector are processed simultaneously, in
contrast to the original formulation of the RRSQRT.
Hence, this variant is very efficient when a large num-
ber of measurements are available, p � q. Since this
variant uses a single transformation matrix to con-
vert Sf

k into Sa
k , similar to the Ensemble Transform

Kalman filter (Bishop et al., 2001) and in the same
time also reduces the rank of the error covariance
matrix, we give it the name “Reduced Rank Transform
Square Root filter” (RRTSQRT).

5.1 RRTSQRT Algorithm

The forecast step of the RRTSQRT is exactly equal to
the one of the RRSQRT (9-10), and hence the rank of
the error covariance matrix grows from q to q + r.

The analysis step is based on the Potter formulation

P a
k = Sf

k

(
I − V T

k D−1
k Vk

)
SfT

k , (14)

where Vk � CkSf
k and Dk � VkV T

k + Rk. For
convenience of notation, we define the square matrix
Tk as

Tk � (I − V T
k D−1

k Vk). (15)

If the square root factorisation of Tk equals

Tk = GkGT
k , (16)

it follows from (14) that

Sa
k � Sf

kGk (17)

is an exact matrix square root of P a
k , P a

k = Sa
kSaT

k .
In practical applications, Gk will be square. Hence Sa

k

will have the same size as Sf
k and no reduction is done.

Moreover, if p � q, it is prohibitive to evaluate (15)
and factor the result consecutively. Inverting Dk, for
instance, would require O(p3) flops.

In the RRTSQRT, the combined analysis and reduc-
tion is done by computing a non-square Gk with fewer
columns than rows. In addition, the computational
burden for evaluating Gk is reduced. First, compute
the (q+r)×(q+r) symmetric matrix Wk � V T

k R−1
k Vk.

If Ck and R−1
k are sparse, this takes O(p(q+r)2) flops.

Next, compute the eigenvalue decomposition of Wk,

Wk = UkΛkUT
k , (18)

and ap
values

and Λ̃
matrix
that
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proximate Wk by putting the smallest r eigen-
to zero, W̃k � ŨkΛ̃kŨT

k , where Ũk � [Uk]:,1:q

k � [Λk]1:q,1:q . From (15), (18) and using the
inversion lemma, it is straightforward to show

Tk = Uk (Iq+r + Λk)
−1

UT
k , (19)

nce, from (16),

Gk = Uk(Iq+r + Λk)−1/2. (20)

ximating Gk by G̃k � Ũk(Iq + Λ̃k)−1/2, it
s from (17) that

S̃a
k = Sf

kŨk(Iq + Λ̃k)−1/2 (21)

pproximate matrix square root of P a
k with a re-

number of columns. Notice that the lower rank
imation of Wk is needed to obtain an error co-

ce square root S̃a
k with fewer columns than Sf

k.
t rank-q approximation of P a

k is obtained under
nditions mentioned in the following theorem.

em 5.1. Let all state variables be directly mea-
e, p = n,Ck = In, and let the components
measurement noise vector be uncorrelated and
nit variances, Rk = Ip, then the RRTSQRT
is step yields, starting from the n×(q+r) matrix
× q matrix S̃a

k which is a square root of the
al rank-q approximation of P a

k .

the assumption that Ck = In and Rk = Ip, the
Wk simplifies to

Wk = SfT
k Sf

k. (22)

eigenvalue decomposition of Wk is given by
en, according to (17) and (20),

Sa
k = Sf

kUk(Iq+r + Λk)−1/2 (23)

xact matrix square root of P a
k . The RRTSQRT

imates Sa
k by retaining the first q columns. We

roof that this is equivalent to making an optimal
approximation of P a

k .

timal rank-q approximation is obtained by ap-
ating P a

k = Sa
kSaT

k by his leading eigenvalues
rresponding eigenvectors. Similar to the reduc-

tep in the RRSQRT, this SVD can be derived
he one of the much smaller matrix SaT

k Sa
k , given

m (23), (22) and (18))

SaT
k Sa

k = Λk(Iq+m + Λk)−1, (24)

nce diagonal. As a consequence, the matrix con-
the eigenvectors of SaT

k Sa
k equals the identity

. And thus, according to (13), S̃a
k = [Sa

k]:,1:q is
ix square root of the best rank-q approximation
. This equals the result we obtained with the
QRT. �

the first condition of theorem 5.1 is very restric-
e second condition can always be achieved by

sformation of the measurements. However, we
how in an example that, in the case where the



Table 1. Computational complexity of KF,
RRSQRT and RRTSQRT.

KF RRSQRT RRTSQRT
forecast step O(n2) O(nq) O(nq)

analysis step O(n2
p) O(np(q + r)) O(nq(q + r))

reduction step – O(n(q + r)2) –

ratio n/p ≈ 10, like for example in weather fore-
casting (Bishop et al., 2001), the performance of the
RRTSQRT is close to optimal.

The computation time of the RRTSQRT is dominated
by (21), which takes O(nq(q + r)) flops. This com-
bined analysis and reduction is faster than a single
analysis or reduction step in the RRSQRT, which have
a computational burden of O(np(q + r)) and O(n(q +
r)2) flops, respectively. Table 1 compares the com-
putational complexity of the Kalman filter (KF), the
RRSQRT and the RRTSQRT for the case where the
system matrix Ak is sparse and n>p,mw�q.

5.2 Properties

A first property of the RRTSQRT is that, just like the
RRSQRT, it is algebraically equivalent to the Kalman
filter for q=n. The proof is straightforward, and hence
omitted.

A second property is that the RRTSQRT inherently
solves for an ill-conditioned Wk-matrix. If Wk is ill-
conditioned, the smallest eigenvalues and correspond-
ing eigenvectors can correspond to numerical noise,
reducing the performance of the filter. The RRTSQRT
solves this problem by discarding the contributions
from the noisy eigenvectors. Evensen solved the ill-
conditioning problem of CkP f

kCT
k + Rk in the En-

semble Kalman filter in a similar way (Evensen and
van Leeuwen, 1996).

Another property is that, like in the RRSQRT, the error
covariance matrix is underestimated because of the
reduction. Denoting the truncated part of P a

k as P̄ a
k ,

obeying
P̄ a

k = P a
k − P̃ a

k , (25)

where P̃ a
k � S̃a

kS̃aT
k , then, since the RRSQRT makes

an SVD-based lower rank approximation of P a
k , the

norm of the truncated part is minimal and equals the
first eigenvalue of P a

k that has been ignored,

‖P̄ a
k ‖ = λq+1(P

a
k ), (26)

where λq+1(P
a
k ) is the (q +1)-th eigenvalue of P a

k .
While (26) always holds for the RRSQRT, it only
holds for the RRTSQRT under the conditions given
in theorem 5.1. In all other cases, the RRTSQRT
underestimates P a

k more. Denoting the truncated part
of Gk by Ḡk, the truncated part of P a

k be written as

P̄ a
k = (Sf

kGk)(Sf
kGk)T − (Sf

kG̃k)(Sf
kG̃k)T (27)

= (Sf
kḠk)(Sf

kḠk)T, (28)

where Ḡk � [Gk]:,q+1:q+r.
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reventing filter divergence

the error covariance matrix is underestimated,
he RRTSQRT and RRSQRT may suffer from
divergence. Notice that this problem is more
nt in the RRTSQRT, since the error covariance
is more underestimated. However, from (28),

ncated part of the error covariance matrix can
y be computed. Therefore, it is possible to cor-
r the underestimation. We extend two heuristic,
mputationaly efficient methods for preventing
ence to the case where the truncated part of the
ovariance matrix can exactly be computed.

rst method is an extension of the covariance
on technique, introduced by Anderson to pre-
lter divergence in the Ensemble Kalman filter
rson and Anderson, 1999). Covariance inflation
pproach where the error covariance square root
is multiplied by a heuristically chosen inflation
κ (mostly chosen between 1.01 and 1.05) to

e the covariances artificially. We propose to use
varying inflation factor κk that accounts for the
stimation of the total variance. In other words,
hosen such that

κk · trace(P̃a
k) = trace(P a

k ). (29)

that trace(P̃ a
k ) and trace(P a

k ), and thus κk can
ntly be computed from the singular values of S̃a

k
a, respectively. The covariances are then inflated
lacing S̃a

k by
√

κkS̃a
k.

econd method is an extension of the technique
uced by Corazza (Corazza et al., 2002), who
that adding small random perturbations to the

covariance square root after the analysis step,
ved the stability of the filter. We extend this
d by adding small random numbers with appro-
statistics to S̃a

k . More precisely, it follows from
at, by replacing the i-th column of S̃a

k by

[S̃a
k]:,i +

1√
q − 1

Sf
kḠkυi, (30)

the random numbers υi are sampled from a
l distribution with average zero and variance
e new error covariance matrix approaches P a

k .

TATE ESTIMATION FOR 2D MHD FLOW

troduction

a, as a distinct state of matter, plays a crucial role
erous branches of science and engineering. The
is constantly bombarded by a plasma emitted
Sun, the “solar wind”. The state and behaviour
solar wind is referred to as “space weather”.

g flares and coronal mass ejections, the most
tic solar phenomena, magnetic clouds with a

up to 1014 kg and speeds up to 2600 km/s are
d, causing fluctuations in the terrestrial magnetic



field and causing problems with Earth-based systems.
Plasma flow is the subject of magnetohydrodynam-
ics (MHD), which involves both fluid dynamics and
electrodynamics. Consequently, MHD is governed by
coupled partial differential equations, including both
the Navier-Stokes and Maxwell’s equations.

This section is concerned with state-estimation for 2D
MHD flow, which is motivated by the fact that sub-
optimal filters could provide the initial conditions for
a space weather forecast (Groth et al., 2000). Start-
ing from the ideal MHD equations, we first set up a
2D simulation that emulates a space storm interacting
with the Earth’s magnetosphere and then compare the
assimilation results of the RRSQRT and RRTSQRT.

6.2 Space Weather forecasting example

We assume that the plasma acts as a single fluid,
in which the separate identities of positively and
negatively charged species are ignored. Furthermore,
we assume that the plasma flow occurs in a non-
relativistic regime and we neglect ionization and re-
combination. Also, we assume that the conductiv-
ity of the plasma is infinite. Under these simplifying
assumptions, the resulting ideal MHD equations are
(Kallenrode, 2000; Freidberg, 1987) (see table 2 for
the explanation of the symbols)

Mass continuity

∂�

∂t
+ ∇ · (�u) = 0, (31)

Adiabatic equation of state

d

dt

(
p

�γ

)
= 0, (32)

Momentum equation (ignoring external forces)

�
∂u

∂t
+ �(u · ∇)u = −∇p + J × B, (33)

Ampere’s law (ignoring displacement current)

∇× B = μ0J , (34)

Faraday’s law

∇× (u × B) =
∂B

∂t
, (35)

Gauss’s law
∇ · B = 0. (36)

The ideal MHD equations are discretised over a
24 × 44 grid, using a second order Rusanov scheme
(Eymard et al., 2000). Since each grid-point contains
6 variables, this results in a nonlinear system of order
n = 6336.

In order to compare the assimilation results of the
RRSQRT and the RRTSQRT, a twin experiment was
carried out. A reference solution was generated with
the nonlinear system subject to process noise with a
low rank covariance matrix. The initial and boundary
conditions where chosen to emulate the interaction of
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Table 2. List of symbols

ol Physical quantity
permeability of free space
mass density
pressure
ratio of specific heats
velocity
current density
electric field
magnetic field

0 50 100 150 200 250 300 350 400

4

2

RMSE in estimates of momentum density

0 50 100 150 200 250 300 350 400

2

Simulation step

RMSE in estimates of energy density

RRTSQRT
RRSQRT

. RMSE in the estimates of the momentum
ensity (top) and energy density (bottom) for
e RRTSQRT (solid line) and RRSQRT (dashed
ne).

e storm with the Earth’s magnetosphere. At total
= 600 observations were generated from the
ted data and measurement noise with a diagonal
ance matrix was added. Next, both filters were
ised with the same perturbed initial condition
ror covariance square root matrix. The rank of
ror covariance matrix was chosen to be q =
uring the forecast step, the nonlinear system

umerically linearized around the current state
te to obtain the system matrix Ak. Boundary
ions were assumed to be known.

esults

ure 1, the Root Mean Squared Error (RMSE)
estimates of the momentum density and the
density are plotted for the RRTSQRT and

RT as function of time. Both filters converge to
me RMSE-value. The speed of convergence for
TSQRT is only slightly slower than the one of
SQRT.

2 compares the errors in the estimates of the
tic field magnitude and pressure for the RRT-
and RRSQRT at simulation step 100. The errors



Magnetic field − RRTSQRT
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Fig. 2. Comparison between the errors in the esti-
mates of the magnetic field magnitude (top) and
pressure (bottom) for the RRTSQRT (left) and
RRSQRT (right) at simulation step 100.

are largest in the region where the space storm (mov-
ing from the left hand side of the plots to the Earth at
the right hand side) forms a bowshock and interacts
with the magnetosphere, as can be seen in the right
hand side of the figures. However, the residuals of both
filters have the same order of magnitude.

While the reduction step of the RRSQRT retained on
average 99.2 percent of the total variance, the com-
bined analysis and reduction step of the RRTSQRT,
retained 97.0 percent. This means that the optimal
inflation factor is κ = 1.015, and hence is very close
to the heuristically chosen factor in the EnKF.

7. CONCLUSIONS

The Reduced Rank Transform Square Root filter was
introduced as a numerically more efficient variation of
the Reduced Rank Square Root filter. Speed-up was
obtained by adopting an analysis step with simultane-
ous processing, which in the same time performs the
reduction. A theoretical study of both filters showed
that, in general, the Reduced Rank Transform Square
Root filter will underestimate the error covariance
more than the Reduced Rank Square Root filter and
hence is more sensitive to filter divergence. However,
two techniques to prevent filter divergence were pro-
posed.

The performance of both filters was analyzed by com-
paring their assimilation results on a magnetohydro-
dynamic example which emulates a space storm in-
teracting with the Earth’s magnetosphere. Simulation
results confirm the theoretical study that the Reduced
Rank Transform Square Root filter is slightly more
sensitive to filter divergence, but almost as accurate
and computationally less expensive than the Reduced
Rank Square Root filter.

Dr. Bar
siteit L
cil KUL
grants;
G.0407
G.0141
for inte
quantum
ear), re
PhD G
Office:
tion, Id
TMS an
search/a
tercard

Ander
fi

Ander
C
p
f

Barrer
r
I

Bisho
A
f
M

Coraz
I
in
e
m
a

Evens
la
c
a
1

Eyma
v
A

Freidb
P

Groth
P
s
m
ti
1

Kallen
Potter

o
G

Verlaa
f
S

1257
ACKNOWLEDGEMENTS

t De Moor is a full professor at the Katholieke Univer-
euven, Belgium. Research supported by Research Coun-
euven: GOA AMBioRICS, several PhD/postdoc & fellow

Flemish Government: FWO: PhD/postdoc grants, projects,
.02 (support vector machines), G.0197.02 (power islands),
.03 (Identification and cryptography), G.0491.03 (control
nsive care glycemia), G.0120.03 (QIT), G.0452.04 (new

algorithms), G.0499.04 (Statistics), G.0211.05 (Nonlin-
search communities (ICCoS, ANMMM, MLDM); IWT:
rants, GBOU (McKnow); Belgian Federal Science Policy
IUAP P5/22 (‘Dynamical Systems and Control: Computa-
entification and Modelling’, 2002-2006); PODO-II (CP/40:
d Sustainability); EU: FP5-Quprodis; ERNSI; Contract Re-
greements: ISMC/IPCOS, Data4s, TML, Elia, LMS, Mas-

REFERENCES

son, B.D.O. and J.B. Moore (1979). Optimal
ltering. Prentice-Hall.
son, J.L. and S.L. Anderson (1999). A Monte
arlo implementation of the nonlinear filtering
roblem to produce ensemble assimilations and
orecasts. Monthly Wea. Rev. 127, 2741–2758.
o, O. and B. De Moor (2004). A singular square

oot algorithm for large scale systems. Proc. 15th
ASTED Int. Conf. Model. Sim.
p, C.H., B. Etherton and S.J. Majundar (2001).
daptive sampling with the ensemble trans-

orm Kalman filter. part I: Theoretical aspects.
onthly Wea. Rev. 129, 420–436.

za, M., E. Kalnay, D. J. Patil, E. Ott, J. Yorke,
. Szunyogh and M. Cai (2002). Use of the breed-
g technique in the estimation of the background

rror covariance matrix for a quasigeostrophic
odel. AMS Symp. on Obs., Data Assimilation

nd Probab. Pred. pp. 154–157.
en, G. and P.J. van Leeuwen (1996). Assimi-
tion of Geosat altimeter data for the Agulhas

urrent using the ensemble Kalman filter with
quasigeostrophic model. Monthly Wea. Rev.

24, 85–96.
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