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1. INTRODUCTION

Data assimilation refers to methodologies that esti-
mate the state of an environmental system from in-
complete and inaccurate measurements. The Kalman
filter, well known from linear control theory, is the
optimal algorithm for assimilating measurements into
a linear model. This technique recursively updates the
estimate of the model-state when new measurements
become available. However, for large-scale environ-
mental systems, the task of state-estimation is very
challenging, since the required spatial resolution leads
to large-scale models, obtained by discretising partial
differential equations, with a huge number of state
variables, from 10* to 107 (Verlaan and Heemink,
1997; Groth et al., 2000). As a consequence, the num-
ber of computations and the required storage for the
Kalman filter become prohibitive. Therefore, during
the last decade, several suboptimal filtering schemes
for use in realistic and large-scale data assimilation
applications have been developed.

One of these suboptimal filters, which has succesfully
been used in several applications, is the Reduced Rank
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Square Root filter (Verlaan and Heemink, 1997). In
this paper, we present a numerically more efficient
variation, the Reduced Rank Transform Square Root
filter and compare both filters by analyzing their as-
similation results on a magnetohydrodynamic exam-
ple which emulates a space storm interacting with the
Earth’s magnetosphere.

2. THE KALMAN FILTER

Consider the linear discrete time model

Ti+1 = Arzi + Brug + Frwy

(D
and measurements
(2)

where x; € R” is the state, up, € R™ is the input
and y, € R? is the measurement. The process noise
wr € R™» and the measurement noise v € RP
are assumed to be zero-mean white Gaussian and
mutually uncorrelated with covariance matrices Qj
and Ry, respectively.

yr = Crxp + vg,



The Kalman filter yields optimal estimates z3 of the
state xj, from noisy measurements y; by minimizing
the trace of the error covariance matrix P € R™*",
defined by

3)

The Kalman filter equations can be expressed in two
steps (Anderson and Moore, 1979), the forecast step
(or time-update) where information about the system
is used, and the analysis step (or measurement update)
where information from the measurements is used.
These steps are expressed as:

forecast step:

P = & [(xk — ) (z — xz)T] .

$1;c+1 = Ay}, + Brug, 4)
Pl = A PLAL + FeQu S, 9)
and, analysis step:
Ly=PiCT (ChPECE +Ry) ™, (6)
P =Pl — L0, Pf, (7)
af = + Ly (yx — Cral) . 8

In large-scale environmental applications, the number
of state variables is typically larger than the number of
output variables, which in turn is much larger than the
number of input variables, n > m,,, p > m,. Under
this assumptions, the computation time of the Kalman
filter is dominated by (5) and takes O(n?) flops. How-
ever, the system matrix Ay is typically obtained by
discretising PDE’s and hence is sparse. By exploiting
this sparsity, the computational demand is reduced
to O(n?) flops. However, despite the computational
power of present supercomputers, this does not make
real-time estimation with the Kalman filter possible.

3. SUBOPTIMAL KALMAN FILTERS

Several suboptimal filtering schemes for use in large-
scale applications have been developed. The number
of computations and the storage requirements are re-
duced by approximating the Kalman filter equations.

Usually, a square root formulation is adopted. Potter
and Stern (Potter and Stern, 1963) introduced the
idea of factoring the error covariance matrix Py into
Cholesky factors, P, = SiSY, and expressing the
analysis step in terms of the Cholesky factor Sy, rather
than Py. While these algorithms are numerically better
conditioned than the original Kalman filter equations,
they are not guaranteed to more efficient, in contrast.

Suboptimal square root filters, on the other hand, gain
speed, but loose accuracy by propagating a non-square
Sk € R"*? with very few columns, ¢ < n. This leads
to a huge decrease in computation times and storage
requirements, while the computed error covariance
matrix is still guaranteed to be positive definite.
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4. THE REDUCED RANK SQUARE ROOT
FILTER (RRSQRT)

The Reduced Rank Square Root filter (RRSQRT)
(Verlaan and Heemink, 1997) is a square root algo-
rithm based on an optimal lower rank approximation
of the error covariance matrix. It is assumed that the
matrix F,QFy is of low rank 7, with r <m,, < n,

such that a square root Fin/ * € R™*" can easily
be found. The algorithm consists of three steps: the
forecast step, the analysis step and the reduction step.

Forecast step
The forecast step is given by

f a
xk+1 - Akxk + Bkukv

St =4St RQY?

&)
(10)

where Sj; € R"*1 is a square root of the optimal rank-¢
approximation of the error covariance matrix after the
k-th analysis step. Notice that the number of columns
in the covariance square root, and hence the rank of
the error covariance matrix grows from g to g+7.

Analysis step

The RRSQRT has been proposed with a scalar anal-
ysis step (Verlaan and Heemink, 1997). This means
that the estimates of the state and the error covariance
square root need to be updated p times, one time for
every component of the measurement-vector yy,. If the
measurement noise is correlated, the measurements
need to be transformed with R,:l/ % The resulting
independent measurements can the be processed one
at a time.

Reduction step

The augmentation of the rank during the forecast step,
could quickly blow up computation times. Therefore,
the number of columns in S is reduced from ¢+ r
to g by truncating the error covariance matrix P =
SST after the g largest eigenvalues and correspond-
ing eigenvectors. The eigenvalue decomposition of
P can efficiently be computed from the one of the
much smaller matrix STS € R@+7)*(@+7) If the
eigenvalue-decomposition of ST S equals

sTs=XxaxT, (11)
it is straigthforward to show that
(SXQ~V)(sxa /)T (12)
is the eigenvalue-decomposition of P, and thus
S =[8X]. 1, (13)

is a square root of the optimal rank-q approximation of
P. Since q,r < n this procedure is much faster than
an eigenvalue decomposition directly on P.

When the process noise is neglegible, speed-up can
be obtained by assuming @ = 0. The update of the
error covariance square root and the computation of
the Kalman gain can then efficiently be implemented



by using the QR-decomposition. This leads to the Sin-
gular Square Root Kalman filter (SSQRTKF) (Barrero
and De Moor, 2004).

5. THE REDUCED RANK TRANSFORM
SQUARE ROOT FILTER

The SVD-based reduction is the most time consum-
ing step of the RRSQRT. This motivates research to
speed-up the reduction step. In this section, we pro-
pose a variant of the RRSQRT where the reduction
is interweaved in the analysis step. To this aim, we
adopt an analysis step where all the components of the
measurement-vector are processed simultaneously, in
contrast to the original formulation of the RRSQRT.
Hence, this variant is very efficient when a large num-
ber of measurements are available, p > ¢. Since this
variant uses a single transformation matrix to con-
vert S{ into S%, similar to the Ensemble Transform
Kalman filter (Bishop et al., 2001) and in the same
time also reduces the rank of the error covariance
matrix, we give it the name “Reduced Rank Transform
Square Root filter” (RRTSQRT).

5.1 RRTSQRT Algorithm

The forecast step of the RRTSQRT is exactly equal to
the one of the RRSQRT (9-10), and hence the rank of
the error covariance matrix grows from q to g + 7.

The analysis step is based on the Potter formulation
Py =S (I-V'D;'vi,) SET, (14)

A

where V,, £ C’kS}; and D, = Vk.VkT + Ry. For
convenience of notation, we define the square matrix

T} as

Ty 2 (I -V,'D;'Vy). (15)
If the square root factorisation of T} equals
Ty = GxGYT, (16)
it follows from (14) that
St & sty (17

is an exact matrix square root of P, P} = S,?SZ‘T.
In practical applications, G, will be square. Hence S},
will have the same size as S§ and no reduction is done.
Moreover, if p > g, it is prohibitive to evaluate (15)
and factor the result consecutively. Inverting Dy, for
instance, would require O(p?) flops.

In the RRTSQRT, the combined analysis and reduc-
tion is done by computing a non-square G, with fewer
columns than rows. In addition, the computational
burden for evaluating Gy, is reduced. First, compute
the (¢+7) X (¢+r) symmetric matrix W, £ V,' R, ' V.
If Oy and R, ! are sparse, this takes O(p(g+r)?) flops.
Next, compute the eigenvalue decomposition of Wy,

Wi = UpA UL, (18)
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and approximate Wy, by putting the smallest r eigen-
values to zero, Wj, £ U AU, where Uy, e [Ug]. 1
and Ay £ [Ay],,, ., - From (15), (18) and using the
matrix inversion lemma, it is straightforward to show
that

Ty = Uy (Igsr + M) UYL, (19)
and hence, from (16),
G = Up(Iyrr + Ap) Y2 (20)

Approximating Gy, by G, £ Ui(I, + Ax)~'/2, it
follows from (17) that

S = SEU(I, + Ay)~1/?

is an approximate matrix square root of P with a re-
duced number of columns. Notice that the lower rank
approximation of W}, is needed to obtain an error co-
variance square root S with fewer columns than St .
A best rank-g approximation of P} is obtained under
the conditions mentioned in the following theorem.

21

Theorem 5.1. Let all state variables be directly mea-
surable, p = n,Cy = I, and let the components
of the measurement noise vector be uncorrelated and
have unit variances, R = I, then the RRTSQRT
analysis step yields, starting from the n x (¢+7) matrix
S,f: an X ¢ matrix 52 which is a square root of the
optimal rank-g approximation of Pg.

Proof:

Under the assumption that Cy, = I,, and Ry = I,,, the
matrix Wy, simplifies to

Wy = SiT st (22)

If the eigenvalue decomposition of Wy, is given by
(18) then, according to (17) and (20),

S8 = StUL (I, + Ag)~1/? (23)

is an exact matrix square root of P}. The RRTSQRT
approximates Sj. by retaining the first ¢ columns. We
now proof that this is equivalent to making an optimal
rank-q approximation of ;.

An optimal rank-g approximation is obtained by ap-
proximating P = S252T by his leading eigenvalues
and corresponding eigenvectors. Similar to the reduc-
tion step in the RRSQRT, this SVD can be derived
from the one of the much smaller matrix S ,jT Sh, given
by (from (23), (22) and (18))

SETSE = A (Iygm + M) 7Y,

and hence diagonal. As a consequence, the matrix con-
taining the eigenvectors of S2T.S2 equals the identity
matrix. And thus, according to (13), $2 = [Si]in:q is
a matrix square root of the best rank-¢ approximation

of P}. This equals the result we obtained with the
RRTSQRT. O

(24)

While the first condition of theorem 5.1 is very restric-
tive, the second condition can always be achieved by
a transformation of the measurements. However, we
will show in an example that, in the case where the



Table 1. Computational complexity of KF,

RRSQRT and RRTSQRT.

KF RRSQRT RRTSQRT
forecast step 0(n?) O(nq) O(nq)
analysis step O(n%p) O(np(g+r)) O(ng(g+r))
reduction step - O(n(q+1)%) -

ratio n/p =~ 10, like for example in weather fore-
casting (Bishop et al., 2001), the performance of the
RRTSQRT is close to optimal.

The computation time of the RRTSQRT is dominated
by (21), which takes O(ng(q + r)) flops. This com-
bined analysis and reduction is faster than a single
analysis or reduction step in the RRSQRT, which have
a computational burden of O(np(g+r)) and O(n(q +
r)?) flops, respectively. Table 1 compares the com-
putational complexity of the Kalman filter (KF), the
RRSQRT and the RRTSQRT for the case where the
system matrix Ay is sparse and n > p, m,, >q.

5.2 Properties

A first property of the RRTSQRT is that, just like the
RRSQRT, it is algebraically equivalent to the Kalman
filter for ¢ =n. The proof is straightforward, and hence
omitted.

A second property is that the RRTSQRT inherently
solves for an ill-conditioned Wy-matrix. If W}, is ill-
conditioned, the smallest eigenvalues and correspond-
ing eigenvectors can correspond to numerical noise,
reducing the performance of the filter. The RRTSQRT
solves this problem by discarding the contributions
from the noisy eigenvectors. Evensen solved the ill-
conditioning problem of CyPECT + Ry in the En-
semble Kalman filter in a similar way (Evensen and
van Leeuwen, 1996).

Another property is that, like in the RRSQRT, the error
covariance matrix is underestimated because of the
reduction. Denoting the truncated part of P{ as P2,
obeying _

Py =Py - P, (25)
where P2 £ §252T  then, since the RRSQRT makes
an SVD-based lower rank approximation of P}, the
norm of the truncated part is minimal and equals the
first eigenvalue of P that has been ignored,

1P = Ag1(PR), (26)

where A\j41(P7) is the (¢+ 1)-th eigenvalue of P?.
While (26) always holds for the RRSQRT, it only
holds for the RRTSQRT under the conditions given
in theorem 5.1. In all other cases, the RRTSQRT
underestimates P more. Denoting the truncated part
of G}, by Gy, the truncated part of P} be written as

A

(SEGR)(SLG)T = (SEGR)(SGx)T 27D
(SLGr)(SLGr)T, (28)

Da
k

where G, £ [GL].q41.04r
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5.3 Preventing filter divergence

Since the error covariance matrix is underestimated,
both the RRTSQRT and RRSQRT may suffer from
filter divergence. Notice that this problem is more
apparent in the RRTSQRT, since the error covariance
matrix is more underestimated. However, from (28),
the truncated part of the error covariance matrix can
exactly be computed. Therefore, it is possible to cor-
rect for the underestimation. We extend two heuristic,
but computationaly efficient methods for preventing
divergence to the case where the truncated part of the
error covariance matrix can exactly be computed.

The first method is an extension of the covariance
inflation technique, introduced by Anderson to pre-
vent filter divergence in the Ensemble Kalman filter
(Anderson and Anderson, 1999). Covariance inflation
is an approach where the error covariance square root
matrix is multiplied by a heuristically chosen inflation
factor x (mostly chosen between 1.01 and 1.05) to
enlarge the covariances artificially. We propose to use
a time varying inflation factor xy, that accounts for the
underestimation of the total variance. In other words,
K 1s chosen such that

ki, - trace(P2) = trace(P?). (29)

Notice that trace(ﬁfj) and trace(P}), and thus ky can

efficiently be computed from the singular values of 5,3
and S}, respectively. The covariances are then inflated

by replacing §z by , /mkgz.

The second method is an extension of the technique
introduced by Corazza (Corazza et al., 2002), who
found that adding small random perturbations to the
error covariance square root after the analysis step,
improved the stability of the filter. We extend this
method by adding small random numbers with appro-
priate statistics to Sj.. More precisely, it follows from
(28) that, by replacing the i-th column of §,‘j by
1

vg—1
where the random numbers v; are sampled from a

normal distribution with average zero and variance
one, the new error covariance matrix approaches P;'.

[S2].i + St Grvs, (30)

6. STATE ESTIMATION FOR 2D MHD FLOW
6.1 Introduction

Plasma, as a distinct state of matter, plays a crucial role
in numerous branches of science and engineering. The
Earth is constantly bombarded by a plasma emitted
by the Sun, the “solar wind”. The state and behaviour
of the solar wind is referred to as “space weather”.
During flares and coronal mass ejections, the most
energetic solar phenomena, magnetic clouds with a
mass up to 10'# kg and speeds up to 2600 km/s are
ejected, causing fluctuations in the terrestrial magnetic



field and causing problems with Earth-based systems.
Plasma flow is the subject of magnetohydrodynam-
ics (MHD), which involves both fluid dynamics and
electrodynamics. Consequently, MHD is governed by
coupled partial differential equations, including both
the Navier-Stokes and Maxwell’s equations.

This section is concerned with state-estimation for 2D
MHD flow, which is motivated by the fact that sub-
optimal filters could provide the initial conditions for
a space weather forecast (Groth et al., 2000). Start-
ing from the ideal MHD equations, we first set up a
2D simulation that emulates a space storm interacting
with the Earth’s magnetosphere and then compare the
assimilation results of the RRSQRT and RRTSQRT.

6.2 Space Weather forecasting example

We assume that the plasma acts as a single fluid,
in which the separate identities of positively and
negatively charged species are ignored. Furthermore,
we assume that the plasma flow occurs in a non-
relativistic regime and we neglect ionization and re-
combination. Also, we assume that the conductiv-
ity of the plasma is infinite. Under these simplifying
assumptions, the resulting ideal MHD equations are
(Kallenrode, 2000; Freidberg, 1987) (see table 2 for
the explanation of the symbols)

Mass continuity

do
—+V- =0 31
5 TV (euw) =0, 3D
Adiabatic equation of state
d (p
—(=1=0 32
dt <QV) ’ e
Momentum equation (ignoring external forces)
ou
o5 + olu-Vu=-Vp+Jx B, (33)
Ampere’s law (ignoring displacement current)
V x B = uod, (34)
Faraday’s law
0B
B)=— 35
V x (u x B) TR (35)
Gauss’s law
V-B=0. (36)

The ideal MHD equations are discretised over a
24 x 44 grid, using a second order Rusanov scheme
(Eymard et al., 2000). Since each grid-point contains
6 variables, this results in a nonlinear system of order
n = 6336.

In order to compare the assimilation results of the
RRSQRT and the RRTSQRT, a twin experiment was
carried out. A reference solution was generated with
the nonlinear system subject to process noise with a
low rank covariance matrix. The initial and boundary
conditions where chosen to emulate the interaction of
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Table 2. List of symbols

Physical quantity
permeability of free space
mass density

pressure

ratio of specific heats
velocity

current density

electric field

magnetic field

RMSE in estimates of momentum density

RRTSQRT

10° — — — RRSQRT
L
7}
= 2
o 10}
10’4 L L L L L L L
0 50 100 150 200 250 300 350 400
5 RMSE in estimates of energy density
10 T T T T T

RMSE

150 200 250 300 350
Simulation step

0 50 100 400

Fig. 1. RMSE in the estimates of the momentum
density (top) and energy density (bottom) for
the RRTSQRT (solid line) and RRSQRT (dashed
line).

a space storm with the Earth’s magnetosphere. At total
of p = 600 observations were generated from the
simulated data and measurement noise with a diagonal
covariance matrix was added. Next, both filters were
initialised with the same perturbed initial condition
and error covariance square root matrix. The rank of
the error covariance matrix was chosen to be ¢
250. During the forecast step, the nonlinear system
was numerically linearized around the current state
estimate to obtain the system matrix Ay. Boundary
conditions were assumed to be known.

6.3 Results

In figure 1, the Root Mean Squared Error (RMSE)
in the estimates of the momentum density and the
energy density are plotted for the RRTSQRT and
RRSQRT as function of time. Both filters converge to
the same RMSE-value. The speed of convergence for
the RRTSQRT is only slightly slower than the one of
the RRSQRT.

Figure 2 compares the errors in the estimates of the
magnetic field magnitude and pressure for the RRT-
SQRT and RRSQRT at simulation step 100. The errors



Magnetic field - RRTSQRT y 19~

Magnetic field - RRSQRT 1o~
40 6

5

10 15 20

5

10 15 20

Pressure - RRSQRT

Pressure - RRTSQRT
40

Fig. 2. Comparison between the errors in the esti-
mates of the magnetic field magnitude (top) and
pressure (bottom) for the RRTSQRT (left) and

RRSQRT (right) at simulation step 100.

are largest in the region where the space storm (mov-
ing from the left hand side of the plots to the Earth at
the right hand side) forms a bowshock and interacts
with the magnetosphere, as can be seen in the right
hand side of the figures. However, the residuals of both
filters have the same order of magnitude.

While the reduction step of the RRSQRT retained on
average 99.2 percent of the total variance, the com-
bined analysis and reduction step of the RRTSQRT,
retained 97.0 percent. This means that the optimal
inflation factor is k = 1.015, and hence is very close
to the heuristically chosen factor in the EnKF.

7. CONCLUSIONS

The Reduced Rank Transform Square Root filter was
introduced as a numerically more efficient variation of
the Reduced Rank Square Root filter. Speed-up was
obtained by adopting an analysis step with simultane-
ous processing, which in the same time performs the
reduction. A theoretical study of both filters showed
that, in general, the Reduced Rank Transform Square
Root filter will underestimate the error covariance
more than the Reduced Rank Square Root filter and
hence is more sensitive to filter divergence. However,
two techniques to prevent filter divergence were pro-
posed.

The performance of both filters was analyzed by com-
paring their assimilation results on a magnetohydro-
dynamic example which emulates a space storm in-
teracting with the Earth’s magnetosphere. Simulation
results confirm the theoretical study that the Reduced
Rank Transform Square Root filter is slightly more
sensitive to filter divergence, but almost as accurate
and computationally less expensive than the Reduced
Rank Square Root filter.
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