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ABSTRACT
This paper addresses the problem of joint state and bound-
ary condition estimation in linear data assimilation. By ap-
proximating the equations of an optimal estimator for linear
discrete-time state space systems with unknown inputs, an
efficient recursive filtering technique is developed. Unlike
existing boundary condition estimation techniques, the fil-
ter makes no assumption about the initial value or the time
evolution of the boundary conditions. However, the deriva-
tion is based on the assumption that measurements at the
boundary are available. Furthermore, it is assumed that the
spatial form of the boundary condition can be expanded
as a linear combination of a limited number of predefined
basis vectors. A simulation example on a linear heat con-
duction model shows the effectiveness of the method.
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1 Introduction

The term “data assimilation” refers to methodologies that
estimate the state of a large-scale physical system from in-
complete and inaccurate measurements [1, 2, 3, 4]. The
Kalman filter, well known from linear control theory, is
the optimal algorithm for assimilating measurements into a
linear model. This technique recursively updates the state
estimate when new measurements become available. How-
ever, for large-scale systems, the task of state estimation
is very challenging. The required spatial resolution leads
to large-scale models, obtained by discretizing partial dif-
ferential equations (PDEs), with a huge number of state
variables, from104 to 107 [1, 2]. As a consequence, the
number of computations and the required storage for the
Kalman filter become prohibitive. Therefore, several sub-
optimal filtering schemes for use in realistic data assimila-
tion applications have been developed [1, 3]. Extensions
of these techniques to joint state and parameter estimation
have been proposed in [2, 4]. However, the applicability of
these methods is limited by the assumption that a model for
the time evolution of the unknown parameters is available.

The estimation of boundary conditions has been in-
tensively studied in inverse heat conduction problems. In
[5, 6] it is assumed that the initial state and the func-
tional form in space and time of the boundary condition are
known. The unknown parameters in the functional form
are then estimated using least-squares estimation. An ex-
tension to simultaneous boundary condition and initial state
estimation, can be found in [7]. Approaches using the
Kalman filter are developed in [8, 9]. Finally, in [10] an
efficient algorithm for estimating the boundary condition
in large-scale heat conduction problems is developed. The
algorithm is based on the Kalman filter and uses model re-
duction techniques to reduce the computational burden of
the Kalman filter. However, the applicability of the previ-
ous methods is limited by the assumption that a model for
the time evolution of the unknown boundary conditions is
available.

This paper extends existing techniques by estimating
unknown arbitrary boundary conditions without making an
assumption about their time evolution. More precisely, we
consider the problem of jointly estimating the system state
and unknown arbitrary boundary conditions in large-scale
linear models. Instead of reducing the dimension of the
model, we use suboptimal filtering techniques to reduce
the computational burden. Our data assimilation technique
is based on an optimal filter for linear discrete-time state
space systems with unknown inputs. In contrast to exist-
ing techniques, it makes no assumption about the initial
value or the time evolution of the boundary condition. The
boundary condition may be strongly time-varying. How-
ever, it is assumed that the spatial form of the boundary
condition can be expanded as a linear combination of a lim-
ited number of basis vectors. Furthermore, it is assumed
that measurements at the boundary are available.

This paper is outlined as follows. In section 2, we
formulate the problem in more detail. Next, in section 3,
we establish a connection between boundary condition es-
timation and unknown input estimation and we summarize
the optimal unknown input filter developed in [11, 12]. In
section 4, we extend this filter to large-scale systems by
approximating the optimal filter equations. Finally, in sec-
tion 5, we consider an inverse heat conduction problem.



2 Problem formulation

Consider a set of linear PDEs with partially unknown
boundary conditions. By spatial discretization overn

points, the PDE is transformed into a state space model of
the form

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)d(t), (1)

wherex(t) ∈ R
n represents the state vector,u(t) ∈ R

mu

represents the known boundary conditions and inputs and
d(t) ∈ R

md represents the unknown boundary conditions
and inputs.

For simulation on a computer, the continuous-time
model (1) is usually discretized in time, resulting in

xk+1 = Akxk + Bkuk + Gkdk + Hkwk, (2)

wherexk ≃ x(kTs), uk ≃ u(kTs), dk ≃ d(kTs) with Ts

the sampling time and where the process noisewk ∈ R
mw

has been introduced to represent stochastic uncertaintiesin
the state equation, e.g. due to the discretization. The pro-
cess noise is assumed to be a zero-mean white random sig-
nal with covariance matrixQk = E[wkwT

k ].

Let p linear combination of the state vector be mea-
sured, then the model (2) can be extended to

xk+1 = Akxk + Bkuk + Gkdk + Hkwk, (3)

yk = Ckxk + vk, (4)

whereyk ∈ R
p represents the vector of measurements.

The measurement noisevk has been introduced to represent
stochastic errors in the measurement process. The mea-
surement noise is assumed to be a zero-mean white random
signal with covariance matrixRk = E[vkvT

k ], uncorrelated
with wk.

We assume that all external inputs are known, such
thatdk represents only unknown boundary conditions. Un-
der this assumption, the first objective of this paper is to
derive a recursive filter which jointly estimates the system
statexk and the vector of unknown boundary conditions
dk when new measurements become available. In contrast
to existing methods, we assume that no prior knowledge
about the unknown boundary condition is available. It can
be any type of signal and may for example be strongly time-
varying.

In data assimilation applications, the PDEs are usu-
ally discretized over a huge spatial grid, resulting in a state
vector of very large dimensionn. Consequently, the stan-
dard filtering techniques can not be applied and approxima-
tions have to be made. Therefore, the second objective is
to extend the joint state and boundary condition estimator
to large-scale data assimilation problems wheren ≫ m, p

by approximation the optimal filter equations.
The first objective is addressed in Section 3, the sec-

ond objective in Section 4.

3 Relation to unknown input filtering

Note thatdk enters the system (3)-(4) like an unknown in-
put. The problem of joint state and boundary condition
estimation is thus equivalent to joint input and state esti-
mation. An optimal filter for systems with unknown inputs
which assumes that no prior knowledge about the unknown
input is available, was first developed in [11]. The deriva-
tion in [11] is however limited to optimal state estimation.
An extension to joint optimal input and state estimation can
be found in [12]. In this section, we summarize the filter
developed in [11, 12].

The filter equations can be written in three steps: 1)
the time update of the state estimate, 2) the estimation of
the unknown boundary condition and 3) the measurement
update of the state estimate.

3.1 Time update

Let the optimal unbiased estimate ofxk−1 given measure-
ments up to timek − 1 be given byx̂k−1|k−1, and let
Pk−1|k−1 denote its covariance matrix, then the time up-
date is given by

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (5)

Pk|k−1 = Ak−1Pk−1|k−1A
T

k−1 + Hk−1Qk−1H
T

k−1. (6)

Note that the unknown boundary conditiondk−1 can not be
estimated using measurements up to timek−1. Therefore,
the state estimatêxk|k−1 is biased. Furthermore, note that
Pk|k−1 is not the covariance matrix of̂xk|k−1.

3.2 Estimation of unknown boundary condition

Once the measurementyk is available, the unknown bound-
ary conditiondk−1 can be estimated. Defining the innova-
tion ỹk = yk − Ckx̂k|k−1, it follows from (3-4) that

ỹk = CkGk−1dk−1 + ek, (7)

whereek is given by

ek = CkAk−1(xk−1 − x̂k−1|k−1) + Ckwk−1 + vk. (8)

Let x̂k−1|k−1 be unbiased, then it follows from (8) that
E[ek] = 0. Consequently, it follows that the minimum-
variance unbiased estimate ofdk−1 based oñyk is obtained
from (7) by weighted least-squares estimation with weight-
ing matrix equal to the inverse of

R̃k = E[ekeT

k ], (9)

= CkPk|k−1C
T

k + Rk. (10)

The optimal estimate ofdk−1 is thus given by

d̂k−1 = (FT

k R̃−1
k Fk)−1FT

k R̃−1
k ỹk, (11)

whereFk = CkGk−1. The variance of̂dk−1 is given by

Dk−1 = (FT

k R̃−1
k Fk)−1. (12)



Note that the inverses in (11) and (12) exist under the as-
sumption that

rankCkGk−1 = rankGk−1 = md. (13)

Note that (13) impliesn ≥ md andp ≥ md. For (13) to
hold, (linear combinations of) measurements of all bound-
ary states must be available.

3.3 Measurement update

As shown in [12], the update of the state estimatex̂k|k−1

with the measurementyk resulting in the minimum-
variance unbiased state estimatex̂k|k, can be written as

x̂k|k = x̂k|k−1 + Kkỹk + (I − KkCk)Ḡk−1d̂k−1, (14)

where the expression for the gain matrixKk equals the ex-
pression for the Kalman gain,

Kk = Pk|k−1C
T

k R̃−1
k . (15)

The covariance matrix of̂xk|k can be written as

Pk|k = P̄k|k +(I−KkCk)Gk−1Dk−1G
T

k−1(I−KkCk)T,

(16)
where the expression for̄Pk|k equals the measurement up-
date of the Kalman filter,

P̄k|k = (I − KkCk)Pk|k−1. (17)

3.4 Computational burden

Consider the case wheren, p ≫ md, mw. In this case, a
direct implementation of the filter takesO(n3 + p3 + n2p)
flops. The storage requirements areO(n2 + p2) memory
elements.

4 Suboptimal filtering

In data assimilation applications, the discrete-time model
(3)-(4) is usually obtained by discretizing PDEs over a huge
spatial grid. This results in a state vector of very large
dimension, fromn = 104 in tidal flow forecasting [1] to
n = 107 in weather forecasting. The number of measure-
ments ranges fromp = 102 to p = 105. Consequently, the
filter summarized in section 3 can not be used in these ap-
plications. Therefore, in section 4.1, we reduce the number
of computations and the storage requirements by approxi-
mating the filter equations.

A second disadvantage of the filter in Section 3 is that,
especially in 2D and 3D problem, the existence condition
(13) may not be satisfied. In Section 4.2, we relax this exis-
tence condition by expanding the unknown boundary con-
dition as a linear combination of basis functions.

4.1 Reduced rank filtering

Several suboptimal filtering schemes based on the Kalman
filter have been proposed. Usually a square-root formula-
tion is adopted. Potter and Stern [13] introduced the idea of
factoring the error covariance matrixPk into Cholesky fac-
tors,Pk = SkST

k , and expressing the Kalman filter equa-
tions in terms of the Cholesky factorSk, rather thanPk.

Suboptimal square-root filters gain speed, but loose accu-
racy by propagating a non-squareSk ∈ R

n×q with very
few columns,q ≪ n. The value ofq in data assimilation
applications is typically in the order of102. This leads to
a huge decrease in computation times and storage require-
ments, while the computed error covariance matrix remains
positive definite at all times. One of these suboptimal fil-
ters which is successfully used in practice, is the reduced
rank square root filter (RRSQRT) [1]. This algorithm is
based on an optimal lower rank approximation of the error
covariance matrix and has the interesting property that is
algebraically equivalent to the Kalman filter forq = n.

In this section, we consider the case wheren ≫ p, md

and we extend the filter of section 3 to large-scale system
based on the ideas of [1]. The resulting algorithm is al-
gebraically equivalent to the filter of section 3 forq = n

and consists of four steps: 1) the time update of the state
estimate, 2) the estimation of the unknown boundary con-
dition, 3) the measurement update of the state estimate and
4) a step where the rank of the covariance matrix is reduced.

4.1.1 Time update

We assume that the matrixHkQkHT

k is of low rankr, with

r ≤ mw ≪ n, such that a square-root factorHkQ
1/2
k ∈

R
n×r can easily be found. LetS⋆

k−1|k−1 be a Cholesky
factor ofPk−1|k−1, then time update (5)-(6) is written as

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (18)

S⋆
k|k−1 =

[
Ak−1S

⋆
k−1|k−1 Hk−1Q

1/2
k−1

]
. (19)

Like [1], we approximate (19), but strongly reduce the
computational load by replacingS⋆

k−1|k−1 by a Cholesky

factorSk−1|k−1 ∈ R
n×q of an optimal rank-q approxima-

tion of the error covariance matrixPk−1|k−1 with q ≪ n.

Finally, note that the number of columns in the covariance
square-root, and hence the rank of the error covariance ma-
trix grows fromq to q + r.

4.1.2 Estimation of unknown boundary condition

If p is large, the most time consuming step in the estimation
of the unknown boundary condition is the inversion ofR̃k.

We now show how this inverse can be efficiently computed.
DefiningVk = CkSk|k−1, it follows by applying the matrix
inversion lemma to (10) that

R̃−1
k = R−1

k − R−1
k Vk(Iq+r + V T

k R−1
k Vk)−1V T

k R−1
k .

(20)



Under the assumption thatR−1
k is available or easy to com-

pute, (20) requires only the inversion of a(q + r)× (q + r)
matrix.

4.1.3 Measurement update

It follows from (16) that a square-root formulation of the
measurement update can be written as

S⋆
k|k = [S̄⋆

k|k (Gk−1 − KkFk)D
1/2
k−1], (21)

whereS̄⋆
k|kS̄⋆T

k|k = P̄k|k andD
1/2
k−1D

T/2
k−1 = Dk−1. Like

in the time update, we approximate (21) by replacingS̄⋆
k|k

by a Cholesky factor̄Sk|k ∈ R
n×(q+r) of an optimal rank-

(q + r) approximation of the error covariance matrixP̄k|k,

q ≪ n.

The termS̄k|k can then be computed using any exist-
ing suboptimal measurement update for the Kalman filter.
We use the update of the ensemble transform Kalman filter
[3], which is based on the Potter formulation of the mea-
surement update. Let̄̄Pk|k denote the optimal rankq + r

approximation ofP̄k|k, then the Potter formulation of the
measurement update can be written as

¯̄Pk|k = Sk|k−1

(
I − V T

k E−1
k Vk

)
ST

k|k−1, (22)

whereEk = VkV T

k + Rk. For convenience of notation, we
define the matrixTk ∈ R

(q+r)×(q+r) by

Tk = (I − V T

k E−1
k Vk). (23)

Let the square-root factorization ofTk be given by

Tk = NkNT

k , (24)

then it follows from (22) that̄Sk|k is given by

S̄k|k = Sk|k−1Nk. (25)

If p ≫ q, the computation time can be reduced by avoid-
ing the inversion ofEk. First, compute the matrixWk =
V T

k R−1
k Vk. Let the eigenvalue decomposition ofWk be

given by
Wk = UkΛkUT

k , (26)

then using (23) and (26), it is straightforward to show that

Tk = Uk (Iq+r + Λk)
−1

UT

k . (27)

Consequently, it follows from (24) thatNk is given by

Nk = Uk(Iq+r + Λk)−1/2. (28)

Under the assumption thatmd ≪ n, the second term
in (21),(Gk−1−KkFk)D

1/2
k−1, can be efficiently computed

by substituting

Kk = Sk|k−1V
T

k R̃−1
k (29)

and (20) in (21) and computing the matrix products from
the left to the right.

Note that the rank of the error covariance matrix
grows fromq + r to q + r + md during the measurement
update.

4.1.4 Reduction step

The augmentation of the rank during the time update and
the measurement update could quickly blow up computa-
tion times. Like [1], the number of columns inSk|k is
reduced fromq + r + md back toq by truncating the er-
ror covariance matrixPk|k = Sk|kST

k|k after theq largest
eigenvalues and corresponding eigenvectors. The eigen-
value decomposition ofPk|k can efficiently be computed
from the one of the much smaller matrixST

k|kSk|k ∈

R
(q+r+md)×(q+r+md). Let the eigenvalue-decomposition

of ST

k|kSk|k be given by

ST

k|kSk|k = XkΩkXT

k , (30)

then it is straightforward to show that

(Sk|kXkΩ
−1/2
k )Ωk(Sk|kXkΩ

−1/2
k )T (31)

is the eigenvalue-decomposition ofPk|k. Consequently,

S̃k|k =
[
Sk|kXk

]
:,1:q

(32)

is a square-root of the optimal rank-q approximation of
Pk|k. Sinceq, r, md ≪ n this procedure is much faster
than an eigenvalue decomposition directly onPk|k.

4.2 Basis function expansion

In this section, we relax the existence condition (13) by
making an assumption about the unknown boundary con-
dition. We assume that the unknown boundary condition at
time instantk can be written as a linear combination ofN,

with N ≪ md, prescribed basis vectorsφi,k ∈ R
md , i =

1 . . .N,

dk =

N∑

i=1

ai,kφi,k. (33)

Defining the vector of coefficientsak ∈ R
N by ak =

[a1,k a2,k . . . aN,k]
T, and defining the matrixΦk =

[φ1,k φ2,k . . . φN,k], (33) is rewritten as

dk = Φkak. (34)

Substituting (34) in (3), yields

xk+1 = Akxk + Bkuk + Ḡkak + Hkwk, (35)

whereḠk = GkΦk. The problem of estimating the un-
known boundary conditiondk has thus been transformed
to estimating the vector of coefficientsak. This vector can
be estimated using the method developed in [12] if and only
if

rankCkḠk−1 = rankḠk−1 = N , for all k. (36)

If N ≪ md, the rank condition (36) is in practice less
strong than the condition (13). Loosely speaking, it states
that (linear combinations of) measurements ofN boundary
states must be available. Furthermore, forN ≪ md, the
number of computations in the second step of the algorithm
is strongly reduced.



5 Simulation example

Consider heat conduction in a two-dimensional plate, gov-
erned by the PDE

∂T

∂t
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
+ u(x, y, t), (37)

whereT (x, y, t) denotes the temperature at position(x, y)
and time instantt, u(x, y, t) represents the external heat
sources andα is the heat conduction coefficient of the plate.
The dimension of the plate isLx = 1m by Ly = 2m, the
heat conduction coefficient isα = 10−4 W/Km2 and the
external heat input is given by

u(x, y, t) =
1

2
e
−

„

(x−Lx/2)2

2σ2 +
(y−Ly/2)2

2σ2

«

(38)

with σ = 10−1, which represents the influence of a flame
centered under the middle of the plate. The boundary con-
dition atx = 0 is unknown. The other boundary conditions
are given by

T (Lx, y, t) = T (x, 0, t) = T (x, Ly, t) = 300. (39)

The initial condition is given byT (x, y, 0) = 300.

The PDE (37) is discretized in space and time using
finite differences with∆x = ∆y = 0.025m and∆t = 2s,
resulting a linear discrete-time state space model of order
n = 3200. Process noise with variance10−4 is introduced.
The matrixG is chosen such thatdk ∈ R

80 represents
the unknown boundary condition atx = 0. It is assumed
that p = 36 measurements are available. The measure-
ment locations are indicated by the stars in Fig. 2. The
variance of the measurement noise isR = 10−2Ip. Note
that12 measurements at the unknown boundary are avail-
able. Consequently, the rank condition (13) is not satisfied.
Therefore, we expand the unknown boundary condition as
a linear combination of basis functions. Note that at most
N = 12 basis functions can be used in order to satisfy the
rank condition (36). We choose as basis functions the or-
thogonal Chebyshev polynomials.

In a first experiment, we consider the case of constant
boundary conditions and set up a simple problem in order
to test the efficiency and performance of the filter devel-
oped in section 4. We use the method of twin-experiments.
First, we simulate the discretized model and add process
noise and measurement noise to the state and output. The
boundary condition atx = 0 is a linear combination of the
first 4 Chebyshev polynomials. The coefficients used in the
simulation are given in Table 5. Next, we apply the fil-
ter where we assume that the initial state and the boundary
condition atx = 0 are unknown and thus have to be esti-
mated by the filter. By expanding the boundary condition
as a linear combination of the first4 Chebyshev polynomi-
als, the problem boils down to the joint estimation of the
state and the coefficients in the expansion. The true and es-
timated values of the coefficients are shown in Table 5. The

Table 1. Comparison between true and estimated value of
the coefficients in the basis function expansion. The es-
timated values shown are obtained by averaging over10
consecutive estimates.

true value estimated value

a1 300 299,967
a2 15 15,003
a3 -50 -49,999
a4 -25 -25,015
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Figure 1. Comparison between the convergence speed of
the reduced rank square root filter (RRSQRT), where the
boundary condition atx = 0 is assumed to be known, and
the joint state and boundary condition estimator developed
in section 4. Results are shown forq = 25.

estimated values are obtained by averaging over10 con-
secutive estimates. The rank of the error covariance matrix
was chosenq = 25. For larger values ofq, results are only
slightly more accurate. However, for smaller values ofq,

performance quickly degrades.
In a second experiment, we consider time-varying

boundary conditions. The true boundary condition atx = 0
varies sinusoidally in time and in space. We expand the un-
known boundary condition as a linear combination of the
first 8 Chebyshev polynomials (which gives the best re-
sults in this experiment) and let the filter estimate the time-
varying coefficients. Figure 1 compares the convergence
speed of the RRSQRT to the joint state and boundary con-
dition estimator forq = 25. In the RRSQRT, the bound-
ary condition is assumed to be known. We conclude from
Fig. 1 that the joint state and boundary condition estimator
converges as fast as in the case where the boundary condi-
tion is known. The error in the state estimates are shown
in Fig. 2. The stars indicate the locations where measure-
ments were taken. The figure on the left hand side show the
error after50 steps. The figure on the right after250 steps,
i.e. when the filter has converged. The estimation is largest
in the neighborhood of the unknown boundary.
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Figure 2. Estimation error at simulation step50 (left) and
simulation step250 (right). The stars indicate the locations
where measurements were taken.

6 Conclusion and remarks

This paper has studied the problem of joint state and bound-
ary condition estimation in linear data assimilation. A sub-
optimal filter was developed which is based on the assump-
tion that no prior information about the time evolution of
the boundary condition is available. However, it is assumed
that the spatial form of the boundary condition can be ex-
panded as a linear combination of a limited number of basis
vectors. Furthermore, it is assumed that measurements at
the boundary are available. A simulation example using
a linear heat conduction model indicates that the filter con-
verges almost as fast as in the case where the boundary con-
dition is known. Furthermore, the filter is able to accurately
estimate time-varying boundary conditions. However, it re-
mains to be seen how the method performs on real data and
in more complex (nonlinear) data assimilation applications.
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