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Abstract

The optimal filtering problem for linear systems with unknown inputs is addressed. Based
on recursive least-squares estimation, information formulas for joint input and state es-
timation are derived. By establishing duality relations to the Kalman filter equations,
covariance and square-root forms of the formulas follow almost instantaneously.



1 Introduction

Since the publication of Kalman’s celebrated paper [10], the problem of state estimation for
linear discrete-time systems has received considerable attention. In the decade immediately
following the introduction of the Kalman filter, alternative implementations of the original
formulas appeared. Most notable in the context of this paper are the information and
square-root filters.

Information filters accentuate the recursive least-squares nature of the Kalman filtering
problem [1, 3]. Instead of propagating the covariance matrix of the state estimate, these
filters work with its inverse, which is called the information matrix. This approach is
especially useful when no knowledge of the initial state is available.

To reduce numerical errors in a direct implementation of the Kalman filter equations,
Potter and Stern [14] introduced the idea of expressing the equations in terms of the
Cholesky factor of the state covariance matrix. Although computationally more expensive
than the original formulation, these so-called square-root algorithms are numerically better
conditioned than a direct implementation [16].

During the last decades, the problem of optimal filtering in the presence of unknown inputs
has received growing attention due to its applications in environmental state estimation [11]
and in fault detection and isolation problems [4]. Optimal state filters which assume that
no prior knowledge of the input is available were for example developed by parameterizing
the filter equations and then calculating the parameters which minimize the trace of the
state covariance matrix under an unbiasedness condition [11, 5] or by transforming the
system into a system which is decoupled from the unknown input and then deriving a
minimum-variance unbiased state estimator based on this transformed system [7]. The
problem of joint state and input estimation has also been intensively studied [8, 6]. In
the latter reference, it is shown that the filter equations of [11] can be rewritten in a form
which reveals optimal estimates of the input.

In this paper, we establish a relation between the filter of [6] and recursive least-squares
estimation. We set up a least-squares problem to jointly estimate the state vector and
the unknown input vector and derive information filter formulas by recursively solving this
least-squares problem. We show that by converting the resulting formulas to covariance
form, the filter of [6] is obtained. Finally, by establishing duality relations to the Kalman
filter equations, a square-root implementation of the information filter follows almost in-
stantaneously.

This paper is outlined as follows. In section 2, we formulate the filtering problem in
more detail. Next, in section 3, we set up the least-squares problem and derive the filter
equations by recursively solving the least-squares problem. In sections 4 and 5, we convert
all filter equations into information form and covariance form and we discuss the relation
to the results of [6]. Finally, in section 6, we develop a square-root implementation of the
information filter.

We use the following notations. E[·] denotes the expected value of a random variable, T
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denotes matrix transposition, ‖a‖2
B denotes the weighted norm aTBa and {ai}

k
i=0 denotes

the sequence a0, a1, . . . , ak. For a positive definite matrix A, A1/2 denotes any matrix
satisfying A1/2(A1/2)T = A. We call A1/2 a “square-root” of A. For conciseness of equations,
we will also write (A1/2)T = AT/2, (A1/2)−1 = A−1/2 and (A−1/2)T = A−T/2.

2 Problem formulation

Consider the linear discrete-time system

xk+1 = Akxk + Gkdk + wk, (1a)

yk = Ckxk + vk, (1b)

where xk ∈ R
n is the state vector, dk ∈ R

m is an unknown input vector and yk ∈ R
p is

the measurement. The process noise wk and the measurement noise vk ∈ R
p are assumed

to be mutually uncorrelated zero-mean white random signals with nonsingular covariance
matrices Qk = E[wkw

T

k ] and Rk = E[vkv
T

k ], respectively. We assume that an unbiased
estimate x̂0 of the initial state x0 is available with covariance matrix P0. Also, we assume
that rank CkGk−1 = m for all k. Finally, in the derivation of the information formulas, we
also assume that Ak is invertible for all k.

In case dk is known, is zero or is a zero-mean white random vector with known covariance
matrix, the optimal filtering problem for the system (1) reduces to the Kalman filtering
problem. On the other hand, if dk is deterministic and its evolution in time is governed by
a known linear system, optimal estimates of dk and xk can be obtained using an augmented
state Kalman filter [1]. Like [11, 6], however, we consider the case where no prior knowledge
about the time evolution or the statistics of dk is available, that is, dk is assumed to be
completely unknown.

The derivation of the filters developed by [11, 6] is based on unbiased minimum-variance
estimation. In this paper, however, we address the optimal filtering problem from the
viewpoint of recursive least-squares estimation.

3 Recursive least-squares estimation

The relation between recursive least-squares estimation and the Kalman filter is well es-
tablished. Let dk = 0 and consider the least-squares problem

min
{xi}k

i=0

Jk

subject to (1a) and (1b),
(2)
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where the performance index Jk is given by

Jk = ‖x0 − x̂0‖
2

P−1

0

+

k
∑

i=0

‖vi‖
2

R−1

i

+

k−1
∑

i=0

‖wi‖
2

Q−1

i

.

Let {x⋆
i|k}

k
i=0 denote the solution to the minimization problem (2), then based on the

recursion
Jk = Jk−1 + ‖vk‖

2

R−1

k

+ ‖wk−1‖
2

Q−1

k−1

,

it can be shown that x⋆
k|k can be computed recursively. More precisely, x⋆

k|k can be derived
from x⋆

k−1|k−1
and yk by solving the minimization problem

min
xk

‖yk − Ckxk‖
2

R−1

k

+ ‖xk − Ak−1x
⋆
k−1|k−1‖

2

P̄−1

k

, (3)

where P ⋆
k is given by

P ⋆
k = E[(xk − Ak−1x

⋆
k−1|k−1)(xk − Ak−1x

⋆
k−1|k−1)

T].

In particular, it can be proved that x⋆
k|k = x̂KF

k and P ⋆
k = PKF

k where x̂KF
k and PKF

k denote
the estimate of xk and its covariance matrix obtained with the Kalman filter, respectively
[15, 9, 1].

In this section, filter equations for the case dk unknown will be derived based on recursive
least-squares estimation. Let x̂k−1 denote the estimate of xk−1, then in accordance to (3),
x̂k is obtained by solving the minimization problem

min
xk,dk−1

‖yk − Ckxk‖
2

R−1

k

+ ‖xk − ˆ̄xk − Gk−1dk−1‖
2

P̄−1

k

, (4)

where
ˆ̄xk := Ak−1x̂k−1 (5)

and where
P̄k := E[(x̄k − ˆ̄xk)(x̄k − ˆ̄xk)

T],

with
x̄k := Ak−1xk−1 + wk−1. (6)

We now derive explicit update formula by solving the minimization problem (4). First,
note that (4) is equivalent to the least-squares problem

min
Xk

‖Yk −AkXk‖
2

Wk
, (7)

where

Ak :=

[

Ck 0
I −Gk−1

]

, (8)

3



Yk :=

[

yk

ˆ̄xk

]

, Xk :=

[

xk

dk−1

]

,

and Wk := diag(R−1

k , P̄−1

k ). In order for (7) to have a unique solution, Ak must have full
column rank, that is, Gk−1 must have full column rank. The solution can then be written
as

X̂k = (AT

kWkAk)
−1AT

kWkYk. (9)

This solution has covariance matrix (AT

kWkAk)
−1. Using (8), it follows that

AT

kWkAk =

[

P̆−1

k −P̄−1

k Gk−1

−GT

k−1P̄
−1

k D̆−1

k−1

]

,

where P̆−1

k and D̆−1

k−1
are given by

P̆−1

k = P̄−1

k + CT

k R−1

k Ck, (10)

D̆−1

k−1
= GT

k−1P̄
−1

k Gk−1. (11)

Furthermore, using [2, Prop. 2.8.7] it follows that the covariance matrix of X̂k can be
written as

(AT

kWkAk)
−1 =

[

P̆−1

k −P̄−1

k Gk−1

−GT

k−1P̄
−1

k D̆−1

k−1

]−1

,

=

[

Pk PkP̄
−1

k Gk−1D̆k−1

Dk−1G
T

k−1P̄
−1

k P̆k Dk−1

]

, (12)

where the inverses of Pk and Dk−1 are given by

D−1

k−1
= D̆−1

k−1
− GT

k−1P̄
−1

k P̆kP̄
−1

k Gk−1, (13)

P−1

k = P̆−1

k − P̄−1

k Gk−1D̆k−1G
T

k−1P̄
−1

k . (14)

Note that Pk and Dk−1 can be identified as the covariance matrices of x̂k and d̂k−1, that is,

Pk = E[(xk − x̂k)(xk − x̂k)
T],

Dk−1 = E[(dk−1 − d̂k−1)(dk−1 − d̂k−1)
T].

Substituting (12) in (9) then yields

X̂k =

[

Pk PkP̄
−1

k Gk−1D̆k−1

Dk−1G
T

k−1P̄
−1

k P̆k Dk−1

] [

CT

k R−1

k P̄−1

k

0 −GT

k−1P̄
−1

k

]

Yk,

from which it follows that

P−1

k x̂k = P̄−1

k
ˆ̄xk + CT

k R−1

k yk − P̄−1

k Gk−1D̆k−1G
T

k−1P̄
−1

k
ˆ̄xk, (15)
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and
D−1

k−1
d̂k−1 = −GT

k−1P̄
−1

k
ˆ̄xk + GT

k−1P̄
−1

k P̆k(P̄
−1

k
ˆ̄xk + CT

k R−1

k yk). (16)

Finally, we derive a closed form expression for P̄k. It follows from (6) and (5) that

x̄k − ˆ̄xk = Ak−1(xk−1 − x̂k−1) + wk−1.

Consequently, P̄k is given by

P̄k = Ak−1Pk−1A
T

k−1 + Qk−1. (17)

By defining ˆ̄xk, we did actually split the recursive update of the state estimate into two
steps. The first step, which we call the time update, is given by (5). The second step,
which we call the measurement update, is given by (15). Note that the time update is
given in covariance form, whereas the measurement update is given in information form.
In section 4, we will convert all equations in information form, in section 5 into covariance
form.

Based on the least-squares formulation of the measurement update, (7), it is straightforward
to derive a single least-squares problem for the combination of the time and measurement
update. The resulting least-squares problem can be written as

min
X̄k

∥

∥Ȳk − ĀkX̄k

∥

∥

2

W̄k

, (18)

where

Āk :=





Ck 0 0
I −Gk−1 0

−Ak 0 I



 ,

Ȳk :=





yk

ˆ̄xk

0



 , X̄k :=





xk

dk−1

x̄k+1



 ,

and W̄k := diag(R−1

k , P̄−1

k , Q−1

k ). The least-squares problem (18) yields a method to recur-
sively calculate x̂k. Indeed, let ˆ̄xk and P̄−1

k be known, then the least-squares problem can

be used to obtain the estimates x̂k, d̂k−1 and ˆ̄xk+1 together with their covariance matrices.
Once the measurement yk+1 is available, it can be used together with ˆ̄xk+1 and P̄−1

k+1
as

input data of a new least-squares problem of the form (18).

4 Information filtering

In this section, we convert the time update into information form, we derive more conve-
nient formula for the measurement update and the estimation of the unknown input and
we establish duality relations to the Kalman filter. The resulting equations are especially
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useful when no knowledge of the initial state is available (P−1
0 = 0) since in that case the

covariance formulas of e.g. [6, 11] can not be used.

In rewriting the estimation of the unknown input and the measurement update, we will
use the following equation, which follows by applying the matrix inversion lemma to (10),

P̆k = P̄k − P̄kC
T

k R̃−1

k CkP̄k, (19)

where
R̃k := CkP̄kC

T

k + Rk. (20)

4.1 Input estimation

A more convenient expression for (13) will now be derived. It follows from (11) and (13)
that

D−1

k−1
= GT

k−1(P̄
−1

k − P̄−1

k P̆kP̄
−1

k )Gk−1. (21)

Substituting (19) in (21), yields

D−1

k−1
= FT

k R̃−1

k Fk, (22)

= FT

k R−1

k Fk − FT

k R−1

k Ck(C
T

k R−1

k Ck + P̄−1

k )−1CT

k R−1

k Fk, (23)

where Fk := CkGk−1 and where the last step follows by applying the matrix inversion
lemma to (20).

A more convenient expression for (16) is obtained as follows. First, note that (16) can be
rewritten as

D−1

k−1
d̂k−1 = −GT

k−1(I − P̄−1

k P̆k)P̄
−1

k
ˆ̄xk + GT

k−1P̄
−1

k P̆kC
T

k R−1

k yk. (24)

Substituting (19) in (24), then yields

D−1

k−1
d̂k−1 = FT

k R−1

k yk − FT

k R−1

k Ck(C
T

k R−1

k Ck + P̄−1

k )−1(CT

k R−1

k yk + P̄−1

k
ˆ̄xk). (25)

4.2 Measurement update

Now, we consider the measurement update. It follows from (10) and (14) that the infor-
mation matrix P−1

k can be written as

P−1

k = P̄−1

k + CT

k R−1

k Ck − P̄−1

k Gk−1(G
T

k−1P̄
−1

k Gk−1)
−1GT

k−1P̄
−1

k . (26)

An expression for x̂k in information form has already been derived,

P−1

k x̂k = P̄−1

k
ˆ̄xk + CT

k R−1

k yk − P̄−1

k Gk−1(G
T

k−1P̄
−1

k Gk−1)
−1GT

k−1P̄
−1

k
ˆ̄xk, (27)

see (15).
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4.3 Time update

Since (5) and (17) take the form of the time update of the Kalman filter, information
formulas follow almost immediately,

P̄−1

k
ˆ̄xk = (I − Lk−1)A

−T

k−1
P−1

k−1
x̂k−1,

P̄−1

k = (I − Lk−1)Hk−1,

where

Hk−1 = A−T

k−1
P−1

k−1
A−1

k−1
,

Q̃k−1 = (Hk−1 + Q−1

k−1
)−1,

Lk−1 = Hk−1Q̃k−1,

see e.g. [1].

4.4 Duality to the Kalman filter

There is a duality between the recursion formula for the covariance matrix in the Kalman
filter and equations (23) and (26). Consider the system

xk+1 = Akxk + Ekwk,

yk = Ckxk + vk,

and let x̂KF

k+1|k denote the estimate of xk+1 given measurements up to time instant k obtained

with the Kalman filter. The covariance matrix PKF

k+1|k of x̂KF

k+1|k then obeys the recursion

PKF

k+1|k = AkP
KF

k|k−1A
T

k + EkQkE
T

k − AkP
KF

k|k−1C
T

k (CkP
KF

k|k−1C
T

k + Rk)
−1CkP

KF

k|k−1A
T

k . (29)

The duality between (29) and (23), (26) is summarized in Table 1 and will be used in
section 6 to derive square-root information algorithms for the measurement update and
the estimation of the unknown input.

It follows from Table 1 that the dual of deriving a square-root covariance algorithm for
the measurement update is deriving a square-root information algorithm for the Kalman
filter equations of a system with perfect measurements. The latter problem is unsolvable.
Therefore, we will not consider square-root covariance filtering for systems with unknown
inputs.

5 Covariance filtering

In this section, we derive covariance formulas for the time update, the measurement update
and the estimation of the unknown input. Also, we establish relations to the filters of [6]
and [11].

7



Table 1: Duality between the recursion for PKF
k|k−1

in the Kalman filter (29), the measure-

ment update (26) and the estimation of the input (23).

Kalman filter, Eq. (29) Eq. (26) Eq. (23)

PKF

k|k−1
P̄−1

k R−1

k

Ak I FT

k

Rk 0 P̄−1

k

Ck GT

k−1 CT

k

Ek CT

k 0

Qk R−1

k 0

5.1 Input estimation

First, we consider the estimation of the unknown input. An expression for the covariance
matrix Dk−1 is obtained by inverting (22), which yields

Dk−1 = (FT

k R̃−1

k Fk)
−1. (30)

The expression for d̂k−1 then follows by premultiplying left and right hand side of (25) by
(30), which yields

d̂k−1 = (FT

k R̃−1

k Fk)
−1FT

k R̃−1

k ỹk, (31)

where ỹk := yk − Ck ˆ̄xk. Note that d̂k−1 equals the solution to the least-squares problem

min
dk−1

‖dk−1 − Fkỹk‖
2

R̃−1

k

.

Finally, note that (31) exists if and only if rank Fk = rank CkGk−1 = m.

5.2 Measurement update

Now, we consider the measurement update. By noting that (10) takes the form of the
measurement update of the Kalman filter, it immediately follows that

P̆k = (I − Kx
k Ck)P̄k,

where Kx
k is given by

Kx
k = P̄kC

T

k R̃−1

k .

An expression for the covariance matrix Pk is obtained by applying the matrix inversion
lemma to (14), which yields after some calculation

Pk = P̆k + (I − Kx
k Ck)Gk−1Dk−1G

T

k−1(I − Kx
k Ck)

T. (32)
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By premultiplying left and right hand side of (15) by Pk, we obtain the following expression
for x̂k,

x̂k = ˆ̄xk + Kx
k ỹk + (I − Kx

k Ck)Gk−1d̂k−1. (33)

5.3 Time update

Equations for the time update have already been derived,

ˆ̄xk = Ak−1x̂k−1, (34)

P̄k = Ak−1Pk−1A
T

k−1 + Qk−1.

see (5) and (17).

5.4 Relation to existing results

The covariance formulas derived in this section equal the filter equations of [6]. Further-
more, as shown in the latter reference, the state updates (34) and (33) are algebraically
equivalent to the updates of [11].

6 Square-root information filtering

Square-root implementations of the Kalman filter exhibit improved numerical properties
over the conventional algorithms. They recursively propagate Cholesky factors or “square-
roots” of the error covariance matrix or the information matrix using numerically accurate
orthogonal transformations. Square-root formulas in information form have been derived
directly from the information formulas or based on duality considerations.

In this section, we use the duality relations established in Table 1 to derive a square-
root implementation for the information formulas derived in the previous section. Like
the square-root implementations for the Kalman filter, the algorithm applies orthogonal
transformations to triangularize a pre-array, which contains the prior estimates, forming a
post-array which contains the updated estimates.

6.1 Time update

First, we consider the time update. The duality to the time update of the Kalman filter
yields (see e.g. [13])







Q
−T/2

k−1
−A−T

k−1
P

−T/2

k−1

0 A−T

k−1
P

−T/2

k−1

0 x̂T

k−1P
−T/2

k−1






Θ1,k =







Q̃
−T/2

k−1
0

−Lk−1Q̃
−T/2

k−1
P̄

−T/2

k

⋆ ˆ̄xT

k P̄
−T/2

k






,
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where the “⋆” in the post-array denotes a row vector which is not important for our
discussion. The orthogonal transformation matrix Θ1,k which lower-triangularizes the pre-
array, may be implemented as a sequence of numerically accurate Givens rotations or
Householder reflections [1].

6.2 Measurement update

Now, we consider the measurement update. A square-root information algorithm for the
measurement update can be derived based on the duality to the Kalman filter. Using
Table 1 and the square-root covariance algorithm for the Kalman filter developed in [12],
yields the following update,







0 GT

k−1P̄
−T/2

k 0

0 P̄
−T/2

k CT

k R
−T/2

k

0 ˆ̄xT

k P̄
−T/2

k yT

k R
−T/2

k






Θ2,k =







D̆
−T/2

k−1
0 0

⋆ P
−T/2

k 0

⋆ x̂T

k P
−T/2

k ⋆






. (35)

The algebraic equivalence of this algorithm to equations (26) and (27) can be verified by
equating inner products of corresponding block rows of the post- and pre-array.

A standard approach to convert between square-root covariance and square-root informa-
tion implementations of the Kalman filter is to augment the post- and pre-array such that
they become nonsingular and then invert both of them [12]. However, adding a row to
the pre-array in (35) such that the augmented array becomes invertible and the inverse
contains square-roots of covariance matrices, is not possible (due to the zero-matrix in the
upper-left entry). This again shows that developing a square-root covariance algorithm is
not possible.

6.3 Input estimation

Finally, we consider the estimation of the unknown input. Using the duality given in
Table 1, we obtain the following array algorithm,







P̄
−T/2

k CT

k R
−T/2

k

0 FT

k R
−T/2

k

ˆ̄xT

k P̄
−T/2

k yT

k R
−T/2

k






Θ3,k =







P̆
−T/2

k 0 0

⋆ D
−T/2

k−1
0

⋆ d̂T

k−1D
−T/2

k−1
⋆






.

The algebraic equivalence of this algorithm to equations (23) and (25) can be verified by
equating inner products of corresponding block rows of the post- and pre-array.

7 Conclusion

The problem of recursive least-squares estimation for systems with unknown inputs has
been considered in this paper. It was shown that the solution to this least-squares problem
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yields information formulas for the filters of [11, 6]. By establishing duality relations to the
Kalman filter equations, a square-root information implementation was developed almost
instantaneously. Finally, it was shown that square-root covariance filtering for systems
with unknown inputs is not possible.
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