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Abstract

This paper extends previous work on joint input and state estimation to systems with direct feedthrough of the unknown input to the
output. Using linear minimum-variance unbiased estimation, a recursive filter is derived where the estimation of the state and the input are
interconnected. The derivation is based on the assumption that no prior knowledge about the dynamical evolution of the unknown input is
available. The resulting filter has the structure of the Kalman filter, except that the true value of the input is replaced by an optimal estimate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Systematic measurement errors and model uncertainties such
as unknown disturbances or unmodeled dynamics can be rep-
resented as unknown inputs. The problem of optimal filtering
in the presence of unknown inputs has therefore received a lot
of attention.

Friedland (1969) and Park, Kim, Kwon, and Kwon (2000)
solved the unknown input filtering problem by augmenting
the state vector with an unknown input vector. However, this
method is limited to the case where a model for the dynamical
evolution of the unknown input is available.

A rigorous and straightforward state estimation method in the
presence of unknown inputs is developed by Hou and Müller
(1994) and Hou and Patton (1998). The approach consists in
first building an equivalent system which is decoupled from
the unknown inputs, and then designing a minimum-variance
unbiased (MVU) estimator for this equivalent system.
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Another approach consists in parameterizing the filter equa-
tions and then calculating the optimal parameters by minimiz-
ing the trace of the state covariance matrix under an unbiased-
ness condition. An optimal filter of this type was first devel-
oped by Kitanidis (1987). The derivation of Kitanidis (1987)
is limited to linear systems without direct feedthrough of the
unknown input to the output and yields no estimate of the
input. An extension to state estimation for systems with di-
rect feedthrough was developed by Darouach, Zasadzinski, and
Boutayeb (2003). Extensions to joint input and state estimation
for systems without direct feedthrough are addressed by Hsieh
(2000) and Gillijns and De Moor (2007).

In this paper, we combine both extensions of Kitanidis (1987)
by addressing the problem of joint input and state estimation
for linear discrete-time systems with direct feedthrough of the
unknown input to the output. Using linear minimum-variance
unbiased estimation, we develop a recursive filter where the
estimation of the state and the input are interconnected. The
estimation of the input is based on the least-squares (LS) ap-
proach developed by Gillijns and De Moor (2007), while the
state estimation problem is solved using the method developed
by Kitanidis (1987).

This paper is outlined as follows. In Section 2, we formulate
the filtering problem and present the recursive three-step struc-
ture of the filter. Next, in Sections 3–5, we consider each of
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the three steps separately and derive equations for the optimal
input and state estimators. Finally, in Section 6, we summarize
the filter equations.

2. Problem formulation

Consider the linear discrete-time system

xk+1 = Akxk + Gkdk + wk , (1)

yk = Ckxk + Hkdk + vk , (2)

where xk ∈ Rn is the state vector, dk ∈ Rm is an unknown input
vector, and yk ∈ Rp is the measurement. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rp are assumed
to be mutually uncorrelated, zero-mean, white random signals
with known covariance matrices, Qk = E[wkw

T
k ]�0 and Rk =

E[vkv
T
k ] > 0, respectively. Results are easily generalized to the

case where wk and vk are correlated by applying a preliminary
transformation to the system (Anderson & Moore, 1979). Also,
results are easily generalized to systems with both known and
unknown inputs. The matrices Ak, Gk, Ck and Hk are known
and it is assumed that rank Hk = m. Throughout the paper, we
assume that (Ak, Ck) is observable and that x0 is independent of
vk and wk for all k. Also, we assume that an unbiased estimate
x̂0 of the initial state x0 is available with covariance matrix P x

0 .
The objective of this paper is to design an optimal recursive

filter which estimates both the system state xk and the input
dk based on the initial estimate x̂0 and the sequence of mea-
surements {y0, y1, . . . , yk}. No prior knowledge about the dy-
namical evolution of dk is assumed to be available and no prior
assumption is made. The unknown input can be any type of
signal.

The optimal state estimation problem for a system with di-
rect feedthrough of the unknown input dk to the output yk is
conceptually not very different from the case where Hk = 0.
A single filter and a single existence condition, valid for both
cases, can be found in Darouach et al. (2003) and Hou and
Müller (1994). In contrast, the optimal input estimation prob-
lem is conceptually very different in both cases. If Hk = 0,
the unknown input dk must be estimated with one step delay
because the first measurement containing information on dk is
yk+1 (Gillijns & De Moor, 2007). On the other hand, if Hk �= 0,
the first measurement containing information on dk is yk . Con-
sequently, the structure of the input estimator and the existence
conditions are totally different in both cases.

We consider a recursive three-step filter of the form

x̂k|k−1 = Ak−1x̂k−1|k−1 + Gk−1d̂k−1, (3)

d̂k = Mk(yk − Ckx̂k|k−1), (4)

x̂k|k = x̂k|k−1 + Lk(yk − Ckx̂k|k−1), (5)

where the matrices Mk ∈ Rm×p and Lk ∈ Rn×p still have to
be determined. The first step, which we call the time update,
yields an estimate of xk given measurements up to time k − 1.
This step is addressed in Section 3. The second step yields an
estimate of the unknown input. The calculation of the optimal
matrix Mk is addressed in Section 4. Finally, the third step, the
so-called measurement update, yields an estimate of xk given

measurements up to time k. This step is addressed in Section
5, where we calculate the optimal value of Lk .

3. Time update

First, we consider the time update. Let x̂k−1|k−1 and d̂k−1
denote the optimal unbiased estimates of xk−1 and dk−1 given
measurements up to time k−1, then the time update is given by

x̂k|k−1 = Ak−1x̂k−1|k−1 + Gk−1d̂k−1.

The error in the estimate x̂k|k−1 is given by

x̃k|k−1 := xk − x̂k|k−1,

= Ak−1x̃k−1|k−1 + Gk−1d̃k−1 + wk−1,

with x̃k|k := xk − x̂k|k and d̃k := dk − d̂k . Consequently, the
covariance matrix of x̂k|k−1 is given by

P x
k|k−1 := E[x̃k|k−1x̃

T
k|k−1],

= [Ak−1 Gk−1 ]
[
P x

k−1|k−1 P xd
k−1

P dx
k−1 P d

k−1

] [
AT

k−1
GT

k−1

]
+ Qk−1,

with P x
k|k := E[x̃k|kx̃T

k|k], P d
k := E[d̃kd̃

T
k ] and (P xd

k )T =
P dx

k := E[d̃kx̃
T
k|k]. Expressions for these covariance matrices

will be derived in the next sections.

4. Input estimation

In this section, we consider the estimation of the unknown
input. In Section 4.1, we determine the matrix Mk such that (4)
yields an unbiased estimate of dk . In Section 4.2, we extend to
MVU input estimation.

4.1. Unbiased input estimation

Defining the innovation ỹk := yk − Ckx̂k|k−1, it follows
from (2) that

ỹk = Hkdk + ek , (6)

where ek is given by

ek = Ckx̃k|k−1 + vk . (7)

Since x̂k|k−1 is unbiased, it follows from (7) that E[ek] = 0 and
consequently from (6) that E[ỹk]=HkE[dk]. This indicates that
an unbiased estimate of the unknown input dk can be obtained
from the innovation ỹk .

Theorem 1. Let x̂k|k−1 be unbiased, then (3)–(4) is an unbiased
estimator for all possible dk if and only if Mk satisfies MkHk=I .

Proof. The proof is similar to that of Theorem 1 in Gillijns
and De Moor (2007) and is omitted. �

It follows from Theorem 1 that rank Hk = m is a neces-
sary and sufficient condition for the existence of an unbiased
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input estimator of the form (4). Note that this condition im-
plies p�m. The matrix Mk = (HT

k Hk)
−1HT

k corresponding to
the LS solution of (6) satisfies the condition of Theorem 1.
The LS solution is thus unbiased. However, it follows from the
Gauss–Markov theorem (Kailath, Sayed, & Hassibi, 2000) that
it is not necessarily minimum-variance because in general

R̃k := E[eke
T
k ] = CkP

x
k|k−1C

T
k + Rk �= cI ,

where c denotes a positive real number.

4.2. MVU input estimation

An MVU estimate of dk based on the innovation ỹk is ob-
tained by weighted LS estimation with weighting matrix equal
to the inverse of R̃k .

Theorem 2. Let x̂k|k−1 be unbiased and let R̃k and HT
k R̃−1

k Hk

be nonsingular, then for Mk given by

M�
k = (HT

k R̃−1
k Hk)

−1HT
k R̃−1

k ,

(4) is the MVU estimator of dk given ỹk . The variance of the
optimal input estimate is given by

P �d
k = (HT

k R̃−1
k Hk)

−1.

Proof. The proof is similar to that of Theorem 2 in Gillijns
and De Moor (2007) and is omitted. �

We denote the optimal input estimate corresponding to M�
k

by d̂�
k and derive an equation for d̃�

k := dk − d̂�
k . It follows

from (4), (6) and the unbiasedness of the input estimator that
d̃�

k is given by

d̃�
k = (I − M�

kHk)dk − M�
kek = −M�

kek . (8)

This equation will be used in the next section, where we con-
sider the measurement update.

5. Measurement update

Finally, we consider the update of x̂k|k−1 with the measure-
ment yk . We calculate the gain matrix Lk which yields the
MVU estimator of the form (5). Using (5) and (6), we find that

x̃k|k = (I − LkCk)x̃k|k−1 − LkHkdk − Lkvk . (9)

Consequently, (5) is unbiased for all possible dk if and only if
Lk satisfies

LkHk = 0. (10)

Let Lk satisfy (10), then it follows from (9) that P x
k|k is given by

P x
k|k = (I − LkCk)P

x
k|k−1(I − LkCk)

T + LkRkL
T
k . (11)

An MVU state estimator is then obtained by calculating the
gain matrix Lk which minimizes the trace of (11) under the
unbiasedness condition (10).

Theorem 3. The gain matrix Lk given by

L�
k = K�

k (I − HkM
�
k ), (12)

where K�
k = P x

k|k−1C
T
k R̃−1

k , minimizes the trace of (11) under
the unbiasedness condition (10).

Proof. We use the approach of Kitanidis (1987), where a simi-
lar optimization problem is solved using Lagrange multipliers.
The Lagrangian is given by

trace{LkR̃kL
T
k − 2P x

k|k−1C
T
k LT

k + P x
k|k−1}

− 2 trace{LkHk�
T
k }, (13)

where �k ∈ Rp×n is the matrix of Lagrange multipliers and
the factor “2” is introduced for notational convenience. Setting
the derivative of (13) with respect to Lk equal to zero, yields

R̃kL
T
k − CkP

x
k|k−1 − Hk�

T
k = 0. (14)

Eqs. (14) and (10) form the linear system of equations
[

R̃k −Hk

HT
k 0

] [
LT

k

�T
k

]
=

[
CkP

x
k|k−1
0

]
, (15)

which has a unique solution if and only if the coefficient ma-
trix is nonsingular. Let R̃k be nonsingular, then the coefficient
matrix is nonsingular if and only if HT

k R̃−1
k Hk , the Schur com-

plement of R̃k , is nonsingular. Finally, premultiplying left- and
right-hand side of (15) by the inverse of the coefficient matrix,
yields (12). �

We denote the state estimate corresponding to the gain matrix
L�

k by x̂�
k|k . Substituting (12) in (5), yields the equivalent state

updates

x̂�
k|k = x̂k|k−1 + K�

k (I − HkM
�
k )(yk − Ckx̂k|k−1),

= x̂k|k−1 + K�
k (yk − Ckx̂k|k−1 − Hkd̂

�
k),

from which we conclude that the optimal state estimator implic-
itly estimates the unknown input by weighted LS estimation.

Finally, we derive expressions for the covariance matrices
P �x

k|k := E[x̃�
k|kx̃�T

k|k] and P �xd
k := E[x̃�

k|kd̃�T
k ] where

x̃�
k|k := xk − x̂�

k|k ,

= (I − L�
kCk)x̃k|k−1 − L�

kvk . (16)

By substituting (12) in (11), we obtain the following expression
for P �x

k|k ,

P �x
k|k = P x

k|k−1 − K�
k (R̃k − HkP

�d
k HT

k )K�T
k .

Using (16) and (8), it follows that

P �xd
k = −P x

k|k−1C
T
k M�T

k = −K�
kHkP

�d
k .

6. Summary of filter equations

In this section, we summarize the filter equations. We assume
that x̂0, the estimate of the initial state, is unbiased and has
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known variance P x
0 . The initialization step of the filter is then

given by:
Initialization:

x̂0 = E[x0],
P x

0 = E[(x0 − x̂0)(x0 − x̂0)
T].

The recursive part of the filter consists of three steps: the esti-
mation of the unknown input, the measurement update and the
time update. These three steps are given by

Estimation of unknown input:

R̃k = CkP
x
k|k−1C

T
k + Rk ,

Mk = (HT
k R̃−1

k Hk)
−1HT

k R̃−1
k ,

d̂k = Mk(yk − Ckx̂k|k−1),

P d
k = (HT

k R̃−1
k Hk)

−1.

Measurement update:

Kk = P x
k|k−1C

T
k R̃−1

k ,

x̂k|k = x̂k|k−1 + Kk(yk − Ckx̂k|k−1 − Hkd̂k),

P x
k|k = P x

k|k−1 − Kk(R̃k − HkP
d
k HT

k )KT
k ,

P xd
k = (P dx

k )T = −KkHkP
d
k .

Time update:

x̂k+1|k = Akx̂k|k + Gkd̂k ,

P x
k+1|k = [Ak Gk ]

[
P x

k|k P xd
k

P dx
k P d

k

] [
AT

k

GT
k

]
+ Qk .

Note that the time and measurement update of the state es-
timate take the form of the Kalman filter, except that the true
value of the input is replaced by an optimal estimate. Also, note
that in case Hk = 0 and Gk = 0, the Kalman filter is obtained.

7. Conclusion

This paper has studied the problem of joint input and
state estimation for linear discrete-time systems with direct
feedthrough of the unknown input to the output. A recursive
filter was developed where the update of the state estimate has
the structure of the Kalman filter, except that the true value of
the input is replaced by an optimal estimate. This input estimate
is obtained from the innovation by weighted LS estimation,

where the optimal weighting matrix is computed from the co-
variance matrices of the state estimator.
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