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ABSTRACT
Thanks to its increasing availability, electronic literature can
now be a major source of information when developing com-
plex statistical models where data is scarce or contains much
noise. This raises the question of how to integrate informa-
tion from domain literature with statistical data. Because
quantifying similarities or dependencies between variables is
a basic building block in knowledge discovery, we consider
here the following question. Which vector representations of
text and which statistical scores of similarity or dependency
support best the use of literature in statistical models? For
the text source, we assume to have annotations for the do-
main variables as short free-text descriptions and optionally
to have a large literature repository from which we can fur-
ther expand the annotations. For evaluation, we contrast
the variable similarities or dependencies obtained from text
using different annotation sources and vector representa-
tions with those obtained from measurement data or expert
assessments. Specifically, we consider two learning prob-
lems: clustering and Bayesian network learning. Firstly, we
report performance (against an expert reference) for clus-
tering yeast genes from textual annotations. Secondly, we
assess the agreement between text-based and data-based
scores of variable dependencies when learning Bayesian net-
work substructures for the task of modeling the joint distri-
bution of clinical measurements of ovarian tumors.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge ac-
quisition; I.5.3 [Pattern Recognition]: Clustering
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1. INTRODUCTION
In many complex knowledge discovery problems, such as

identifying relationships between a large number of genes in
genomics or between clinical measurements in medical infor-
matics, knowledge about the domain variables and relation-
ships between these variables is fragmentary at best, cost of
data collection is high, and measurements are often noisy
or unreliable. When setting up such models, domain liter-
ature is invaluable as it often contains a lot of information,
albeit fragmentary, about the problem at hand. Further,
electronic literature is easy to process, although extracting
information from it still is a major challenge.

In this paper we reach one step further than classical text
mining and attempt to integrate textual information into the
modeling process on an equal footing with statistical data.
We investigate whether similarities or dependencies between
variables quantified from textual information represented by
shallow statistic vectors agree with those identified by expert
assessment or measurement data. In particular, we char-
acterize which text representations (boolean, frequency, or
term frequency–inverse document frequency) and statistical
scores of variable similarity or dependency best support the
use of literature in clustering and Bayesian network learning.

As a first case, we cluster a custom collection of yeast
genes from textual annotations extracted from databases
of gene information (and possibly expanded with literature
abstracts). We perform clustering using the k-medoids al-
gorithm with a similarity measure derived from the cosine
similarity. We assess the agreement between the resulting
clusters and an expert reference using the adjusted Rand in-
dex. As a second case, we consider the task of modeling the
dependencies between clinical measurements of ovarian tu-
mors and learn Bayesian network substructures using expert
annotations (possibly expanded with literature abstracts).
We introduce a new text-based score of local dependency.
We assess the agreement between text-based scores of local
dependency and data-based scores and an expert assessment
using correlation coefficients and Spearman rank correlation
coefficients.

As a conclusion, we observe in both cases that the infor-
mation extracted from textual sources captures an impor-
tant part of the information present in the data or provided
by the expert. We also conclude that different sources of
annotations and different text representations have widely
varying performance (which is also problem specific). Thus,



finding the most effective textual source of information and
the best text representation is essential if we want to inte-
grate text and data in knowledge discovery.

The paper is organized as follows: Section 2 presents
a framework for the integrated analysis of data, domain
knowledge, and literature with an emphasis on the evalua-
tion of the use of literature in statistical methods. Section 3
summarizes the text representations, relevance measures,
and general linguistic preprocessing used in the paper. Sec-
tion 4 discusses the usage of literature in clustering expres-
sion data and overviews the genomic information sources for
the model organism yeast. Quantitative measures for the us-
ability of literature in clustering are introduced. Section 5
presents the medical problem of assessing ovarian tumors
by ultrasonography together with the task of identifying a
probabilistic model of the corresponding clinical measure-
ments. We introduce Bayesian networks together with a
standard score based on data for the identification of such
models. We also introduce a new score based on literature
that plays a role similar to the previous score in identifying
Bayesian network substructures but this time from litera-
ture instead of data. Section 6 presents the comparison of
literature-based clustering against expert knowledge in the
yeast genomic domain and the comparison of the literature-
and data-based scores used in learning Bayesian networks in
the ovarian cancer domain. Results are reported for several
vector representations of text and types of textual informa-
tion sources. Specifically, we report results on the use of
automatically expanding the initial annotation of the vari-
ables. Finally, Sections 7 and 8 contains the discussion, con-
clusion, and our view on how the integrated use of literature
and statistical data is possible.

2. A FRAMEWORK FOR THE ANALYSIS
OF TEXT, DATA, AND PRIOR

In most domains the information that can be used in mod-
eling comes from different types of sources. On the one
hand, we have the observed cases, which lead to a data set
D. This type of information is the most straightforward to
work with. On the other hand, a lot of prior domain knowl-
edge can be available in various formats. In this paper we
will restrict this prior knowledge to (1) textual information
and (2) a small amount of expert knowledge for validation.
Textual information is hard to deal with in computational
and statistical procedures and it needs a lot of preprocess-
ing to convert into a usable format, but it can be valuable
when only a few data samples are present or the data is
noisy. The optimal but most difficult strategy would be
to use both information sources in the model building pro-
cess in some integrated fashion. To evaluate the possibilities
of such combined methodologies, we investigate the agree-
ment between data-based scores commonly used in Bayesian
network model selection and a newly introduced text-based
score explained in Section 5. Additionally, we compare the
results of a text-based clustering with a gold standard pro-
vided by an expert, as explained in Section 4.

In both cases we have a set of domain variables V1, . . . , Vm,
which represent medical observations in the Bayesian net-
work case and yeast genes in the cluster case. For these
variables we want to derive somehow a relatedness measure
based on textual information. To achieve this, an expert an-
notates these domain variables with free text (describing the

variables) and relevant references for this variable in the lit-
erature repository. The following step converts these textual
annotations into a vector representation used in the experi-
ments explained above. It is expected that there will be no
strict match between the textual information and the data
or prior knowledge, but to some extent they should reveal
the same relations. In the presented framework, we hope to
demonstrate that both information sources can complement
each other in an integrated model building process.

3. CONCEPTS FROM INFORMATION RE-
TRIEVAL

We assume that we have a free-text annotation for each
domain variables. Such an annotation can further contain
references to domain-related document collections. These
two types of annotations give rise to the commonly used
vectorial text representations and the reference representa-
tion.

3.1 Representations of annotations
The representation called the vector space model encodes

a document in a k-dimensional space where each component
represents a corresponding word, neglecting the grammat-
ical structure of the text. We applied the Porter stemmer
to canonize the words [6], the synonyms were replaced, and
the phrases were detected and merged. In both domains,
we automatically constructed a large vocabulary containing
more than one million words and manually compiled a small
vocabulary containing less than one thousand words. Based
on the vocabulary (i.e., set of terms tj), a control index pro-
vides for each document di in the collection (annotations
plus document repository), a vector of term scores vij . We
computed the following controlled indices for the document
collections (see [17, 11]):

• Boolean: the presence of term tj among the words of
document di: vbool

ij = 1 if tj ∈ di, 0 otherwise

• Frequency: the normalized frequency of term tj in doc-

ument di: vfreq
ij =

fij

max∀j(fij)
, in which fij is the num-

ber of occurrences of tj in di

• tf.idf : the weighted frequency of term j in document
di: vtf.idf

ij = fij log( N
ni

), where N is the total number

of documents and ni is the number of documents con-
taining term i in the collection

Additionally, we computed another type of index called the
reference representation (see for example [?]). Each anno-
tation contains references to different documents from the
repository. As a representation, we consider which docu-
ments each annotation refers to:

• Reference: The presence of document j as a reference
in annotation i: vref

ij = 1 if annotation i contains a ref
to document j, 0 otherwise.

3.2 Relevance and similarity metric
To express the similarity between pairs of documents and

the similarity of a document to a set of documents, we used
the following definitions [17, 11]. For pairs of documents di

and dj we used the cosine of the angle between the corre-
sponding normalized vector representations:

sim(di, dj) = cos(di, dj),



denoting the documents and their vector representation by
the same symbol. The similarity of a document di to a set
of documents C = {c1, . . . , cL} is defined as

gT (di, C) =
1

L

L∑

j=1

cos(di, cj) +
1

1 + closeness(C)
,

where we use the following definition of closeness for the set
of documents C:

closeness(C) = min
1≤j<k≤L

cos(cj , ck).

3.3 Pseudo-relevance feedback
Pseudo-relevance feedback methods expand the query with

the n most relevant documents in a document collection set
[17]. We apply this method by treating the annotations
as queries and appending the n most relevant documents
from a collection to the annotations (as determined by our
document similarity measure). From these expanded anno-
tations, we then regenerate the vector representations de-
scribed above. In the rest of the paper, we refer to this
application of pseudo-relevance feedback as expansion (for
a related application of the pseudo-relevance feedback with
reference representation, see [?]). We denote the annota-
tions A expanded with n documents from collection C with
A-Cn.

4. CLUSTERING OF YEAST GENES
Although first-generation computational tools for the anal-

ysis of expression data are becoming increasingly widespread
[16], the assessment of biological meaning to the results con-
stitutes a major challenge. Interpreting cluster patterns
involves the consultation of curated functional databases
such as Stanford Genome Database1 (SGD), typically of-
fering a variety of cross-references to other repositories. For
even more elaborate information the US National Library
of Medicine’s MEDLINE provides a common bibliographic
source of citations and abstracts in biomedical research from
1966 till present.

The present strategies for knowledge-based expression data
analysis rely on the premise that the statistical data analysis
and the biological knowledge can complement each other by
linking two independently constructed sources that contain
conceptually related records [12].

Masys et al. [5] link groups of genes with relevant MED-
LINE abstracts through the PubMed engine2. Each cluster
is characterized by a pool of the relevant keywords derived
from both the MeSH headings and UMLS ontology3. The
MeSH (Medical Subject Headings) is a controlled vocabu-
lary used for indexing the abstracts in MEDLINE, while the
UMLS ontology (Unified Medical Language Systems) is a
biomedical concept hierarchy conceived to preserve seman-
tic relations between the concepts described in its controlled
vocabularies. Their interface [5] reports the quantitative
significance of each result and provides links to different
databases to allow further browsing.

Jenssen et al. [9] constructed a pioneering online system
to link co-expression information from an microarray exper-
iment with their constructed co-citation network. This liter-

1http://genome-www.stanford.edu/Saccharomyces/
2http://www.ncbi.nlm.nih.gov/PubMed/
3http://www.nlm.nih.gov/databases/

ature network covers co-occurrence information of gene iden-
tifiers in over 10 million MEDLINE abstracts. Their system
characterizes co-expressed genes using the MeSH keywords
attached to the abstracts about those genes.

Shatkay et al. [?] link abstracts to genes in a probabilistic
scheme that uses the EM algorithm to estimate the param-
eters of the word distributions underlying a theme. Genes
are identified as similar when their corresponding gene-by-
documents representations are close.

In GEISHA, Blaschke et al. [3] profile and evaluate gene
clusters by mixing statistical and grammatical analysis (shal-
low parsing) on PUBMED-retrieved abstracts. GEISHA is
based on a comparison of the frequency of abstracts linked
to different gene clusters and containing a given term.

We explore the potential and limitations of the vector
space model discussed in Section 3, for clustering genes based
on their associated literature. To evaluate the biological use-
fulness of literature clustering, we formulated a clustering
problem with gene sets of yeast for which the functional as-
sociations are well-established and biologically distinct. The
reason not to start immediately from expression-based gene
clusters, is that these data-based clusters cannot yet provide
a gold standard to interpret and quantify the correspondence
between various data mining methods. To compare differ-
ent versions of the representation with respect to clustering
performance, we use an external score for cluster correspon-
dence. The background aim of this evaluation is to establish
a powerful statistical text representation as a foundation for
the integrated clustering.

4.1 Collection of yeast information
We collected and compiled (Sep 2001) several sources for

textual annotations of the genes . Firstly, the Gene Ontol-
ogy4 (GO) is a concept hierarchy structured into three main
components: molecular function, biological process, and cel-
lular location. Secondly, SWISS-PROT5 (SP) is a curated
protein sequence database. We pooled the GO and SP in-
formation into a local database we denote by YeastCard. It
serves as an extended textual resource for yeast genes. A
typical entry is shown in Appendix A.

Finally, as a source for more detailed annotations, we used
a collection of 493,923 yeast-related MEDLINE abstracts
dated between January 1982 and November 2000. The ab-
stracts originate from 59 journals selected according to their
impact factor and their relevance as assessed by a biologist.

We evaluated how these sources can be used for gene clus-
tering and we investigated how the expansion of the GO
and YeastCard annotations with MEDLINE abstracts (de-
scribed in Section 3.3) affect cluster performance.

4.2 Clustering methods
We applied hierarchical clustering and the k-medoids al-

gorithm [10] for the different annotation sources and weight-
ing schemes of the vector space model. k-Medoids takes a
variable-to-variable similarity matrix as input and divides
the data into k groups by iteratively defining k representa-
tive objects (medoids) and reallocating the remaining points
to them. As both algorithms use a similarity matrix, we
generated such a matrix for each annotation type using the
similarity metric outlined in Section 3. We screened the per-
formance of these various annotations by measuring the cor-

4http://www.geneontology.org
5http://www.expasy.org/sprot/



respondence of the clustering with an external, predefined
partition.

As an external score for cluster validity we used the cor-
rected Rand index [8]; given a set of n points, an external
partition P = {P1, ..., Pk} and a clustering C = {C1, ..., Cl},
define a as the number of pairs that occur in the same par-
tition Pi and the same cluster Cj , d as the number of pairs
that are grouped differently in P and C, and b and c as
the number of pairs that co-occur in P , but not in C or
vice-versa. The Rand index is then defined by

R =
a + d

a + b + c + d
.

The correction for random partitioning is Radj = R−E(R)
max(R)−E(R)

,

where a hypergeometric baseline distribution is used to com-
pute the expected values. This yields

Radj =

∑
i

∑
j

(
nij

2

)
−

(∑
i

(
ni·

2

) ∑
j

(
n·j

2

))
/
(

n

2

)
( ∑

i

(
ni·

2

)
+

∑
j

(
n·j

2

))
/2 −

(∑
i

(
ni·

2

) ∑
j

(
n·j

2

))
/
(

n

2

)

where nij is the number of elements from Pi that are in Cj ,
ni· the total number of elements in Pi, and n·j all the ele-
ments in Cj . In a comparative study [13], the adjusted Rand
index is recommended as the external measure of choice.

As an internal score for cluster quality we used the silhou-
ette coefficient S = maxk

∑nk
i=1 sik where l is the number of

found clusters, nk the size of cluster k and

sik =
b(i) − a(i)

max(a(i), b(i))

where a(i) is the average dissimilarity of member i to all
other members of its cluster and b(i) the average dissimi-
larity of member i to members of nearest cluster [10]. It is
a metric-independent measure designed to describe the ra-
tio between cluster coherence and separation and to assist
in choosing which clustering is preferable according to the
data. We calculated the correlation between the silhouette
coefficient and the Rand index to evaluate its usefulness in
problems where no external assessments are available.

5. BAYESIAN NETWORKS FOR THE PRE-
OPERATIVE ASSESSMENT OF OVAR-
IAN TUMORS

We perform the investigations outlined in Section 2 on a
real-world medical problem relating to ovarian cancer. A sig-
nificant medical goal is to develop mathematical models for
the preoperative prediction of the tumor class (e.g., benign
vs. malignant). There are two different types of information
for the development of such models: the biological and med-
ical information about the disease and the growing amount
of patient data. The abundant background knowledge is
diverse—for example, the MEDLINE collection of abstracts
from biomedical journal papers contains tens of thousands
of items about ovarian cancer.

5.1 Domain variables and data
Factors known to affect the risk of malignancy are parity

(number of pregnancies), sterility, drug treatment for infer-
tility, duration of lactation, oral contraceptives, foreign body
(carcinogens), family history of breast and ovarian cancer,
genetic deficiencies, age, age at menopause, hysterectomy,

and so on. Additional measurements and observations are
the following: bilaterality of the tumor, pelvic pain, mor-
phological descriptors of the mass (such as smoothness and
solidness), descriptors of its echogenicity and vasculariza-
tion, level of several antigens such as CA125, amount of fluid
in the abdominal cavity and the day of the cycle. While the
effects of some of these variables are well-documented in the
literature (such as the effect of the family history and ge-
netic deficiencies), other effects are only qualitatively known
and highly subjective (such as the use of the vascularization
indices).

In addition to the prior background information, data has
been collected in the framework of the IOTA project6 [19].
The aim of the IOTA project is the prospective collection
of data for the development of mathematical models for the
preoperative classification of malignant and benign ovarian
tumors. The IOTA database contained 68 parameters for
1,150 tumor masses that were used for evaluating the text-
based scores for Bayesian network substructures.

5.2 Bayesian networks
A Bayesian network represents a joint probability distri-

bution over a set of variables by exploiting the conditional
independence relations. We assume that these variables
V1, . . . , Vm are discrete and ordered by their index. The
model decomposes into a graphical part (a directed acyclic
graph) and a numerical part (local dependency models).
The vertices of the directed acyclic graph represent the ran-
dom variables Vi and the edges define the independency rela-
tions. Each variable Vi is independent of its non-descendants
given its parents, which are denoted as the parental set πi

[15]. There is a local dependency model for each variable to
describe its probabilistic dependency on its parents. This
decomposed nature of the model induces a two-step proce-
dure for learning. First, the dependency structure is learned
(or specified directly by an expert). Second, the parame-
ters for the local dependency models are trained from data.
We will focus on the first step and investigate the usage of
textual information to perform Bayesian network structure
learning in a way similar to the data-driven procedure.

A closed-form Bayesian formula for computing the proba-
bility of a Bayesian network structure BS given a complete
data set D was derived by Cooper and Herskovits [4]:

P (BS |D) ∝ P (BS)

m∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!.

In the formula, the first product goes over all domain vari-
ables. The second product iterates over all qi different con-
figurations for the parents πi of variable Vi that are found
in the data set. The last product iterates over the ri possi-
ble values for variable Vi. The quantities Nijk contain the
number of times we observe a value k for the i-th variable
while its parents are at the j-th parental configuration and
Nij =

∑ri

k=1 Nijk (for details, see [4]).

5.3 A data-based local dependency score
Note that the probability of a Bayesian network structure

given a complete data set can be decomposed into a product
of independent parts, which we define to be gD(Vi, πi), each
expressing the probability of the local dependency model of

6https://www.iota-group.org



variable Vi with parents πi conditioned on the data:

P (BS|D) = P (BS)
n∏

j=1

gD(Vi, πi).

Despite the decomposition of the learning to the selection
of appropriate parental sets, the amount of data needed for
statistically significant identification of networks is still con-
siderably high. One potential solution is to define an in-
formative a priori distribution over all possible local de-
pendency structures and update this distribution to an a
posteriori distribution using the data. Because of the ex-
ponential number of possible sets, this task is very difficult
for human experts (for certain methods, see [7]). A natural
step would be to use textual information for the definition of
this a priori distribution over the local dependency struc-
tures. To investigate the feasibility of such conversion we
compare the previous data-based score gD(Vi, πi) for these
local substructures with a newly defined text-based score
gT (Vi, πi).

5.4 Annotated Bayesian networks
A recent extension of the Bayesian network representa-

tion of probability distributions, the Annotated Bayesian
Network (ABN), allows the attachment of free text to the
objects in the representation [1]. On the one hand, the ABN
can be useful to document the incorporated heterogeneous
sources of information in the network. On the other hand,
it provides a formal framework in which the probabilistic,
computational model is linked with textual resources (i.e.,
it provides a framework to investigate the potential of how
the textual knowledge can be used in the model building
and identification). In the manual case, the ABN serves as
the context of the modeler for information retrieval while
building the model [2]. In the automatic case, which we
are investigating in this paper, the incorporated textual in-
formation supports structure learning based on the scores
introduced below. This annotated Bayesian network repre-
sentation and a corresponding implemented system provided
the formal framework and the experimental environment for
investigation of the text and data-based scores for Bayesian
network substructures.

5.5 A text-based local dependency score
For simplicity, we denote the domain variable, the stochas-

tic variable, the annotation of a stochastic variable, and
the corresponding vector representation of the text identi-
cally. Using the definitions from Section 3.2 (3.2), the text-
based score for variable Vi and parental set πi is defined by
gT (Vi, πi) (with this notation, we therefore mean the docu-
ment similarity between the annotation of variable Vi and
the set of annotations of its parents πi). This score char-
acterizes the mean distance between a child variable Vi and
the parent variables in the set πi, additionally it penalizes
if the parent annotations are too similar.

5.6 Source of annotations
The twenty-five page IOTA protocol used for data col-

lection is the primary source of the annotations and con-
tains: (1) general information about the project, (2) inclu-
sion and exclusion criteria for patient records, (3) a descrip-
tion of each variable with its format, its value list, manda-
tory/optional constraints and possible inter-variable depen-
dency rules, (4) the grouping of variables into sections and

(5) the diagnostic methods for all tumor variables together
with self-explaining figures. A corresponding Ph.D. the-
sis [18] and The Merck Manual7 provided an extension for
the IOTA descriptions. Together, these compose one type
of annotations, the free-text annotation (T), on average a
hundred-word description for each of the twenty-six domain
variables.

Another type of annotation, the manual references (R),
was derived by asking two experts to select electronically
available medical references for the variables that are most
relevant in the IOTA context. They selected forty-two and
twenty-two separate references, which are attached in a non-
exclusive way to the domain variables, on average three to
five references for the eighteen variables that are covered.

Additionally we asked the experts to select journals as
most relevant for the domain (2 journals), highly relevant
(3 journals), moderately relevant (33 journals), and relevant
journals (93 journals). We constructed four collections of
MEDLINE abstracts containing 5,367, 71,845, 231,582 and
378,082 abstracts selected from the MEDLINE corpus dated
between January 1982 and November 2000. These collec-
tions were used to select the most relevant MEDLINE items
and automatically expand the annotations (denoted by MLi

j

if the ith collection is used to select j number of items).
Finally, we constructed another collection to investigate

the effect of expansion. This is based on the On-line Medi-
cal Dictionary8 and the CancerNet Dictionary9. In total it
contains 67,829 short entries. The expansion with j items
from this collection is denoted by Oj .

A typical entry composed of these sources is shown in the
Appendix B.

6. RESULTS
We now present for the different textual information sources

on the two problems of clustering and substructure learning
for Bayesian networks.

6.1 Clustering
We constructed a set of three groups for which the func-

tional associations are well-established. The first group con-
tains 63 genes that encode lysosomal proteins, the second
contains 30 genes involved in translational control, and the
third contains 23 genes related to amino acid transport.
For all these genes we selected their corresponding GO and
YeastCard annotations (see Section 4.1) and represented
them by the vector schemes outlined in Section 3. Fur-
thermore, we expanded these annotations with the 20 best
matching MEDLINE abstracts, indicated by GO-ML20 and
YC-ML20 respectively. These expansions were indexed ac-
cording to various indexing schemes. Next, we clustered the
different textual gene profiles setting the number of clus-
ters to three. Table 1 lists Radj for the most important
combinations of annotation, representation and clustering
method. Among the hierarchical clustering methods (single,
complete, and average linkage and Ward’s method) , Ward’s
method proved the only reasonable one. Furthermore, k-
medoids generally outperformed the hierarchical method as
can be observed in columns Hier and KMed of Table 1. In
the remainder of this section we will therefore only refer to

7http://www.merck.com/pubs/mmanual
8http://www.graylab.ac.uk/omd/index.html
9http://thymoma.de/meddict.htm



values in the KMed column.
In our analysis, GO (which provides only brief keyword

annotations) does not provide sufficient information for an
acceptable statistical representation. Our compiled Yeast-
Card annotation indicated as YC tf.idf, has Radj of 0.4698,
which is much better than the score of 0.1608 for GO alone.
Expanding the GO modifies Radj from 0.1608 to 0.5792. An
expansion of YeastCard on the other hand further improves
the score from 0.4698 to 0.6948. We observe that the score
of expanding the textually richer YeastCard (Radj = 0.6948)
is, in turn, higher than that of the GO-based expansion
(Radj = 0.5792). It shows that richer annotations yield bet-
ter expansions.

Table 1 also demonstrates how different representations
affect cluster effectiveness. For the GO, the boolean rep-
resentation is most suited among the options (results not
shown). The use of a stopword list, indicated as GO bool
restr in Table 1, attempts to eliminate possibly distorting
words as unknown and null, but shows no improvement in
the GO case. When textual descriptions become larger than
approximately 100 words, as is the case with the YeastCard
and the expansions, we found the boolean representation to
perform worse than the frequency-based representations freq
(Radj = 0.6032) and tf.idf (Radj = 0.5792). When dealing
with the MEDLINE expansions, the reference representa-
tion (ref repr) scores significantly less (Radj = 0.2354) than
the alternatives.

In Table 2 we print the contingency table for the best
annotation and representation. It shows the correspondence
between the clustering and the external grouping for Radj =
0.6948.

Finally, the correlation between the Radj and S is 0.0457.
To gain more insight into the discrepancy between the in-
ternal and external index, we examined how the silhouette
scores per cluster, sr

.k = 1
nr

∑nr

i=1 sik, change in function of
the nr genes that lie closest to their medoid. In Fig. 1 we
plot such a silhouette profile for the clusters computed for
the YeastCard expansion. The flat regions indicate that no
genes are present in the respective dissimilarity range, while
sudden drops in silhouette scores show the detrimental effect
of a set of distant genes on the silhouette score. The overall
quality of the text representation (which is determined by
the quality of the text source, the preprocessing steps, the
retrieval process, and the ability of the vector representation
to encode real-world concepts) will influence the correlation
between the external and internal scores directly.

Table 1: Adjusted Rand scores for different annota-
tions, representations, and clustering methods.

Annotation Weighting scheme Hier KMed

GO bool 0.2494 0.1608
GO bool restr 0.2252 0.1561

GO-ML20 bool 0.3391 0.4177
GO-ML20 freq 0.4476 0.6032
GO-ML20 tf.idf 0.2997 0.5792
GO-ML20 reference 0.2364 0.2354

YC bool 0.2159 0.0805
YC freq 0.2752 0.2710
YC tf.idf 0.3446 0.4698

YC-ML20 tf.idf 0.3988 0.6948
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Figure 1: Effect of distant members in each clus-
ter on its silhouette score: starting with the nearest
members (1−sim(member,medoid) < 0.35), we grad-
ually monitor changes in the silhouette score per
cluster, sr

.k, by including increasingly distant mem-
bers. Flat regions indicate that no genes are present
in the respective dissimilarity range. Sudden drops
in silhouette scores show the detrimental effect of
those more distant genes on the scores. The overall
silhouette coefficient S = 0.2192 is the mean of sil-
houette scores per cluster, which are indicated by
the arrows.

Table 2: Contingency table for best clustering.
C1 C2 C3

P1 45 7 0
P2 2 28 0
P3 0 2 20

6.2 Evaluation of text-based score for Bayesian
networks

To investigate the possibility of using integrated text-
and data-based scores for learning Bayesian networks, we
compared the text-based scores introduced in Section 5.5
against (1) the prior domain knowledge and (2) the data-
based scores. The available prior knowledge in the ovarian
cancer domain consists of a ranking by the expert of the
domain variables according to their relevance for discrimi-
nating between benign and malignant tumors. This ranking
thus represents here an assessment of the relevance of each
domain variable for predicting the Pathology variable. On
the one hand, we can compare the expert’s ranking to a data-
based ranking of the domain variables. This is obtained by
the data-based scores gD(Pathology, πPathology) for pairs of
the Pathology variable and the remaining domain variables
(i.e., parental sets of size 1). On the other hand, the ex-
pert’s ranking can be compared against a text-based rank-
ing of the domain variables based on the text-based scores
gT (Pathology, πPathology). Table 3 presents the rankings of



the domain variables by their relevance to the Pathology
variable according to a medical expert, the statistical data,
and the literature.

Table 3: Relevance ranking of variables for the vari-
able Pathology by text, data, and a medical expert

Rank Text Data Expert
1 ColScore CA125 CA125
2 CA125 Ascites ColScore
3 Locularity ColScore Papillation
4 Volume WallRegularity Volume
5 Papillation Locularity Ascites
6 Septum Volume Age
7 PMB Age Bilateral
8 Pregnant Shadows Locularity
9 Echogenicity Papillation Shadows
10 WallRegularity Bilateral -
11 Origin Septum -
12 Age Meno -

In Fig. 2 the domain variables are positioned on the coor-
dinates (gT (Pathology, Vi), g

D(Pathology, Vi)) to illustrate
further the correlation between text- and data-based scores.
Fig. 3 shows all pairwise relevance scores gT (Vi, Vj).
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Figure 2: Text- and data-based relevance scores for
the domain variables and Pathology (free text annota-
tion, Boolean representation, the small domain vo-
cabulary).

To evaluate the effect of the different text representations,
annotations type, and domain vocabularies on the relation of
text and data scores, we computed the correlation coefficient
and the Spearman rank correlation coefficient RS . For the
variable Vi, RS is defined as

RS = 1 − 6

∑Pi

j=1(RankText(πij) − RankData(πij))
2

Pi(P 2
i − 1)

,

where Pi is the number of possible parental sets for vari-
able Vi and πij , j = 1, . . . , Pi are all the possible parental

Figure 3: The vizualisation of text-based relevance
scores gT (Vi, Vj) for the pairs of domain variables (free
text annotation, tf.idf representation, the small do-
main vocabulary, threshold 0.2).

sets (which are all possible combinations of the other vari-
ables upto a certain fixed number of parents t, i.e., we have
Pi =

(
t

n−1

)
possible combinations).

We also report the average of the Spearman rank corre-
lation coefficients for the variables. Additionally, we report
a special rank-correlation measure defined as follows. For
each variable, the text- and data-based scores define a text
rank and data rank for the parental sets. Define a ma-
trix R in which the akl element is the number of times the
parental sets have text rank k and data rank l. Clearly,
if the scores or their rankings for each variable are identi-
cal this will be a diagonal matrix. Now define a matrix R′

which is the 4-by-4 partitioning of R with the following intu-
itive interpretation for the four partitions: highly relevant,
moderately relevant, less relevant, and not relevant. The
respective diagonal consists the following pairs from upper
left to lower right: (highly relevant by text, highly relevant
by data), (moderately relevant by text, moderately relevant
by data), and so on. We report the normalized trace of R′,
that is the correspondence between the text and data-based
ranking using this 4-graded granularity for all the variables
and only for Pathology also.

Table 4 presents the results for the most interesting set-
tings while Table 5 contains a more structured and detailed
reports for a larger number of settings.

Table 4: Relations between text- and data-based
scores. The correlation coefficients, the Spearman
rank correlations, and the normalized trace of the
text-rank–data-rank matrices are reported for the
respective settings (free text, optionally expanded
with dictionary entries or MEDLINE abstracts, set
size is 1).

For Pathology For all variables

Settings Corr Trace RS T̂race R̂S

bool, T 0.73 0.52 0.69 0.40 0.34
tf.idf, T 0.69 0.44 0.81 0.36 0.33

tf.idf, T-O3 0.49 0.44 0.80 0.34 0.31
bool, T-ML4

12 0.71 0.48 0.61 0.34 0.30

7. DISCUSSION
In our study on text clustering, we found the freq and tf.idf

applied on the expanded annotation to be superior to the



boolean representation and the reference representation. An
optimal choice between them, however, depends on the an-
notation source and cannot be known in advance. The Gene
Ontology and functional annotation database SWISS-PROT
proved valuable sources of free-text information, especially
if used as a query in the expansion step. This illustrates that
curated databases of structured and unstructured informa-
tion not only provide indispensable access to information,
but also constitute useful sources to automatically extract
knowledge from domain literature. The poor performance
of the reference representation partly can be explained by
its sensitivity to the quality of the expansion (kernel quality
and retrieval quality).

Because no data set of gene expression data can serve as
a high-quality benchmark for clustering, we conducted our
comparison of various annotations and vector representa-
tions on a custom gene partition. Although the constructed
clustering problem is fairly easy from a biological viewpoint,
it made it possible to isolate the effects of various informa-
tion sources and parameterizations on the cluster perfor-
mance. We found that internal scores can provide an im-
portant confidence measure in the quality of text-clustering
and indirectly in the comparison between text-based and
data-based clustering.

One of our aims is to construct a statistical representation
suitable for integrating prior knowledge in expression-based
gene clustering, We therefore outline in Fig. 7 how we plan
to use the current representation. Using the terminology
in [14], we depict early, intermediate, and late integration of
expression data and text. Early integration pools both types
of statistical data and passes it to the cluster algorithm. In-
termediate integration creates one variable-to-variable sim-
ilarity matrix for each data type, merges them in some way,
and passes them to a clustering algorithm. Finally, late in-
tegration compares or merges two separate analyses. The
question which of these schemes provide a good foundation
for integrated cluster analysis constitutes a topic of our fu-
ture research.

DATA

measurements

Data Clusters

++

++

Cluster

Merge

Intermediate

integration

Figure 4: Various ways of integrating domain liter-
ature and data in clustering

For the Bayesian network, the text- and data-based scores
proved to be significantly correlated and rank-correlated.
From the medical point of view, the ranking of the parental
sets seems surprisingly good. Contrary to our expectations,
the expansion of the annotations with manual or automati-
cally selected references could not improve the performance,
which needs further investigations. The related reference

representation similarly has a poor performance.
One future research direction is the incorporation of text-

based scores in various Bayesian network algorithms. The
Bayesian framework presented in Section 5.2 offers a prin-
cipled method for the incorporation of prior domain knowl-
edge through prior distributions. Currently, we are investi-
gating methods for such a transformation and evaluate their
effects on the classification performance in the ovarian can-
cer domain. A related direction is the general investigation
of the score gT (., .) and the corresponding conditional inde-
pendence statements in an induced Bayesian network.

Finally, in both applications the text-based scores, that
is sim(., .), currently relies on a vector representation of the
text, while the annotations are already structured into var-
ious fields. For example, the MEDLINE references contain
manually curated MeSH keywords. A structured text rep-
resentation with a corresponding text-based score exploit-
ing this structural information may have many advantages.
A related research topic would be a more refined linguistic
analysis, including better phrase identification or shallow
parsing for a better representation of the content yielding
an improved sim(., .), enhancing also the text-based score.

8. CONCLUSION
In this paper, we assumed to have short free-text descrip-

tions for the domain variables and a huge repository of re-
lated domain literature. We used data and external assess-
ments for evaluation purposes. We considered the prob-
lem of identifying which text representations and statistical
scores best support the use of literature in statistical models.
We investigated this potential for two statistical methods:
clustering and Bayesian network learning. Firstly, we re-
ported the performance in clustering yeast genes against an
expert reference. Secondly, we reported the correspondence
between text and data in scoring Bayesian network substruc-
tures in the medical task of modeling the joint distribution of
clinical measurements of ovarian tumors. Results reported
for various types of textual information sources and vecto-
rial text representations indicate that the use of literature
and statistical data can be formulated in a common frame-
work and their effects can be compared. This suggests that
closely coupled representations and methods are a viable
foundation in the development of integrated text and data
analysis methods.
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APPENDIX

A. AN ENTRY IN YEASTCARD
A typical entry in our local database YeastCard is com-

posed of Gene Ontology and SWISS-PROT information.

• Gene Name: YER133W

• GO Biological Process: protein phosphatase type1

• GO Molecular Function: glycogen metabolism

• GO Description: Glycogen accumulation

• SP Protein Name: cytoplasmic

• SP Function: involved in control of glycogen metabolism
meiosis translation chromosome segregation cell polar-
ity and g2/m cell cycle progression. pp1 may act in
opposition to the ipl1 protein kinase in regulating chro-
mosome segregation.

• SP SubCellular Location: cytoplasmic

• SP Similarity : belongs to the ppp family of phosphatases.
pp-1 subfamily.

• SP Organism: yeast, saccharomyces cerevisiae

B. ANNOTATION FOR A BAYESIAN NET-
WORK VARIABLE

A typical annotation for a domain variable is illustrated
with the annotation of the variable CA125: ”The ca 125
antigen is a glycoprotein that is expressed by most epithelial
ovarian and is recognized by a monoclonal antibody. serum
ca 125 is the tumor marker with the highest sensitivity for
ovarian cancer (bast et al 1983, jacobs et al 1989, knapp et
al 1996, cuckle 1996). This tumor marker will detect nearly
80 percent of advanced (stage iii) ovarian cancers (see ta-
ble i), but only about 44 percent of patients with stage i
disease (vergote et al 1987, cuckle & wald 1991, bourne et
al 1994a, maggino et al 1994). In premenopausal patients
the specificity is low at a cut-off level of 35 u/ml, since false
positive results are frequently encountered in menstruating
or pregnant women and in a wide variety of benign con-
ditions, such as benign ovarian tumors (10%) endometriosis
(20-30%), liver cirrhosis (60-70%), pancreatitis (30%), pelvic
inflammatory disease, uterine fibroids and meigs syndrome
(100%).· · · ”



Table 5: Relation between text and data scores. The different columns contain (1) the vector representation,
(2) the source of annotation, (3) the number of parents, (4) the vocabulary, (5) the correlation coefficient
between the text score and the data score for all parental configurations of the Pathology variable, (6) the
normalized trace of the 4-by-4 partition of the text-rank–data-rank matrix, (7) the Spearman correlation
coefficient for the parental text–data scores of the Pathology variable, (8) the Z-score of the hypothesis test
that there is no monotonic relationship between the text and data ranks, (9) the probability of the hypothesis
test that there is no monotonic relationship between the text and data ranks, (10) the normalized trace of
the 4-by-4 partition of the text-rank–data-rank matrix for all variables, and (11) the average Spearman
correlation coefficient for the parental text–data scores of the all variables.

Repr Annot #Π Voc CorrPath TracePath RPath
S Z Probability Traceall Rall

S

tf.idf T 1 restr. 0.691975 0.44 0.810769 3.97194 7.12897e-005 0.367692 0.338432
tf.idf T 1 all 0.691975 0.44 0.810769 3.97194 7.12897e-005 0.364615 0.33855
bool T 1 restr. 0.735572 0.52 0.695385 3.40667 0.000657606 0.404615 0.346124
bool T 1 all 0.735572 0.52 0.695385 3.40667 0.000657606 0.404615 0.34574
freq T 1 restr. 0.369573 0.4 0.730769 3.58002 0.000343568 0.276923 0.181538
freq T 1 all 0.369573 0.4 0.730769 3.58002 0.000343568 0.28 0.182544
tf.idf T 2 restr. 0.54503 0.4 0.648474 11.2132 3.5126e-029 0.34359 0.295509
tf.idf T 2 all 0.54503 0.4 0.648474 11.2132 3.5126e-029 0.34359 0.295509
bool T 2 restr. 0.714902 0.503333 0.65955 11.4047 3.96141e-030 0.361538 0.296987
bool T 2 all 0.714902 0.503333 0.65955 11.4047 3.96141e-030 0.361538 0.296987
freq T 2 restr. 0.281367 0.376667 0.437684 7.56826 3.78256e-014 0.283718 0.131722
freq T 2 all 0.281367 0.376667 0.437684 7.56826 3.78256e-014 0.283718 0.131722
tf.idf TR 1 restr. 0.462424 0.4 0.621538 3.0449 0.00232758 0.316923 0.276953
bool TR 1 restr. 0.00520293 0.28 -0.140769 -0.689626 0.490429 0.301538 0.178491
tf.idf TR 2 restr. 0.296096 0.313333 0.406099 7.0221 2.18558e-012 0.350128 0.272022
bool TR 2 restr. 0.00342128 0.203333 -0.114168 -1.97415 0.0483647 0.336154 0.240664
tf.idf T-O3 1 restr. 0.499581 0.44 0.808462 3.96064 7.47492e-005 0.344615 0.311479
bool T-O3 1 restr. 0.711297 0.48 0.613077 3.00345 0.00266937 0.356923 0.30855
tf.idf T-O3 2 restr. 0.395009 0.41 0.55675 9.62711 6.14329e-022 0.45359 0.383198
bool T-O3 2 restr. 0.694253 0.48 0.629456 10.8843 1.36947e-027 0.469231 0.424064

tf.idf T-ML0
12 1 restr. 0.499581 0.44 0.803077 3.93426 8.34534e-005 0.343077 0.287811

bool T-ML0
12 1 restr. 0.711297 0.48 0.613077 3.00345 0.00266937 0.343077 0.304586

tf.idf T-ML0
12 2 restr. 0.395009 0.41 0.55675 9.62711 6.14329e-022 0.45359 0.383198

bool T-ML0
12 2 restr. 0.694253 0.48 0.629456 10.8843 1.36947e-027 0.469231 0.424064

tf.idf T-ML3
3 1 restr. 0.499581 0.44 0.806923 3.9531 7.71452e-005 0.330769 0.300976

bool T-ML3
3 1 restr. 0.711297 0.48 0.616923 3.02229 0.0025087 0.321538 0.279734

tf.idf T-ML3
3 2 restr. 0.395009 0.41 0.55675 9.62711 6.14329e-022 0.45359 0.383198

bool T-ML3
3 2 restr. 0.694253 0.48 0.629456 10.8843 1.36947e-027 0.469231 0.424064


