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Identification of Positive Real Models in Subspace xj € R™ isthe unknown state vector at tirheThe unobserved process
Identification by Using Regularization and measurement noise, € R™ andv;, € R' are assumed to be
white, zero mean, Gaussian with covariance matrices as given in (2).
Ivan Goethals, Tony Van Gestel, Johan Suykens, Paul Van DoorefThe system matriced, C' and the covariance matricég, S, andR
and Bart De Moor have appropriate dimensions.
Denoting the output covariance matrices\as = £{yx+myt },and
Abstractin time-domain subspace methods for identifying linear-time the cross-covariance matrix between the states and the observations as
- - _ ¢ T : _ Am—1 _ AT
invariant dynamical systems, the model matrices are typically estimated G = E{zx+1y, }, one can derive t_hax"’ =CA G, 1_\_"’ = Am,
from least squares, based on estimated Kalman filter state sequences and’® > 1. Hence, the output covariances can be considered as Markov
the observed outputs and/or inputs. It is well known that for an infinite ~ parameters of a deterministic linear time invariant system with system
amount of data, this least squares estimate of the system matrices is unbi- matrices @, G, C, D) whereD + DT = A,. Throughout this note, we

ased, when the system o_rder is correctly estimated. quever, fc_)r a flnlte will referto (4, G, C, D) as the “covariance model.” The spectral den-
amount of data, the obtained model may not be positive real, in which

case the algorithm is not able to identify a valid stochastic model. In this sity ®(z) of the system (1;ca£11be gxpressed in terms of the C_01variance
note, positive realness is imposed by adding a regularization term to a least model agb(z) = S(z)+S5" (27 ") with S(z) = D4+ C(zI,—4)” G

squares cost function in the subspace identification algorithm. The regu- and is assumed to be positive for albn the unit circle, in which case
larization term is the trace of a matrix which involves the dynamic system (e model @, G, C, D) is called positive real.

matrix and the output matrix. Stochastic subspace identification methods [1] make extensive use

Index Terms—Positive realness, regularization, ridge regression, of the covariance model. Typically they start by making an estimate
stochastic systems, subspace identification. (A, G, C, D) based on available measurements. In a second step the
covariance model is then transformed into a so-called forward inno-
I. INTRODUCTION vation model which is statistically equivalent to a model of the form
(1). However, it is known that the second step may fail if the estimated
In this note, we will consider stochastic systems and models of thgyge| @, &, ¢, D) is not positive real due to modeling errors (see,
form for instance, [2]). In such cases, no physically meaningful model will
be returned by the subspace identification algorithm.
Tpy1 = Az +wk In recent years, several modifications to the standard stochastic sub-
@ space identification algorithms have been suggested to solve the posi-
tive realness problem. This, however, at the cost of introducing a small
bias in the obtained solution. In this note, we impose positive real-
ness by adding a regularization term to a least squares cost function

w, ol _[Q S appearing in most stochastic subspace identification algorithms. Al-
& [mq 7*,1] = g7 bpq 20

yr =Cap + vy
with

R (2)  though a bias is still introduced, the regularization approach will be
seen to outperform those reported in the literature.

Whereg{.} denotes the expected value operatoréyadhe Kronecker The outline of this note is as follows. In Section 1, the stochastic
delta. The elements of the vectpr € R are given observations at subspace identification algorithm will be outlined, and its problems

the discrete-time indek of the outputs of the system. The vectorWith positive realness will be described. A proposal for a technique
to impose positive realness on an identified covariance model will be
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After the estimation of the Kalman filter state sequen&'esand [ll. I MPOSING POSITIVE REALNESS BY USING REGULARIZATION

Xit1 inthe first step (see [1] and [3]), an estimate for the govarian% Main Idea

model (4, G, C', D) can be obtained. The system matricds(’) can '

be identified as the solution to the following least-squares problem: The estimation problem that we consider is the following: given ma-
tricesXi+1, Y;); and X; and given initial estimates, ', &, andAo,

esti[nate new model matrices, C' such that the resulting mode,

(4.¢) = are nclin J1(4,0) @) G, ¢ Aois positive real. To impose positive realness, we will add a
’ regularization term to the cost function (A, C') from (4)

with I

(Ac,Co) = argmin J1 (A, C) + eJ2 (A, C) (10)
5 A, C
nao= |3 -] 5 (5)
i ’ with
One possible way to obtain an estimaté for the matrix Al |4 ’
G = E{wkt1yi } is by taking the last columns of the reversed con- 22(A,C)=Tr || W~ 11)

trollability matrix A; = [A" '@ A""2@G ... AG G], whereA, is cal-
Sty Tl sn T AT 4 AT ALY Ay

cuIaEed afﬁy'@’—‘.}o\‘iﬂ ,W|th.F7, - [O. *’}1 CzT " A ) ¢ ]. ' wherec > 0 is a positive real scalar ad@” a positive definite matrix

andA, canimmediately be derived &/;)Y;|;Y;;. Thisis essentially oy appropriate dimensions that satisfids — GA,*G” > 0 and is

a square root version of the deterministic realization [4], [5] applied E9pica|ly chosen to be the unity matrix, which is motivated by [7].

the observed output covariance matri¢és, }7:Z1, with A similar regularization termIt(AW AT), involving only the
system matrix4d was described in [8], and was shown to impose sta-
_ 1 Nt . bility on a model. We will show that by the choice of the regularization
A = v Z YeYktm- (6) term.J.(A,C) the covariance model cannot only be made stable, but
k=0 also positive real, provided the regularization coefficiers chosen

sufficiently large. A further advantage of the regularization term is
In a last step, the covariance model is used to conceive a modelhat the problem (10) remains quadratic and that the optimal solution

forward innovation form follows from a linear set of equations
T = Adc+ Kew A _ [Xiﬂ X [XXT + cw]f
yr =Cip + ey (7 Ce Yiji
1 . . o —1
, , , . o — |2 x.x7 [Y\’T + CW] . 12)
obtained by first calculating an estimake = £{##;, } for the for- C

ward state covariance matrix of (7) through the solution of the forward

algebraic Riccati equation: From the optimality of the least-squares estimate (12), it follows that
the regularization terni>(A.., C..) is a nonincreasing function of

P=APAY + (G = APCY) (Ao = CPCYY M (G- APCH) (8) The idea of using regularization to deal with undesirable properties
of an estimator is by no means new. In general, regularization amounts
) ) o . S s to reducing the variance of an estimator at the expense of introducing
with At?e Eorward Kalman filter gaink’ = (G — APC")(Ao = 4 hopefully small bias, the so-called bias-variance tradeoff. In function
¢PC7)”". The resulting model matrices of thelsto_chafstlc systehproximation, for instance, regularization is used to impose a certain
are 4, I, C, I’T) and the covariance matrid{c.c; } is given by amount of smoothness and deal with the well known problem of over
R = Ao —CPC". Atransformation from (7) to a system of the formgiing 19]. Other applications are found in such areas as neural networks

(1) is now straightforward [1]. ) _ _ 10] support vector machines [11], and system identification [12]. Fur-
Itis important to note here that a valid forward innovation model (%hermore, some known technigues can be rewritten in a regularization
can only be found if the estimated covariance model®, C', D) is  context. The technique described in [8] to impose stability on a model
positive real. This follows immediately from the positive real lemmgging regularization, for instance, is essentially equivalent to a tech-

[6], that states that a covariance modé| (+, C', D) is positive real if - nique described in [13], provided a certain choice for the weighting
and only if the following matrix inequality is satisfied for at least ong,5irices is made in the former reference.

positive—definite matrix® = P* > 0:
B. Choosing the Regularization Parameter

o o1 >0, (9 It will be shown in the following lemma that, by using the regulariza-

crAs Crc tion term introduced in (10), positive realness can always be imposed
provided the regularization coefficienis chosen sufficiently large.

By applying the Schur decomposition to (9) it is clear that no solutionto Lemma 1: Let G, Ao be given. Letiv = QuwQl, > 0,

(8) will be found unless the covariance modél (7, ', D) is positve W — GA;'G" > 0, and defineS = XX/, £ =

real. Also, note _from the Lyapu_nov equatiqn in the upper left blo_c{j[AT (jT] {WT G }—1 .1 S, B = SW'S - L. Sup-

of (9) that a positive real model is necessarily stable. In the following G° Ao

Q S] [P G _ [APAT APCT
s" R|~ |G" D+D"

C
section, we will introduce a regularization term in the least-squares cpsise the covariance model (G, C, \) is not positive real. Then,
function (4) to impose positive realness on the covariance model ahére exists a* such that the systeM., G, C., Ay, with A. and

to ensure a solution to (8). C. asin (12), is positive real far > c*, with ¢* = max, |y, cg+ 0,
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0] l I
C c c*

————> optimal amount of regularization
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Fig. 2. Averaged spectral density over 1000 runs for the exatdple)) with » = 10, ¢ = 16, N = 500 (dashed line) with 95% error region (dotted line). The
solid line is the spectral density of the original model used for simulation.

andé the set of generalized eigenvalues of the following eigenvalue TABLE |
problem: PERFORMANCE ONSIMULATED DATA
_ 0n —In I 0Oa REG, s | REG; | RES | SDP
=2 p = 0. wl) (13) ’
0= A Mean(doo) 1.7 2.45 2.19 18.3
. E’rogf: WeAWiII show that (9), with4, C', G and P replaceAd by Var(deo) 0.488 1.57 6.02 | 4e+03
éc gﬁifﬁgggfi:ﬂds under the assumptions of the lemmafor Mean(ds) 0.579 0.784 0.591 .46
' Var(dg) 0.0172 0.0907 | 0.0294 | 8.59
{ WG } {ACWAZ Awc! } >0 (14) Mean(d;) 1.36 198 | 1.35 | 4.08
AT A - S 137 AT ~ 17T feusl
G Aol [CWA CIWC Var(d:) 0.0709 | 0.643 | 0.0655 | 6.7
WhereA :[he Afirst term ig positiye semidefinite sind® > 0,
W —GA;'GT > 0, andA. andC’, are as defined in (12). Taking thewhich can also be written as
Schur complement and definitg = X, X/ leads to
WG AL AW 4284 SWIS 2 £ > 0. a7
GT A cT >0 (15)

0
SAT ST (S L WS . . -
47 xC ‘ (X4 W)WHE + V) Equation (17) is clearly satisfied fer — oc. The exact lower bound

. ) N E 1A ¢* for ¢ in (17) is given by the largest positive root of
and again taking the Schur complement, With— GA; ' G* > 0

(S+cW)W (S +cW)=L>0 (16) det(PW +2cS +SW™'S - £) = 0. (18)
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Fig. 3. Output spectra of one of the accelerometers on a steel mast (dashed lines), together with the estimated spB&ifa ysirand RES (full line). The
absolute differences between the spectra in the uppermost two figures are depicted in the figures in the bottom row. The variances of theifferéntés a
for theREG ; ¢ case and1.05-10~° for the RES case. In similar experiments, the variances fdR1h€: ., and SDP techniques were found tolfle47 - 10 ¢
and15.05 - 10~5, respectively.

Using the definition off%, this reduces to method presented here, is that they cannot be used if the initial covari-
‘ . ance model is unstable. A situation which is not uncommon in many

det(¢*W +2¢5 + Py) =0 practical situations. Furthermore, the approach proposed in this note

< det (c(cW +23) + po) =0 is seen to outperform existing techniques in simulations. As an ex-

o 0 s ample, we take a known single-input—single-output (SISO) system with
Ao Vn TR = transfer function
— det <c |:0ﬁ W’] + {Po 9% ]) 0. (29) | |
(z — 0.99¢T2)(z — 0.98eT14)

m H(z)= T2.05)(, I
Hence, a positive real model is always obtaineddfopr ¢*, and (=08 25}1]— 0-8¢7)
in particular forc = ¢*. Furthermore, since any positive real model (z =099 )(z = 0.9)(x+0.9) (20)

is necessarily stable [which follows immediately from the upper left (z — 0.8e*177)(z — 0.8e£0-87)

part of (9)], stability is automatically guaranteed. HowevErean be of which the spectral density is displayed as the solid curves in
a too conservative estimate. In general it seems reasonable to keethez(a)_(d) 1000 sequences of Gaussian, zero mean, unit variance
amount of regularization as low as possible. Hence, one should seaj | : ' '

for th llest ble < ¢ f hich it | model | ite input noise with lengthV. = 500 were filtered through (20)
or the smaflest possible = ¢ for which a positive réal model IS o, yseq as input for the stochastic subspace identification algorithm

ﬁmdels turned out not to be positive real of whom 182 were unstable,
regularization was applied where necessary. The average of the ob-
tained spectra over all 1000 runs are depicted under theRkifl@ ; .,

shown to be the smallestimposing stability on the estimated covari-
ance model. As shown in Fig. 1, a minimamposing positive realness
W'” "?"Ways Sat'Sfy.C'f Sc S.C - When the reallzatlo_n(cs, Gj'QO"S' in Fig. 2(d), together with those of the best-performing methods
Ao) is not yet positive real, .e®(z) < 0 for a certainz = ™, we described in the literature, namely the following.

can find ac > ¢, imposing positive realness, for instance by applying . RES: A method des,cribed 1 1] and [16], using an algorithm

a bisection algorithm on the interval < ¢ < ¢*. . X
based on the residuals of the least squares problem (4) displayed

in Fig. 2(a). The method described in [16] also deals with the re-
lated problem of systems of the form (1) for which an innovation

As mentioned in Section |, some alternative techniques have been re- model simply does not exist, e.g., if the output noise in (1) is zero.
ported in the literature in order to impose positive realness on a covari-« SDP: A method described in [17] which obtains positive real
ance model [1], [14]-[17], many of whom rely on regularization prin- covariance models by solving an SDP-problem, displayed in
ciples. Apart from changingi andC in the initial covariance model, Fig. 2(b).
regularization could also be applied(f}bﬁo, or a combination of both. * REGy¢: A method described in [14] using regularization on
A common problem with many of these alternatives, in contrast to the displayed in Fig. 2(c).

IV. RELATION TO OTHER ALGORITHMS
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As RES andREG, were unable to deal with unstable covariance [4]
models, the covariance model was stabilized for RES Rz,
where necessary by using the techniques described in [8]. For a faif !
comparison, the numerical results for all methods, which are given in
Table I, are limited to the set of 545 models that were stable but not
positive real. The table lists the average performance of each methogb]
on these covariance models and the variance upon this performance.
The performance is measured as the average distanbetween the 7]
transfer function of the original modéf () and the estimated transfer
function inxz-norm, wherer is chosen from the sdftl, 2, > }.

From the figures and the table it is clear that the regularization tech-
nigue described in this note outperforms the others. As for the com-[8]
plexity, all algorithms are roughlg? (¢n?), with ¢ the number of itera-
tions in a regularization approach or an SDP problem. For RES]1 9]
as no optimization is performed. These complexity results have been
found to be consistent with the required computation times for each
iteration in our simulations which were comparable for all methods!10]
discussed. [11]

V. PRACTICAL APPLICATION [12]

The regularization procedure described in this note was used to iden-
tify a stochastic subspace model from measurements on a steel tral
mitter mast for cellular phone networks [18]. Nine accelerometers wer
placed on the mast and the mast’s response on the wind turbulence wasj
measured. A 16th-order stochastic SISO subspace model was there-
after created for one of the accelerometers using subspace identification
with 4, the number of block rows, set to 32. For this set of parameters;
a stable but nonpositive real covariance model was obtained, where-
after the different regularization techniques described in this note wergé]
used to obtain positive real models. The original measurement spec-
trum and the modeled spectra resulting from the two best performin?”]
techniques in the simulations of Section IV, namely RESIaRdx ; ¢
are displayed in Fig. 3, together with the absolute values of the differ-
ences between them. Note that all the spectra are strictly positive. Als{L8]
note that the RES technique performs better in the regions between the
peaks, whileREG ; .. is seen to fit the peaks themselves better. For
comparison, the variances of the model fit errorsdG., and SDP
are given in below the figure.

73]

VI. CONCLUSION

Stochastic subspace methods for the identification of linear time-in-
variant systems are known to be asymptotically unbiased [3]. However,
if a finite amount of data is used, the procedure might break down due to
positive realness problems. In this note, a regularization approach was
proposed to impose positive realness on a formerly identified covari-
ance model. It was shown that, if an adequate amount of regularization
is used, a positive real model can always be obtained. The simulation
results indicate that this new approach yields better models than other
existing techniques.
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