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Abstract

This paper studies a method for the identification of Hammerstein models based on least squares support vector machines (LS-SVMs).
The technique allows for the determination of the memoryless static nonlinearity as well as the estimation of the model parameters of
the dynamic ARX part. This is done by applying the equivalent of Bai’s overparameterization method for identification of Hammerstein
systems in an LS-SVM context. The SISO as well as the MIMO identification cases are elaborated. The technique can lead to significant
improvements with respect to classical overparameterization methods as illustrated in a number of examples. Another important advantage
is that no stringent assumptions on the nature of the nonlinearity need to be imposed except for a certain degree of smoothness.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout the last few decades, the field of linear
modeling has been explored to the level that most linear
identification problems can be solved efficiently with fairly
standard and well-known tools. Extensions to complex non-
linear models are often desirable, though in many situations
Hammerstein models may result in good approximations.
Hammerstein models are composed of a memoryless static
nonlinearity followed by a linear dynamical system.

Many techniques have been proposed for the black-box
estimation of Hammerstein systems from given input–output
measurements. These techniques mainly differ in the way
the static nonlinearity is represented and in the type of op-
timization problem that is finally obtained. In parametric
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approaches, the static nonlinearity is expressed in terms of
a finite number of parameters. Known approaches include
the expansion of the nonlinearity as a sum of (orthogonal
or non-orthogonal) basis functions (Narendra & Gallman,
1966; Pawlak, 1991; McKelvey & Hanner, 2003), the use
of a finite number of cubic spline functions as presented by
(Dempsey & Westwick, 2004), piecewise linear functions
(van Pelt & Bernstein, 2000) and neural networks (Janczak,
2003). Regardless of the parameterization scheme that is
chosen, the final cost function will involve cross-products
between parameters describing the static nonlinearity and
those describing the linear dynamical system. Employing a
maximum likelihood criterion results in a non-convex opti-
mization problem, where global convergence is not guaran-
teed (Sjöberg et al., 1995). Hence, in order to find a good
optimum for these techniques, a proper initialization is nec-
essary (Crama & Schoukens, 2001).

Different approaches were proposed in the literature to
overcome this difficulty. These result in convex methods
which generate models of the same, or almost the same
quality as their nonconvex counterparts. Unfortunately, con-
vexity is either obtained by placing heavy restrictions on the
input sequence (e.g. whiteness) and the nonlinearity under
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consideration (Bai, 2002) or by using a technique known
as overparameterization (Chang & Luus, 1971; Bai & Fu,
1998). In the latter, one replaces every cross-product of un-
knowns by new independent parameters resulting in a con-
vex but overparameterized method. In a second stage the
obtained solution is projected onto the Hammerstein model
class using a singular value decomposition. A classical prob-
lem with the overparameterization approach is the increased
variance of the estimates due to the increased number of
unknowns in the first stage.

In this paper, we explore the use of LS-SVMs for Ham-
merstein model identification. It will be shown that the lin-
ear model parameters and the static nonlinearity can be ob-
tained by solving a set of linear equations with size in the or-
der of the number of observations. Given the convexity and
the large number of parameters involved, the method may
be regarded as an overparameterization approach. However,
due to the presence of a regularization framework (Vapnik,
1998; Schölkopf & Smola, 2002; Suykens, Van Gestel, De
Brabanter, De Moor, & Vandewalle, 2002), the variance of
the obtained estimates is significantly lower than in classi-
cal overparameterization approaches. Due to this decrease
in variance, systems with several inputs and outputs can be
estimated conveniently with the presented technique.

Another advantage of the proposed derivation is the fact
that additional centering-constraints and parametric compo-
nents of the linear dynamical system can naturally be in-
cluded in the LS-SVM framework due to the fact that it is
closely related to convex optimization. Furthermore, in con-
trast to classical parametric approaches, no specific model
structure is imposed on the nonlinearity other than a cer-
tain shape (e.g. a degree of smoothness). Hence, the pre-
sented technique combines a nonparametric approach with
parametric assumptions on the dynamical system and on the
noise model. The technique distinguishes itself from exist-
ing nonparametric approaches (Greblicki & Pawlak, 1986;
Greblicki, 1989; Krzyżak, 1989; Greblicki & Pawlak, 1991;
Pawlak, 1991; Verhaegen & Westwick, 1996; Hasiewicz,
1999) in the flexibility to incorporate prior knowledge on
the shape of the nonlinearity by plugin of an appropriate
kernel (e.g. linear, polynomial, RBF, spline). Furthermore,
the presented method does not rely explicitly on restrictive
assumptions on the inputs (as e.g. whiteness).

The outline of this paper is as follows: Some basic as-
pects of LS-SVMs applied to static function estimation are
reviewed in Section 2. In Sections 3 and 4, a method for
the identification of nonlinear SISO Hammerstein systems
is proposed. In Section 5, the method is extended to MIMO
Hammerstein systems. Section 6 compares the presented
method to existing overparameterization techniques for the
identification of Hammerstein systems. In Section 7, the
method proposed in this paper is tested and compared to ex-
isting methods on a number of SISO and MIMO examples.
As a general rule, lowercase symbols will be used in this pa-
per to denote column vectors. Uppercase symbols are used
for matrices. Elements of matrices and vectors are selected

using Matlab-notation, e.g.A(:, i) symbolizes theith col-
umn ofA. Estimates for a parameterxwill be denoted bŷx.

2. Least squares support vector machines for function
approximation

2.1. Ridge regression in feature space

Let {(xt , yt )}Nt=1 ⊂ Rd×R be the set of given input/output
training data with inputxt and outputyt . Consider the re-
gression modelyt = f (xt ) + et , wherex1, . . . , xN are de-
terministic points,f : Rd → R is an unknown real-valued
smooth function ande1, . . . , eN are uncorrelated random
errors withE[et ]=0,E[e2

t ]=�2
e <∞. In recent years, sup-

port vector machines (SVMs) and its variations have been
used for the purpose of estimating the nonlinearf. The fol-
lowing model is assumed:

f (x)= wT�(x)+ b,

where� : Rd → RnH denotes a potentially infinite (nH=∞)
dimensional feature map. The regularized cost function of
the least squares SVM (LS-SVM) is given as

min
w,b,e

J(w, e)= 1

2
wTw + �

2

n∑
t=1

e2
t

s.t. yt = wT�(xt )+ b + et , t = 1, . . . , N .

The relative importance between the smoothness of the so-
lution and the data fitting is governed by the scalar� ∈ R+

0
referred to as the regularization constant. The optimization
performed corresponds to ridge regression (Golub & Van
Loan, 1989) in feature space. In order to solve the con-
strained optimization problem, a Lagrangian is constructed:

L(w, b, e; �)

= J(w, e)−
N∑
t=1

�t (wT�(xt )+ b + et − yt ),

with �t ∈ R the Lagrange multipliers. The conditions for
optimality are given as:

�L
�w

= 0 → w =
N∑
t=1

�t�(xt ), (1)

�L
�b

= 0 →
N∑
t=1

�t = 0, (2)

�L
�et

= 0 → �t = �et , t = 1, . . . , N , (3)

�L
��t

= 0 → yt = wT�(xt )+ b + et , t = 1, . . . , N . (4)
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Substituting (1)–(3) into (4) yields the following set of linear
equations:

(5)

wherey = [y1 . . . yN ]T ∈ RN , 1N = [1 . . . 1]T ∈ RN ,
� = [�1 . . . �N ]T ∈ RN , �ij =K(xi, xj )= �(xi)T�(xj ),
∀i, j = 1, . . . , N with K the positive definite kernel func-
tion. Note that in order to solve the set of Eqs. (5), the
feature map� is never to be defined explicitly. Only
its inner product in the form of a positive definite ker-
nel, is needed. This is called the kernel trick (Vapnik,
1998; Schölkopf & Smola, 2002). For the choice of
the kernelK(·, ·) see e.g. (Schölkopf & Smola, 2002).
Typical examples are the use of a polynomial kernel
K(xi, xj ) = (� + xT

i xj )
d of degreed or the RBF kernel

K(xi, xj ) = exp(−‖xi − xj‖2
2/�

2), where� ∈ R+ denotes
the bandwidth of the kernel. The resulting LS-SVM model
for function estimation can be evaluated at a new point
x∗ as

f̂ (x∗)=
N∑
t=1

�tK(x∗, xt )+ b,

where(b, �) is the solution to (5).

2.2. Similarities and differences with other kernel based
learning methods

At this point, let us motivate why the described
primal–dual approach based on convex optimization is use-
ful to model nonlinear functions. Other methods based on
splines (Wahba, 1990), Gaussian processes (Williams, 1998)
and results from estimation in reproducing kernel Hilbert
space (RKHS) lead to somewhat similar methods in the
case of non-dynamical data. These methods often approach
the subject from the point of view of functional analysis
(estimation in RKHS) and Bayesian inference (Gaussian
processes). An advantage of the primal–dual framework
over such methods is found in the ease in which one can in-
corporate structure (as a bias term, parametric components
or additive structure) in the estimation problem itself, which
will be seen to be particularly relevant in the Hammerstein
case. Moreover, the optimization point of view provides a
natural point of view towards approximation techniques for
handling large scale datasets (Suykens et al., 2002). The
primal problem is more convenient for large datasets while
the dual is suitable in high-dimensional input spaces. In
the case of a finite-dimensional feature map one has the
choice between the primal or the dual, but in the case of
nH = ∞ only the dual can be solved exactly, while fixed
size LS-SVM formulations can be used to obtain approx-
imations for the primal problem (see fixed-size LS-SVM
and its application to the Silver-box benchmark (Espinoza,
Pelckmans, Hoegaerts, Suykens, & De Moor, 2004)).

3. Identification of nonlinear ARX Hammerstein models

Hammerstein systems, in their most basic form, consist
of a static memoryless nonlinearity, followed by a linear dy-
namical system (Fig. 1). The aim of Hammerstein identifi-
cation is to model the nonlinearity and to estimate the model
parameters of the linear system from input/output measure-
ments. In the following derivation, we will restrict ourselves
to SISO systems (single input–single output), but as will be
shown in Section 5, the presented method is applicable to the
MIMO case as well. For the linear dynamical part, we will
assume a model structure of the ARX form (Ljung, 1999)

yt =
n∑
i=1

aiyt−i +
m∑
j=0

bjut−j + et , (6)

with ut , yt ∈ R, t ∈ Z and{(ut , yt )} a set of input and output
measurements. The so-called equation erroret is assumed
to be white andm andn denote the order of the numerator
and denominator in the transfer function of the linear model.
The model structure (6) is generally known as the “Auto-
Regressive model with eXogeneous inputs” (ARX) and is
one of the most studied model structures in linear identifi-
cation. Adding a static nonlinearityf : R → R : x → f (x)

to the input in (6) leads to

yt =
n∑
i=1

aiyt−i +
m∑
j=0

bjf (ut−j )+ et , ∀t , (7)

which is the general model structure that is assumed in this
paper.

In order to apply LS-SVM function estimation as outlined
in the previous section, we assume the following structure
for the static nonlinearityf:

f (u)= wT�(u)+ d0,

with �ij = K(ui, uj ) = �(ui)T�(uj ) a kernel of choice.
Hence, Eq. (7) can be rewritten as follows:

yt =
n∑
i=1

aiyt−i +
m∑
j=0

bj (w
T�(ut−j )+ d0)+ et . (8)

With r=max(m, n)+1, estimates for theai , bj andf follow
from a finite set of measurements{ut , yt }, t = 1, . . . , N by
solving:

min
w,a,b,d0,e

J(w, e)= 1

2
wTw + �

1

2

T∑
t=r

e2
t ,

f

static
nonlinearity

Linear system

Fig. 1. A Hammerstein system consists of a memoryless static nonlinearity
f followed by a linear dynamical system.
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subject to (8). The Lagrangian of this constraint optimization
problem is given as

L(w, d0, b, e, a; �)

= J(w, e)−
N∑
t=r

�t

(
n∑
i=1

aiyt−i

+
m∑
j=0

bj (w
T�(ut−j )+ d0)+ et − yt


 . (9)

The conditions for optimality are given as:

�L
�w

= 0 → w =
N∑
t=r

m∑
j=0

�t bj�(ut−j ), (10)

�L
�d0

= 0 →
N∑
t=r

m∑
j=0

�t bj = 0,

�L
�ai

= 0 →
N∑
t=r

�t yt−i = 0, i = 1, . . . , n,

�L
�bj

=0 →
N∑
t=r

�t (wT�(ut−j )+d0)=0, j = 0, . . . , m,

�L
�et

= 0 → �t = �et , t = r, . . . , N , (11)

�L
��t

= 0 → (8), t = r, . . . , N . (12)

Substituting (10) and (11) in (12) results in the following
set of nonlinear equations:

m∑
j=0

N∑
q=r

m∑
p=0

bj (bp�q�(uq−p)T�(ut−j )+ d0)

+
n∑
i=1

aiyt−i + et − yt = 0, t = r, . . . , N . (13)

If the bj values were known, the resulting problem would
be linear in the unknowns and easy to solve as

(14)

with

� = [�r . . . �N ]T, b̃ =
m∑
j=0

bj ,

a = [a1 . . . an]T, Yf = [yr . . . yN ]T,

Yp =



yr−1 yr . . . yN−1
yr−2 yr−1 . . . yN−2
...

...
...

yr−n yr−n+1 . . . yN−n


 ,

K(p, q) =
m∑
j=0

m∑
l=0

bjbl�p+r−j−1,q+r−l−1,

�k,l = �(uk)T�(ul), ∀k, l = 1, . . . , N .

Since thebj values are in general not known and the solution
to the resulting third order estimation problem (13) is by
no means trivial, we will use an approximative method to
obtain models of the form (7).

4. An approximative method

4.1. Optimization using collinearity constraints

In order to avoid solving problem (13), we rewrite (8) as
follows:

yt =
n∑
i=1

aiyt−i +
m∑
j=0

wT
j �(ut−j )+ d + et , (15)

which can conveniently be solved using LS-SVMs
(Pelckmans, Goethals, De Brabanter, Suykens, & De Moor,
2004). Note, however, that the resulting model class is
wider than (8) due to the replacement of one singlew by
several vectorswj , j = 0, . . . , m. The model class (15)
is, therefore, not necessarily limited to the description of
Hammerstein systems. A sufficient condition for the esti-
mated model to belong to this class of systems is that the
obtainedwj must be collinear in which casewj is seen as
a replacement forbjw. Taking this into account during the
estimation leads to extra constraints requiring the angles
between any pair{wj ,wk}, j, k = 0, . . . , m to be zero, or

(wT
j wk)

2 =
√
wT
j wj

√
wT
k wk. Alternatively, the collinearity

constraint can be written as: rank[w0 . . . wm] = 1, which
is equivalent to ensuring that a set ofm(m+1)nH(nH −1)/4
2 × 2 determinants are zero. AsnH (the dimension ofw)
is unknown and possibly very high, it is well-known that
including such constraints in the Lagrangian would again
lead to a non-convex optimization problem.

Considering the fact that ARX Hammerstein models are
contained in the set of models of the form (15), we there-
fore propose to remove the collinearity constraints from the
Lagrangian altogether, solve the more general problem (15),
and project the obtained model onto the model-set (8) later.
Hereby, we assume that collinearity is almost satisfied in
the estimated model of the form (15) as the data originate
from the Hammerstein model class. Although this approach
may seem ad hoc at first, it is essentially an application
of Bai’s overparameterization approach (Bai & Fu, 1998)
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to LS-SVMs. The key ideas behind the overparameteriza-
tion approach are introduced in Section 6. Some examples
of overparameterization approaches applied to the Hammer-
stein identification problem are found inChang and Luus
(1971), Pawlak (1991), andMcKelvey and Hanner (2003).

4.2. Optimization without collinearity constraints

Disregarding the collinearity constraints, the optimization
problem that is ultimately solved is the following:

min
wj ,a,d,e

J(wj , e)= 1

2

m∑
j=0

wT
j wj + �

1

2

N∑
t=r

e2
t , (16)

s.t.
N∑
t=1

wT
j �(ut )= 0, (17)

m∑
j=0

wT
j �(ut−j )+

n∑
i=1

aiyt−i + d + et − yt = 0, (18)

with t = r, . . . , N and j = 0, . . . , m. Note the additional
constraints (17) which center the nonlinear functions
wT
j �(·), j =0, . . . , m around their average over the training

set. This removes the uncertainty resulting from the fact
that any set of constants can be added to the terms of the
additive nonlinear function (15), as long as the sum of the
constants is zero (Hastie, Tibshirani, & Friedman, 2001).
Removing this uncertainty will facilitate the extraction of
the parametersbj in (7) later. Furthermore, this constraint
enables us to give a clear meaning for the bias parameterd,
namelyd =∑m

j=0 bj ((1/N)
∑N
k=1 f (uk)).

Lemma 4.1 (Primal–dual derivation). Given system(15),
the LS-SVM estimates for the nonlinear functionswT

j � :
R → R, j = 0, . . . , m are given as

wT
j �(u∗)=

N∑
t=r

�tK(ut−j , u∗)+ �j

N∑
t=1

K(ut , u∗), (19)

where the parameters�t , t = r, . . . , N , �j , j = 0, . . . , m, as
well as the linear model parametersai, i = 1, . . . , n and d
are obtained from the following set of linear equations:

(20)

with � = [�0 . . . �m]T, K0(p, q) = ∑N
t=1 �t,r+p−q ,

K(p, q) =∑m
j=0 �p+r−j−1,q+r−j−1, and1N is a column

vector of length N with elements1.

Proof. This directly follows from the Lagrangian:

L(wj , d, a, e; �,�)

= J(wj , e)−
m∑
j=0

�j

(
N∑
t=1

wT
j �(ut )

)
−

N∑
t=r

�t

×

 n∑
i=1

aiyt−i+
m∑
j=0

wT
j �(ut−j )+d+et−yt


 , (21)

by taking the conditions for optimality:�L/�wj = 0,
�L/�ai = 0, �L/�d = 0, �L/�et = 0, �L/��t = 0,
�L/��j = 0. �

4.3. Projecting the unconstrained solution onto the class
of NARX Hammerstein models

The projection of the obtained model onto (7) goes as
follows. Estimates for the autoregressive parametersai, i =
1, . . . , n are directly obtained from (20). Furthermore, for
the training input sequence[u1 . . . uN ], we have


 b0
...

bm





f̂ (u1)

...

f̂ (uN)




T

=




�N . . . �r 0
�N . . . �r

. . .
. . .

0 �N . . . �r




×




�N,1 �N,2 . . . �N,N
�N−1,1 �N−1,2 . . . �N−1,N

...
...

...

�r−m,1 �r−m,2 . . . �r−m,N




+

 �0
...

�m


 N∑
t=1


 �t,1

...

�t,N




T

, (22)

with f̂ (u) an estimate forf (u)=f (u)−(1/N)∑N
t=1 f (ut ).

Hence, estimates forbj and the static nonlinearityf can be
obtained from a rank 1 approximation of the right-hand side
of (22), for instance using a singular value decomposition.
Again, this is equivalent to the SVD-step that is generally en-
countered in overparameterization methods (Chang & Luus,
1971; Bai & Fu, 1998). Once all the elementsbj are known,∑N
t=1 f (uk) can be obtained as

∑N
t=1 f (ut )=Nd/

∑m
j=0 bj .

5. Extension to the MIMO case

Technically, an extension of the algorithms presented in
the former section to the MIMO case is straightforward, but
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the calculations involved are quite extensive. Assuming a
MIMO Hammerstein system of the form:

yt =
n∑
i=1

Aiyt−i +
m∑
j=0

Bjf (ut−j )+ et , ∀t (23)

with yt , et ∈ Rny ,ut ∈ Rnu ,Ai ∈ Rny×ny ,Bj ∈ Rny×nu, t=
1, . . . , N, i = 1, . . . , n, j = 0, . . . , m, andf : Rnu → Rnu :
u → f (u) = [f1(u) . . . fnu(u)]T, we have for every row
s in (23), that

yt (s)=
n∑
i=1

Ai(s, :)yt−i +
m∑
j=0

Bj (s, :)f (ut−j )

+ et (s). (24)

Substitutingf (u)= [f1(u) . . . fnu(u)]T in (24) leads to:

yt (s)=
n∑
i=1

Ai(s, :)yt−i +
m∑
j=0

nu∑
k=1

Bj (s, k)fk(ut−j )

+ et (s), ∀t, s. (25)

By replacing
∑nu
k=1Bj (s, k)fk(ut−j ) bywT

j,s�(ut−j )+ds,j
this reduces to

yt (s)=
n∑
i=1

Ai(s, :)yt−i +
m∑
j=0

�T
j,s�(ut−j )

+ ds + et (s), ∀t, s, (26)

where ds = ∑m
j=0 ds,j . The optimization problem that is

solved then is the following:

J(�j,s , e)=
m∑
j=0

ny∑
s=1

1

2
�T
j,s�j,s + �s

2

ny∑
s=1

N∑
t=r

et (s)
2, (27)

subject to (26) and
∑N
t=1w

T
j,s�(ut )= 0, j = 0, . . . , m, s =

1, . . . , ny .

Lemma 5.1 (Primal–dual derivation of the MIMO
case). Given system(26), the LS-SVM estimates for the
nonlinear functionswT

j,s� : R → R, j = 0, . . . , m, s =
1, . . . , ny , are given as:

wT
j,s�(u∗)=

N∑
t=r

�t,sK(ut−j , u∗)+ �j,s

N∑
t=1

K(ut , u∗),

(28)

where the unknowns�t,s , t = r, . . . , N, s = 1, . . . , ny ,
�j,s , j = 0, . . . , m, s = 1, . . . , ny as well as the linear
model parametersAi, i = 1, . . . , n and ds , s = 1, . . . , ny
are obtained from the following set of linear equations:
L1

. . .

Lny




 X1

...

Xny


=


 R1

...

Rny


 , (29)

where

Proof. This directly follows from the Lagrangian:

L(�j,s , ds, A, e; �,�)

= J(�j,s , e)−
N∑
t=r

ny∑
s=1

�t,s


 n∑
i=1

Ai(s, :)yt−i

+
m∑
j=0

�T
j,s�(ut−j )+ ds + et (s)− yt (s)




−
m∑
j=0

ny∑
s=1

�j,s

(
N∑
t=1

�T
j,s�(ut )

)
, (30)

by taking the conditions for optimality:�L/��j,s = 0,
�L/�Ai(s, :)=0,�L/�ds=0,�L/�et (s)=0,�L/��t,s=
0, �L/��j,s = 0. �

Note that the matricesLs, s=1, . . . , ny in (29) are almost
identical, except for the different regularization constants�s .
In many practical cases, however, and if there is no reason to
assume that a certain output is more important than another,
it is recommended to set�1=�2=· · ·=�ny . This will reduce
the number of hyper-parameters to be tuned and will speed
up the estimation algorithm sinceL1=L2=· · ·=Lny needs
to be calculated only once.

The projection of the obtained model onto (25) is similar
as in the SISO case. Estimates for the autoregressive matrices
Ai, i=1, . . . , n are directly obtained from (29). For the train-
ing input sequence[u1 . . . uN ] and everyk = 1, . . . , nu,



I. Goethals et al. / Automatica 41 (2005) 1263–1272 1269

we have

(31)

with f̂ (u) an estimate for

f (u)= f (u)− g, (32)

andg a constant vector such that:

m∑
j=0

Bjg = [d1 · · · dny ]T. (33)

Estimates forf and theBj , j = 0, . . . , m, can be obtained
through a rank-nu approximation of the right-hand side of
(31). Fromf in (32) andg in (33), finally, an estimate
for the nonlinear functionf can be obtained. Note that if
the row-rank of

∑m
j=0Bj is smaller than the column-rank,

multiple choices forgare possible. This results as an inherent
property of blind MIMO Hammerstein identification.

6. Comparison with existing overparameterization
algorithms

As was mentioned in Section 4.1, the presented tech-
nique is closely related to the overparameterization approach
(Chang & Luus, 1971; Bai & Fu, 1998). The idea of over-
parameterization can be summarized as writing the static
nonlinearityf as a linear combination of general nonlinear
basis functionsfk. In this framework, each basis function
has a certain weightck, f (ut )=∑nf

k=1 ckfk(ut ). The func-
tionsf1, f2, andfnf are chosen beforehand. Starting from
(7) and substituting the expansion forf leads to

yt =
n∑
i=1

aiyt−i +
nf∑
k=0

m∑
j=0

bj ckfk(ut−j )+ et (34)

=
n∑
i=1

aiyt−i +
nf∑
k=1

m∑
j=0

	j,kfk(ut−j )+ et , (35)

which can be solved for	j,k = bj ck, j = 0, . . . , m, k =
1, . . . , nf using a least squares algorithm. Estimates for the

bj andck are recovered from the SVD of


	̂0,1 	0,2 . . . 	̂0,nf

	̂1,1 	1,2 . . . 	̂1,nf
...

...
...

	̂m,1 	m,2 . . . 	̂m,nf


 . (36)

Note that for any set of variables
k, k=1, . . . , nf with ∀u ∈
R,
∑nj
k=1 
kfk(u) = constant and any set�j , j = 0, . . . , m

such that
∑m
j=0 �j = 0, 	′

j,k = 	j,k + �j 
k is also a solution
to (35). This problem is often overlooked in existing over-
parameterization techniques and may lead to conditioning
problems and destroy the low-rank property of (36). In fact,
for the examples presented in the following section, exist-
ing overparameterization approaches lead to results which
are far from optimal if no measures are taken to overcome
this problem. One possible solution is to calculate

A=




	̂0,1 	̂0,2 . . . 	̂0,nf

	̂1,1 	̂1,2 . . . 	̂1,nf
...

...
...

	̂m,1 	̂m,2 . . . 	̂m,nf




×



f1(u1) . . . f1(uN)

f2(u1) . . . f2(uN)
...

...

fnf (u1) . . . fnf (uN)


 ,

with uk, k= 1, . . . , N the inputs of the system, subtract the
mean of every row inA and take the SVD of the remaining
matrix, from which estimates for thebj can be extracted.
Estimates for theck can then be found in a second round by
solving (34). It is this approach that will be used for the im-
plementation of classical overparameterization approaches
in the following section. Note that the approach amounts to
setting the mean of̂f =∑N

k=1 f̂k over the inputsu1, . . . , uN
to zero, which is similar to what was done for the LS-SVM,
with the exception that in the latter case this constraint was
explicitly introduced in the Lagrangian (21).

7. Illustrative examples

7.1. SISO system

The algorithm proposed in this paper was used for iden-
tification on the following SISO Hammerstein system:

A(z)y = B(z)f (u)+ e, (37)

with A and B polynomials in the forward shift op-
erator z, where B(z) = z6 + 0.8z5 + 0.3z4 + 0.4z3,
A(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i), and
f : R → R : f (u) = sin c(u)u2 the static nonlinearity.
A white Gaussian input sequenceu with length 400, zero
mean and standard deviation 2 was generated and fed into
system (37). During the simulation the equation noise was
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Table 1
Mean and variances of obtained distances between estimated and true
nonlinearities in a SISO example

Method mean(d) std(d)

LS-SVM � = 500 0.0064 0.0041

Hermitenf = 15 0.2203 0.7842
Hermitenf = 20 0.7241 2.3065
Hermitenf = 25 1.1217 2.9660
Hermitenf = 30 1.0118 2.9169

Gaussiannf = 18 0.0142 0.0141
Gaussiannf = 24 0.0193 0.1055
Gaussiannf = 30 0.0168 0.0693
Gaussiannf = 36 0.0188 0.0764

Table 2
Mean and variances of obtained distances between estimated and true
nonlinearities in a SISO example

Method mean(d) std(d)

LS-SVM � = 500 0.0064 0.0041

Gaussian� = 1013 0.0457 0.1028
Gaussian� = 1012 0.0089 0.0071
Gaussian� = 1011 0.0088 0.0060
Gaussian� = 1010 0.0112 0.0086

chosen white Gaussian with zero mean and as standard de-
viation 10% of the standard deviation of the sequencef (u).
The last 200 datapoints ofu and the generated outputywere
used for identification using the following three techniques:

• LS-SVM: The LS-SVM estimation procedure as de-
scribed in Section 4: The linear system (20) is solved
for d, a, �,�. An SVD of the right-hand side of (22)
is thereafter performed to obtain estimates for the lin-
ear system and the static nonlinearity. For the example,
an RBF-kernel with� = 1 was used. Different values
for the regularization parameter� were tested by ap-
plying the obtained model to an independent validation
sequence. From these tests� = 500 was selected as the
best candidate.

• Hermite: The general algorithm described in Section
6 with fk(u) = eu2(dk−1/duk−1)e−u2, the Hermite
polynomial of orderk − 1. This expansion was used
in (Greblicki, 1989) for Hammerstein- and (Greblicki,
1994) for Wiener systems.

• RBF network(Gaussian): The general algorithm de-
scribed in Section 6 withfk(·), k= 1, . . . , nf localised
Gaussian radial basis functions with location depend-
ing on the value ofk. As no prior information about the
nature of the static nonlinearity is assumed during the
identification step, the locations of the Gaussian nonlin-
earities were chosen equidistantly spread between−4
and 4. The bandwidth was chosen equal to one, in line
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0.5

1
LSSVM nonlinearity

-4 -2 0 2 4
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1
Gaussian nonlinearity (18)
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Gaussian nonlinearity
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Hermite nonlinearity (15)regularized (1011)

Fig. 2. True nonlinearity (solid) and mean estimated nonlinearity (dashed)
for the different techniques compared in a Monte-Carlo simulation of
a SISO system. Results for the LS-SVM algorithm with� = 500 are
displayed in the top-left figure, those for the Gaussian approach with
nf =18 and without regularization in the top-right figure. The bottom-left
figure displays the results for the Gaussian algorithm withnf = 46 and

constant� = 1011 tuned using validation on an independent dataset. The
bottom-right figure displays the results for the Hermitian algorithm with
nf =15. 90% confidence bounds on the estimated nonlinearities, following
from the Monte-Carlo simulation, are included in each plot (dotted). The
Hermite-approach is obviously inferior to the Gaussian and the LS-SVM
technique. The best performance is obtained with the LS-SVM algorithm.

with the � = 1, choice for LS-SVM. The main reason
for considering this algorithm is that it is a paramet-
ric counterpart to the LS-SVM approach with an RBF-
kernel, where the final solution is expressed as a sum of
Gaussian basis functions around the training datapoints.

Hundred Monte-Carlo experiments were performed follow-
ing the description above withn=6,m=3. For each exper-
iment and each obtained estimatef̂ for the static nonlinear-
ity f, the distanced=∫ 4

−4 ‖f (x)− f̂ (x)‖ dx was calculated.
The mean and variance of the distances so obtained using the
LS-SVM technique are compared to those obtained from the
Hermite- and Gaussian approach using different values for
nf . The results are displayed inTable 1. Note that the LS-
SVM technique clearly performs better than the Hermite-
approach and about three times better than the Gaussian ap-
proach. The Gaussian and the LS-SVM technique are similar
in nature as in both cases the estimated nonlinearity is writ-
ten as a sum of Gaussian basis functions with fixed band-
width 1. However, it should be noted at this point that the
RBF-kernel is but one possible choice in the LS-SVM algo-
rithm, and that in principle any positive definite kernel can
be chosen. A big disadvantage for the Gaussian approach is
that it suffers from overfitting once the parameternf is cho-
sen too high, even though with the 200 datapoints available
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andn = 6, m = 3, one could easily go tonf = 46 before
the resulting linear equations become underdetermined. To
avoid the increased variance, an extra regularization term
�−1∑nf

k=1

∑n
j=0 	2

j,k can be applied to the estimation prob-
lem (35). Results for the Gaussian approach including such
a regularization term, and withnf = 46, are displayed in
Table 2. Note that the performance of the Gaussian estima-
tor has drastically improved, but is still about 50% worse
than the LS-SVM estimator (Fig. 2).

8. Conclusions

In this paper, we have proposed a new technique for the
identification of MIMO Hammerstein ARX systems. The
method is based on least squares support vector machines
function approximation and allows to determine the mem-
oryless static nonlinearity as well as the linear model pa-
rameters from a linear set of equations. The method was
compared to results of two other Hammerstein identifica-
tion algorithms to illustrate its performance. This combined
with the straightforward derivation of the results, the avail-
ability of a strong regularization framework (Vapnik, 1998;
Schölkopf & Smola, 2002; Suykens et al., 2002), and the
freedom that one gets in modelling the nonlinearity by the
design of an appropriate positive definite kernel makes the
proposed technique an excellent candidate for Hammerstein
model identification.
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