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Abstract
Linear system identification is an important and useful approach in experimental modal analysis. It allows for
the extraction of resonance frequencies, damping ratios and mode shapes of a vibrating structure. In order
to reduce the bias on the estimates, the model order is usually chosen quite high. This often results in the
appearance of non-physical, or so-called spurious modes. In this paper we will show that many spurious modes
can be removed from the obtained model using ideas from model reduction and looking at the energy contained
in these modes.

1 Introduction

System identification is an important tool for the anal-
ysis of forcefully or ambient excited vibrating struc-
tures [1]. In its standard form, a linear model for the
structure is built starting from available observations.
Based on this model, modal characteristics like reso-
nance frequencies and mode shapes can be estimated.
Usually, the order of the models involved is chosen
quite high in order to reduce the bias on the estimates
and allow for the model to capture all relevant charac-
teristics of the structure, even in the presence of large
amounts of measurement noise. Unfortunately, as the
order of the model is increased, so will be the num-
ber of identified modes. This will in many cases in-
evitably result in the appearance of so-called spurious
modes. In this paper we will describe a technique to
detect these spurious modes and remove them from
the model. The technique is heavily based on energy
considerations and bears resemblance with the well
known theory of balanced model reduction [6, 7].

In Section 1, we will introduce a particular no-
tion of energy and describe its relation to the the-
ory of balanced model reduction. In Section 2, the
ideas from balanced model reduction will be applied
to models in the modal form for use in modal analy-
sis. In Section 3, a concrete implementation of the
proposed technique will be described, and in Sec-
tion 4 some real life examples will demonstrate that

the proposed technique leads to elimination of spuri-
ous modes in many cases. Finally, some conclusions
will be drawn in Section 5. Some common notations
that will be used throughout this text are the follow-
ing. E [·] will be used to denote the expected value of
an expression.A(i:j, k:l) denotes a submatrix ofA,
bounded by theith andjth row andkth andlth col-
umn. If a colon (:) is used on its own (e.g.A(:, k:l))
all available rows and/or columns are included in the
submatrix. The same principle applies to vectors.(
eg.x(3:5) =

[
x(3) x(4) x(5)

])
. Further exten-

sions are trivial.

2 A notion of energy and bal-
anced model reduction

In order to introduce the basic concepts of balanced
model reduction we will consider deterministic linear
time invariant models. In discrete time, such a model
may be represented as follows:

xk+1 = Axk +Buk ,
yk = Cxk +Duk ,

(1)

whereA ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n andD ∈
R
l×m. yk ∈ Rl represents the output anduk ∈ Rm

the input at discrete timek. We will assume that an
infinite amount of data is available (k ∈ [0,∞)).
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The output energy of a model of the form (1) in a
time interval[0, N -1] is given as

∑N−1
k=0 ‖yk‖2. Like-

wise the input energy is given as
∑N−1

k=0 ‖uk‖2. It is
straightforward to see that

Jy =
N−1∑
k=0

‖yk −Duk‖2

= xT0

(
N−1∑
k=0

(Ak)TCTCAk
)
x0 (2)

= xT0 ΓTNΓNx0 ,

where

ΓN =


C
CA
CA2

...
CAN−1

 (3)

is the so-called observability matrix of orderN of (1).
Introducing the observability Grammian of orderN :

QN = ΓTNΓN , (4)

equation (2) can further be reduced to

Jy = xT0 QNx0 . (5)

It can now be seen that the observability Grammian
QN in (5) can be interpreted in terms of an “oriented”
energy. Large entries inQN will signalise a large con-
tribution of certain parts of the state to the output en-
ergy whereas small elements inQN can be associated
to small contributions. This point can be made more
precise by taking the singular value decomposition of
ΓN :

ΓN = UΓNΣΓNV
T

ΓN
. (6)

With (6), equation (5) can be rewritten as

Jy = (xT0 VΓN )(ΣΓN )(V T
ΓN
x0) (7)

The conclusion is straightforward. If an important
part of the initial state lies along right singular vectors
corresponding to small singular values, it will con-
tribute little toJy. If however, the initial state is lying
along singular vectors corresponding to large singular
values, it will contribute a lot.

Where the observability Grammian gives a mea-
sure of state-output energy, the so-called controllabil-
ity Grammian is its system theoretic dual: The con-
trollability Grammian can be shown to characterize
input-state energy relations. Assuming that the initial

state isx0 = 0, it is straightforward to see that at time
N :

xN = ∆N

uN−1
...
u0

 = ∆NU, (8)

with ∆N =
[
B AB A2B . . . AN−1B

]
, the so-

called controllability matrix of orderN of the sys-
tem. One could now search for the input of min-
imum energy that brings the system from an initial
statex0 = 0 to an end statexN at timeN by solving
the following least squares problem:

minU‖xN −∆NU‖2, (9)

which has as a solution

U = ∆†NxN . (10)

where∆†N is the Moore-Penrose inverse of∆N . The
input energy corresponding to this solution is given
by

JU =
N−1∑
k=0

‖uk‖2

= UTU (11)

= xTN (∆N∆T
N )†xN

= xTNP
†
NxN .

In (11) the controllability Grammian of orderN ,
PN = ∆N∆T

N was introduced. Again we could take
a singular value decomposition of∆N yielding

∆N = U∆N
Σ∆N

V T
∆N

. (12)

The system (1) will be called controllable if∆N is of
full rank for N ≥ n. Assuming the system is con-
trollable andN ≥ n, equation (9) will have exactly
one solution andP †N = P−1

N . With these assumptions
(12) can be substituted in (11) to obtain:

N−1∑
k=0

‖uk‖2 (13)

= xTNU∆N
Σ−1

∆N
V T

∆N
V∆N

Σ−1
∆N

UT∆N
xN (14)

= xTNU∆N


1
σ2

1

...
1
σ2
n

UT∆N
xN (15)

= xTNP
−1
N xN . (16)

Obviously the elements ofPN serve as a measure of
degree of controllability of the state. If for instance



xN equals the first left singular vector, then the mini-
mum energy needed to control the state fromx0 = 0
to xN equals 1

σ2
1
. If howeverxN equals the singular

vector corresponding to the smallest singular value,
the energy needed equals1

σ2
n

. Hence state vectors that
are lying in the direction of singular vectors corre-
sponding to large singular values are relatively easy
to control compared to states that are lying in singu-
lar subspaces corresponding to small singular values.

From the definitionsPN = ∆N∆T
N andQN =

ΓTNΓN it is easy to demonstrate that they satisfy the
following Lyapunov equations:

AP TNA
T − PN = ANBBTAN

T −BBT , (17)

ATQNA−QN = AN
T
CTCAN − CTC. (18)

When the system is stable, taking the limit forN →
∞ results in the following Lyapunov equations for the
infinite Grammians:

AP∞A
T − P∞ = −BBT , (19)

ATQ∞A−Q∞ = −CTC . (20)

Efficient algorithms exist to solve both Lyapunov
equations forP∞ andQ∞ directly from the system
matricesA,B, C, andD. [2, 3, 4, 5]

The infinite observability and controllability
Grammians serve as a basis for many model reduction
schemes. An important concept, introduced by Moore
[6, 7], is that of balanced model reduction. In short,
the transfer matrixD + C(zI − A)−1B correspond-
ing to any state-space model of the form (1) is invari-
ant under a state transformationxk → xTk = Txk,
whereT is an arbitrary but non-singular matrix, pro-
vided the system matrices are adapted accordingly
(A,B,C,D) → (TAT−1, TB,CT−1, D). It has
been shown by Moore in [6] that there always exist a
representation(Ab, Bb, Cb, D) transforming the infi-
nite controllability and observability Grammian to be
diagonal and equal. The corresponding transforma-
tionT can be obtained from the eigenvalue decompo-
sition of the productQ∞P∞ asT−TQ∞P∞T T = Σ2

[6]. In this representation,

xbk+1 = Abxbk +Bbuk ,

yk = Cbxbk +Duk , (21)

which is known as the balanced representation, we
then have:

P b∞ = TP∞T
T = Σ, (22)

Qb∞ = T−TQ∞T
−1 = Σ, (23)

Σ = diag
[
σ1 σ2 . . . σn

]
. (24)

By formally substituting a diagonal Grammian in (5)
and (11), it can be seen that the result of diagonal-
izing the Grammians and making them equal is that
the importance of each state coefficient in a model of
the form (21) can now be assessed. Indeed, from (5)
it can be seen that the most important coefficients in
the state, in terms of degree of observability, or more
loosely, contribution to the total output energy, are
those coefficients related to the largest singular val-
ues inΣ. Likewise, it can be seen from (11) that these
will precisely be the state coefficients with the highest
degree of controllability. The balanced model reduc-
tion scheme is now the following:

1. Solve the Lyapunov equations (19-20) forP∞
andQ∞.

2. Calculate the balancing transformation
T from the eigenvalue decomposition
T−TQ∞P∞T

T = Σ2.

3. Balance the model (A,B,C,D) →
(TAT−1, TB,CT−1, D).

4. PartitionΣ in dominant and small singular val-
ues:

Σ =



σ1

... 0
σr

σr+1

0
...

σn


, (25)

and partition(A,B,C,D) accordingly: A B

C D

 =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 . (26)

The balanced model reduced model is:

(Ar, Br, Cr, D) = (A11, B1, C1, D). (27)

Noting the full order transfer matrixD + Cb(zI −
Ab)−1Bb of (21) asHb(z), and the lower order trans-
fer matrix resulting from the truncation asHb

r(z) it
has been reported in the literature that [6]:

‖Hb −Hb
r‖∞ < 2

(
n∑

i=r+1

σi

)
, (28)

where for a transfer matrixH, ‖H‖∞ =
maxωσ̄(H(ejω)), with σ̄(X) the maximal singular



value of a matrixX, is the so-called infinity norm of
H. Hence, it follows from (28) that balanced model
reduction allows to reduce the order of the model,
with minimal changes to the transfer matrix in theL∞
sense.

It has been shown in [8], however, that balanced
model reduction is far from optimal inL2 sense. The
L2 norm of a transfer matrixH is calculated as

‖H‖22 =
∞∑
k=1

tr
[
(CAk−1B)(CAk−1B)T

]
(29)

+ tr
[
DDT

]
, (30)

which, using the GrammiansP∞ andQ∞, reduces to:

‖H‖22− tr
[
DDT

]
= tr

[
CP∞C

T
]

= tr
[
BTQ∞B

]
,

(31)
and in the balanced form

‖H‖22 − tr
[
DDT

]
=

n∑
i=1

σiC
b(:, i)TCb(:, i). (32)

Based on these derivations, it was suggested in [8]
that, in case one is interested inL2 model reduction
rather thanL∞ model reduction it is recommended to
partition the state space model according to the mag-
nitudes ofσiCb(:, i)TCb(:, i), the so-called balanced
gains, in stead ofσi alone.

3 Model reduction in the modal
form

The model reduction techniques given in section 2
work on models in their balanced form, meaning that
both the observability and controllability Grammians
are diagonal and equal. In modal analysis, however,
one usually works with the modal form, given as.

xmk+1 = Λxmk +Bmuk,

yk = Cmxmk +Duk, (33)

whereΛ is diagonal and mainly consists of pairs of
complex conjugated eigenvaluesλ, λ, being the poles
of the system. The modal characteristics of the struc-
ture under study can easily be obtained as follows:

fi = arg

(
λi
Ts
2π

)
, (34)

di =
ln(|λi|)√

ln(|λi|)2 + arg(λi)2
, (35)

vi = C ′(:, i) , (36)

with fi, di andvi the resonance frequency, damping
value and mode shapes corresponding to theith pole
Λ(i, i) = λi. Ts is the sampling rate.

It has been shown in [9] that for nearly undamped
structures, the GrammiansPm∞ andQm∞ in the modal
form are almost diagonal, meaning that the modal and
balanced form are “close” to each other in some sense
for nearly undamped systems. In this case, the model
reduction procedures outlined in Section 2 could be
applied to (33), effectively removing those modes
from the model that are least relevant in describing the
structures dynamics. As it seems only reasonable to
assume that spurious modes take little part in the ac-
curate description of the structures dynamics, model
reduction might offer a technique to remove spurious
modes in the nearly undamped case.

In many practical cases, however, the structure
under study is not nearly undamped, and the modal
form may deviate quite considerably from the bal-
anced form, even for relatively lightly damped struc-
tures. In such cases the GrammiansPm∞ andQm∞ will
not be diagonal and the total output energy will con-
sist of a sum of contributions from the different states,
including cross-terms:

Jy = xT0 Q
m
∞x0, (37)

=
n∑
i=1

x2
0(i)Qm∞(i, i), (38)

+
∑
i6=j

x0(i)x0(j)Qm∞(i, j). (39)

Due to the crossterms in (39) the individual contribu-
tion of every state component to the total output en-
ergy is hard to assess, which is why modal reduction
techniques can in general not be used in the modal
form. Formally we can still calculate the norms of
the difference of the transfer matrices of the full order
modelHm(z) and a truncated modelHm

r (z):

‖Hm −Hm
r ‖∞, ‖Hm −Hm

r ‖L2 . (40)

It will be shown by means of some examples that in
many cases, calculating (40) gives enough informa-
tion to successfully remove most spurious modes in a
model.

4 Concrete implementation

Let’s assume we have a discrete linear model given in
modal form:

xmk+1 = Λxmk +Bmuk,

yk = Cmxmk +Duk , (41)



with the dimensions involved the same as in prior sec-
tions. Select modei from (41). The modal subsystem
corresponding to this mode is given as[
xk+1(i)
x̄k+1(i)

]
=

[
λi 0
0 λ̄i

] [
xk(i)
x̄k(i)

]
+
[
bi
b̄i

]
uk, (42)

yk =
[
c c̄i

] [xk(i)
x̄k(i)

]
, (43)

with bi = Bm(i, :) andci = Cm(:, i). We introduce
the following notations:

Ai =
[
λi 0
0 λ̄i

]
, (44)

Bi =
[
bi
b̄i

]
, (45)

Ci =
[
ci c̄i

]
, (46)

Hi(z) = Ci(zI2 −Ai)−1Bi. (47)

With these notations, we have

‖Hi‖2L2 = tr
(
CiPi∞C

T
i

)
, (48)

‖Hi‖∞ = maxωσ̄
(
Hi(ejω)

)
, (49)

wherePi∞ can be obtained by solving the discrete
Lyapunov equation: [6]

AiPi∞Ai
T − Pi∞ = −BiBiT , (50)

and numerical procedures are widely available for the
calculation of the infinity norm [10]. Clearly equa-
tions (48-49) can be seen as giving a measure of the
model reduction error when removing the mode cor-
responding toλi. It should be noted that for prac-
tical applications, algorithms to solve the lyapunov
equation (50) might break down due to the complex
nature of the matricesAi, Bi, Ci. In these cases one
might prefer to work with a state space representation
where, in stead of being diagonal,Am is composed
out of 2 by 2 block matrices of the form:

Ãi =
[

Real(λi) Imag(λi)
−Imag(λi) Real(λi)

]
(51)

andBi andCi are adapted accordingly.
Note that certain components ofHi in (47)will be-

come zero if a zero is present in the full order model
Hm at positionλi, a so called pole-zero cancellation.
Suppose for instance thatHm(k, l)(λi) is zero, mean-
ing that the transfer function from inputl to outputk
contains zeros at positionsλi andλ̄i, then we derive

from:

Hm(k, l)(λi) (52)

= D(k, l) + Cm(k, :)(λiIn − Λ)−1Bm(:, l) (53)

= D(k, l) +
n∑
p=1

Cm(k, p)Bm(p, l)
λi − λp

(54)

=

∏n
q=1(λi − λq)D(k, l)∏n

q=1(λi − λq)
(55)

+

∑n
p=1

∏
q 6=p(λi − λq)Cm(k, p)Bm(p, l)∏n

q=1(λi − λq)
= 0, (56)

thatCm(k, i)Bm(i, l) = ci(k)bi(l) = c̄i(k)b̄i(l) =
0. Hence:

Hi(k, l)(z) =
[
ci(k) c̄i(k)

]
(57)

×
(
zI2 −

[
λi 0
0 λ̄i

])−1

(58)

×
[
bi(l)
b̄i(l)

]
= 0. (59)

It has been proposed in the literature to look at
pole/zero cancellations occurring in every component
ofH in order to detect spurious poles [11]. The above
calculations show that a cancellation forλi in every
component ofH leads to‖Hi‖L2 = ‖Hi‖∞ = 0.
Hence this type of pole/zero cancellations is easily
detected using model reduction in the modal form.

Extension of the results to the stochastic case is
trivial. For stochastic systems, a state space model in
so-called forward innovation form, is given as:

xFk+1 = AxFk +Kek ,
yk = CxFk + ek ,

EekeTl = Σeδkl ,
(60)

with ek being a white noise sequence with zero mean
and covariance matrixΣe, A ∈ Rn×n, K ∈ Rn×l,
andC ∈ Rl×n. For this type of models we have

HF (z) = I + CF (zIn −AF )−1KF , (61)

and (40) can again be used to get an idea of the impor-
tance of a certain mode. For completeness it is worth
mentioning that a notion of stochastic balancing ex-
ists, where the balanced representation is obtained by
solving a set of Riccatti equations rather than Lya-
punov equations. See [15] for more details on forward
innovation models and their properties.

5 Experimental results

The model reduction technique described in this pa-
per was used to detect spurious modes in a stochastic
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Figure 1:Spectrum of a steel mast

damp. freq. L2 L∞

0.57% 2.709Hz 12.07 132.44
1.30% 1.179Hz 10.07 109.81
0.56% 2.605Hz 8.09 88.29
1.17% 1.171Hz 6.58 71.06
1.10% 1.954Hz 7.17 63.21
0.44% 4.629Hz 6.63 58.34
0.54% 3.686Hz 5.96 51.94
0.65% 6.169Hz 3.71 16.25
1.18% 4.661Hz 3.91 15.34
5.27% 5.067Hz 5.33 12.27
3.66% 5.071Hz 4.15 9.73

14.06% 4.820Hz 5.65 8.58
16.27% 2.643Hz 4.11 6.36
6.84% 5.114Hz 3.87 6.21

20.65% 1.948Hz 3.74 5.19
15.96% 4.979Hz 4.21 4.99
9.73% 5.501Hz 3.67 4.55

62.56% 2.935Hz 3.50 2.42
23.94% 5.530Hz 3.30 2.30

Table 1: Modes extracted from mea-
surements on a steel mast and corre-
spondingL2 andL∞ norms. Ranking
as a function of decreasingL∞ norm.

subspace model from measurements on a steel trans-
mitter mast for cellular phone networks [12]. Nine ac-
celerometers were placed on the mast and the mast’s
response on the wind turbulence was measured. A
40th-order stochastic subspace model was thereafter
created for the mast using the N4SID procedures de-
scribed in [13]. For each couple of complex conju-
gated polesλi, λ̄i in the model, the following error
norms were calculated:

d2 = ‖Hi‖L2 , d∞ = ‖Hi‖∞, (62)

with Hi(z) as defined in the previous Section.
Before proceeding we have two caveats:

First of all, in an experiment, not all accelerome-
ters are excited by all the modes present in the sys-
tem. Furthermore, some accelerometers may be ex-
cited more by the system as a whole than others, due
to scaling differences in the measuring equipment or
simply due to the locations of the accelerometers on
the structure. The measuresd2 andd∞ are strongly
dependent on the scaling of one or more outputs.
Hence, in case a certain mode is only present in a
single accelerometer, and this accelerometer happens
to be poorly excited by the structure as a whole, the
obtained measuresd∞ andd2 will inevitably be very
small and the mode will always be identified as spuri-
ous. Hence, it is recommended to scale all outputs so
as to have a comparable amount of total energy stored
in each output to avoid this problem.

Secondly it is known that subspace identification
methods for stochastic systems can fail due to prob-
lems with stability or positive realness of the ob-
tained model [14]. Several algorithms have been pro-
posed in the literature to deal with these problems
[15, 16, 17, 18, 19]. In the examples reported here
we have used the methods described in [15] and [18]
to obtain stable and positive real models.

The results of the analysis are given in Table 1.
For each mode found in the model, the corresponding
damping value and resonance frequency are given in
the first two columns. The last two columns contain
the results of theL2 andL∞ criteria, given in (62).
Modes that were found to be physical in an indepen-
dent user interactive procedure described in [12] are
displayed in bold. Note that all emphasized modes in
the table correspond to highL2 andL∞ norms, with
the results for theL∞ norm apparently being the most
useful for the detection of spurious modes.

The results given in Table 1 can intuitively be
understood by looking at the true spectrum given in
figure 1. Since the true modes of the system have
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Figure 2:Spectrum of an airplane

relatively low damping values and their frequencies
are relatively far apart, one can expect sharp and
easily detectable peaks, which is precisely what can
be seen in figure 1. For such clearly separated peaks
theL∞ andL2 norms can intuitively be interpreted
as giving a measure for the height, respectively the
surface beneath the peaks in the output spectrum, up
to a certain constant determined by the variance of the
feeding white noise. Hence, it comes as no surprise
that the model reduction approach described in this
paper retains those poles that correspond to the peaks
in this spectrum. The relation with the spectrum is
not always as straightforward though, as will be seen
in the following example where the individual peaks
in the spectrum are hardly distinguishable.

Measurements on an airplane

A second example involves in-flight measurements on
an airplane. A noisy dataset with 1 input and 10 out-
puts was analyzed using a40th order deterministic
subspace model and the measures given in (62). Re-
sults are given in table 2, mostly in the same way as
for the prior example, with as modes in bold the ones
that where found to be physical in an independent
analysis done by the airplane manufacturer. Analysis
of the MAC-values, relating the mode shapes of dif-
ferent modes [20], easily revealed that the modes with
angular frequencies 1.347 and 1.351 are in fact one
and the same mode and could be grouped together, for
instance by applying balanced model reduction on the
corresponding fourth order subsystem. Notice that
most true modes can not be distinguished in the out-
put spectrum of one of the accelerometers, displayed

damp. ang. freq. L2 L∞

2.65% 3.571Hz 10.45 55.23
4.96% 3.433Hz 10.85 42.80
4.03% 6.082Hz 8.94 29.47
3.72% 3.582Hz 3.62 16.16
2.83% 5.838Hz 3.52 14.12
2.58% 2.707Hz 1.43 8.83
2.99% 3.129Hz 1.55 8.26
3.75% 5.353Hz 1.90 6.92
5.77% 3.866Hz 2.42 6.59
2.01% 3.365Hz 1.26 6.22
4.39% 2.091Hz 1.14 4.85
5.73% 3.697Hz 1.57 4.41

45.32% 0.182Hz 0.84 3.59
3.14% 3.983Hz 0.74 2.69
1.53% 4.179Hz 0.22 1.14
6.75% 4.146Hz 0.29 0.71
8.17% 2.816Hz 0.16 0.43

Table 2: Modes extracted from mea-
surements on an airplane and corre-
spondingL2 andL∞ norms. Ranking
as a function of decreasingL∞ norm.

in figure 2, which is quite representable for the output
spectra that were obtained for the other accelerome-
ters in this experiment. Using model reduction in the
model form however, a separation between true and
spurious modes was again obtained, at least inL∞
norm, although the results are not as convincing as in
the prior experiment. It is therefore important to note
that although the proposed technique gives a good in-
dication in many cases as to whether a mode is spu-
rious or not, its use should be combined with other
techniques with similar performance, for instance in
an approach involving many criteria like stabilization
in the stabilization diagram and pole/zero cancella-
tions [11], to get a good overall performance.

6 Conclusions

In this paper it was shown that by applying ideas from
the theory of balanced model reduction on a model in
the modal form, it is in many cases possible to detect
spurious modes. The proposed technique could serve
as an extra indication in combined approaches that
take a set of parameters into account, ranging from
stabilization in the stabilization diagram to pole/zero
cancellations.
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