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Abstract

Linear system identification is an important and useful approach in experimental modal analysis. It allows for
the extraction of resonance frequencies, damping ratios and mode shapes of a vibrating structure. In order
to reduce the bias on the estimates, the model order is usually chosen quite high. This often results in the
appearance of non-physical, or so-called spurious modes. In this paper we will show that many spurious modes
can be removed from the obtained model using ideas from model reduction and looking at the energy contained
in these modes.

1 Introduction the proposed technique leads to elimination of spuri-
ous modes in many cases. Finally, some conclusions

System identification is an important tool for the anal-will be drawn in Section 5. Some common notations

ysis of forcefully or ambient excited vibrating struc- that will be used throughout this text are the follow-

tures ['1]. In its standard form, a linear model for theing. £[-] will be used to denote the expected value of

structure is built starting from available observationsan expressionA(i:j, k:l) denotes a submatrix of,

Based on this model, modal characteristics like resasounded by theth andjth row andxt" andith col-

nance frequencies and mode shapes can be estimataehn. If a colon (:) is used on its own (e.g.(;, k:1))

Usually, the order of the models involved is choserall available rows and/or columns are included in the

quite high in order to reduce the bias on the estimatesubmatrix. The same principle applies to vectors.

and allow for the model to capture all relevant charac{eg.z(3:5) = [¢(3) =(4) (5)]). Further exten-

teristics of the structure, even in the presence of largsions are trivial.

amounts of measurement noise. Unfortunately, as the

order of the model is increased, so will be the num-

ber of identified modes. This will in many cases in-2 A notion of energy and bal-

evitably result in the appearance of so-called spurious  gnced model reduction

modes. In this paper we will describe a technique to

detect these spurious modes and remove them frofg order to introduce the basic concepts of balanced

the model. The technique is heavily based on energiodel reduction we will consider deterministic linear

considerations and bears resemblance with the welime invariant models. In discrete time, such a model

known theory of balanced model reduction 16, 7. may be represented as follows:

In Section 1, we will introduce a particular no-

tion of energy and describe its relation to the the- Tpr1 = Azp+ Buy,

ory of balanced model reduction. In Section 2, the yr = Cuzxp+ Duy,

ideas from balanced model reduction will be applied

to models in the modal form for use in modal analy-whereA € R™*"*, B € R™™, C € R*™ andD ¢

sis. In Section 3, a concrete implementation of theR'*™, 1, € R! represents the output ang € R™

proposed technique will be described, and in Secthe input at discrete timgé. We will assume that an

tion 4 some real life examples will demonstrate thainfinite amount of data is availablé € [0, 00)).

(1)
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The output energy of a model of the form (1) in astate iszg = 0, it is straightforward to see that at time
time interval[0, N-1] is given asy \r Hkaz Like-

wise the input energy is given { =0 HukH2. It is UN-1
straightforward to see that zy=ANn| 1 | =AnNU, (8)
N-1 4o
Jy = [y — Duy]|? with Ay = [B AB A?B ... AN-1B],theso-
k=0 called controllability matrix of ordetV of the sys-
. N-1 T T tem. One could now search for the input of min-
= 25 (> _(AMHTcTca (2)  imum energy that brings the system from an initial
k=0 statexy = 0 to an end state y at time N by solving
= 214 TNz, the following least squares problem:
where ~ _ minU||a:N — ANUHZ, (9)
C
CA which has as a solution
— | cA?
Iy= & (3) U= Alay. (10)
| CAN—L whereA' is the Moore-Penrose inverse afy. The

is the so-called observability matrix of ord&rof (1). input energy corresponding to this solution is given

Introducing the observability Grammian of ord®r by

N—
Qv = TATw, (4) Joo= > [l
equation (2) can further be reduced to - Uy (11)
Jy = zt Qo . (5) = ay(AnARN) T2y
= x%P]]:,a:N

It can now be seen that the observability Grammian
QN In (£) can be interpreted in terms of an “oriented”In (11) the controllability Grammian of ordeN,
energy. Large entries iy y will signalise a large con- Py = AyAZ was introduced. Again we could take
tribution of certain parts of the state to the output ena singular value decomposition Afy yielding
ergy whereas small elements@hy can be associated

huti ‘< N0 Ay =UnSa VA . (12)
to small contributions. This point can be made more N AN=AN VAN
precise by taking the singular value decomposition o

L II'he system (1) will be called controllablef is of
N-

Ty = Up. S VT ©) full rank for N > n. Assuming the.system is con-
NN TN trollable andN > n, equation (9) will have exactly
With (t), equation (5) can be rewritten as one solution andDJi, = Py'. With these assumptions
(12) can be substituted in (11) to obtain:
Jy = (a0 Vey)(Sry)(Viyzo)  (7)

2
The conclusion is straightforward. If an important Z [ (13)

part of the initial state lies along right singular vectors . R T

corresponding to small singular values, it will con- = oNUan YA VA VayXa, Uayzn  (14)

tribute little to J,,. If however, the initial state is lying L

along singular vectors corresponding to large singular T i T

values, it will contribute a lot. = onUay Usyen (15)
Where the observability Grammian gives a mea- o2

sure of state-output energy, the so-called controllabil- — 2\ Pylay . (16)

ity Grammian is its system theoretic dual: The con-

trollability Grammian can be shown to characterizeObviously the elements dPy serve as a measure of

input-state energy relations. Assuming that the initiadegree of controllability of the state. If for instance



x equals the first left singular vector, then the mini-By formally substituting a diagonal Grammian in (5)
mum energy needed to control the state fregn= 0  and (11), it can be seen that the result of diagonal-
to xn equals— If howeverzy equals the singular izing the Grammians and making them equal is that

vector corresponding to the smallest singular valughe importance of each state coefficient in a model of
the energy needed equa% Hence state vectors that the form (21) can now be assessed. Indeed, from (5)
are lying in the d|rect|on of singular vectors corre-it can be seen that the most important coefficients in
sponding to large singular values are relatively eas{he state, in terms of degree of observability, or more
to control compared to states that are lying in singuloosely, contribution to the total output energy, are

lar subspaces corresponding to small singular valueghose coefficients related to the largest singular val-

From the definitionsPy = ANA]TV andQy = uesinX. Likewise, it can be seen fror (11) that these
r%rN it is easy to demonstrate that they satisfy thewill precisely be the state coefficients with the highest
following Lyapunov equations: degree of controllability. The balanced model reduc-

tion scheme is now the following:

APTAT — py = ANBBTANT _BBT,  (17) L Solve the L ons (16:20) 165
. Solve the apunov equations {L9-
ATQNA — Qy = ANTCToAN — cTe.  (18) andQ... yap a S

When the system is stable, taking the limit for — 2. Calculate the balancing transformation
oo results in the following Lyapunov equations for the T from the eigenvalue decomposition

infinite Grammians: T-TQu P TT = X2,
APy AT — Py = —BB", (19) 3. Balance the model (A, B,C, D) —
ATQuA - Qe = —C'C. (20) (TAT-',TB,CT}, D).
Efficient algorithms exist to solve both Lyapunov 4 partitiony in dominant and small singular val-
equations forP,, and Q. directly from the system ues:
matricesA, B, C, andD. [/, 3, 4, 5] -~ _
The infinite observability and controllability 01
Grammians serve as a basis for many model reduction 0
schemes. Animportant concept, introduced by Moore oy
[5, 7], is that of balanced model reduction. In short, %= Orin , (25)
the transfer matrixD + C(zI — A)~! B correspond-
ing to any state-space model of the forrn (1) is invari- 0
ant under a state transformatiopn — x;{ = Tuxy, L In |
whereT is an arbitrary but non-singular matrix, pro- and partition(A, B, C, D) accordingly:
vided the system matrices are adapted accordingly
(A,B,C,D) — (TAT-',TB,CT~', D). It has Al B Ay A
been shown by Moore in [6] that there always exist a = | A1 Ay | By |. (26)
representatiofA®, B®, C®, D) transforming the infi- C|D Ci Gy | D

nite controllability and observability Grammian to be )
diagonal and equal. The corresponding transforma-  The balanced model reduced model is:
tionT" can be obtained from the eigenvalue decompo- B

sition of the product) oo Pso @ST T Qoo Pou TT = %2 (4r, Br, Cr, D) = (A1, B1, C1, D). (27)

[5]. In this representation, i i b
Noting the full order transfer matrid0 + C°(z1 —

ab = Aba} + Bluy, AY)~1BY of (21) asH?(z), and the lower order trans-
yr = C%t + Duy, (21) fer matrix resulting from the truncation d?(z) it
has been reported in the literature that [6]:
which is known as the balanced representation, we

then have: |H® — H||oo < 2 ( > ai> : (28)
Pé’o _ TPOOTT — E, (22) i=r+1
Q. = TTQ..T =13, (23)  where for a transfer matrixH, |H|. =

S = diag[or o2 ... on]. (24 max,g(H(e/*)), with 7(X) the maximal singular



value of a matrixX, is the so-called infinity norm of with f;, d; andv; the resonance frequency, damping
H. Hence, it follows from (28) that balanced modelvalue and mode shapes corresponding toﬂﬂﬂ@ole
reduction allows to reduce the order of the modelA (i, i) = );. Ty is the sampling rate.

with minimal changes to the transfer matrix in the, It has been shown in [9] that for nearly undamped
sense. structures, the Grammia3 andQ? in the modal

It has been shown ir [8], however, that balancedorm are almost diagonal, meaning that the modal and
model reduction is far from optimal ih? sense. The balanced form are “close” to each other in some sense
L? norm of a transfer matri¥/ is calculated as for nearly undamped systems. In this case, the model

0o reduction procedures outlined in Section 2 could be

IH|3 = > tr [(CA’“*B)(CA’“*B)T (29) applied to (33), effectively removing those modes

k=1 from the model that are least relevant in describing the

4ot [DDT] , (30)  structures dynamics. As it seems only reasonable to

assume that spurious modes take little part in the ac-

which, using the Grammiang,, andQ ., reducesto: curate description of the structures dynamics, model

reduction might offer a technique to remove spurious
modes in the nearly undamped case.

In many practical cases, however, the structure
under study is not nearly undamped, and the modal
form may deviate quite considerably from the bal-
T . T b anced form, even for relatively Iightly damped §truc—
|3 —tr [DD Z 0iC7(5,1)" C7(;,4). (32)  tures. In such cases the Grammidrs andQ™ will

not be diagonal and the total output energy will con-

Based on these derivations, it was suggested in [gqist of a sum of contributions from the different states,
that, in case one is interested if model reduction including cross-terms:

|H|j3—tr [DDT] = tr [CPxCT] =tr [BTQxB] .
(31)
and in the balanced form

rather than_., model reduction it is recommended to J, = 2TQmz (37)
. . [T 0 05

partition the state space model according to the mag- n

nitudes ofa;C*(:, )T C*(:, ), the so-called balanced = Y 22(0)Qu (i), (38)

gains, in stead of; alone.

+ Y wo(i)eo()QE(,5).  (39)
3 Model reduction in the modal i#

form Due to the crossterms in (39) the individual contribu-

tion of every state component to the total output en-

The model reduction techniques given in section Zrgy is hard to assess, which is why modal reduction
work on models in their balanced form, meaning thatechniques can in general not be used in the modal
both the observability and controllability Grammiansform. Formally we can still calculate the norms of
are diagonal and equal. In modal analysis, howevethe difference of the transfer matrices of the full order
one usually works with the modal form, given as.  modelH™(z) and a truncated modél;" (z):

2, = Aaf 4 Bmup, |H™ = H" oo, |H™ = HP| 2. (40)
yr, = C™zl' + Duy, (33) It will be shown by means of some examples that in
many cases, calculating (40) gives enough informa-

whereA is diagonal and mainly consists of pairs of tion to successfully remove most spurious modes in a
complex conjugated eigenvalugs), being the poles model.

of the system. The modal characteristics of the struc-

ture under study can easily be obtained as follows: ] )
Y Y 4 Concrete |mplementat|on

fi = arg <>‘1§> ’ (34) Let's assume we have a discrete linear model given in
| ; modal form:
4 = AD___ @)
V(A2 + arg(X)2 G, = Azt By,

uo = C'(i), (36) g = C"af+ Duy, (41)



with the dimensions involved the same as in prior secfrom:

tions. Select modéefrom (41.). The modal subsystem
corresponding to this mode is given as

()| _ [N k(@) bil .,
] I o R Y A
e = |c Cz]|: Ezﬂ (43)
with b; = B™(i,:) and¢; = C™(:,4). We introduce
the following notations:
N O
a= v (@)
b;
o= 7| (@5)
i = |a al, (46)
Hi(z) = Ci(zI, — A)'B,. (47)
With these notations, we have
IHil[7= = tr(CiPisCY ), (48)
|Hilloo = max,o (Hi(e')), (49)

where P;, can be obtained by solving the discrete

Lyapunov equation: [6]

AP AT — Py = —B;B;" | (50)

H™(k,1)(Ni) (52)
= D(k,1) + C™(k,:)(\il, — A)7'B™(:;,1)  (53)
—Dkl+zcmk)\p_)\ 2 (54)
- qul(/\i — Ag)D(k,1)
R VY 9
Dot Hgpp(Xi = Ag)C™ (k,p) B™ (p,1)
§ [T, = ) - 069
that O™ (k,4)B™(i,1) = ci(k)bi(l) = &(k)bi(l) =
0. Hence:
Hi(k,1)(z) = [ai(k) &(k)] (57)
-1
x <212— ﬁ) ﬂ) (58)
bi(l)
L)i(l)} -0 9)

It has been proposed in the literature to look at
pole/zero cancellations occurring in every component
of H in order to detect spurious poles [11]. The above
calculations show that a cancellation forin every
component ofH leads to||H,||;2 = ||Hilloo = O.
Hence this type of pole/zero cancellations is easily
detected using model reduction in the modal form.
Extension of the results to the stochastic case is
trivial. For stochastic systems, a state space model in

. , , -called forward innovation form, is given as:
and numerical procedures are widely available for the®"¢@ ed forward innovation form, is given as

calculation of the infinity norm 11.0]. Clearly equa-

tions (43-43) can be seen as giving a measure of the
model reduction error when removing the mode cor-

responding to\;. It should be noted that for prac-

tical applications, algorithms to solve the Iyapunov
equation (50) might break down due to the complex

nature of the matriced;, B;, C;. In these cases one

might prefer to work with a state space representation

where, in stead of being diagonal” is composed
out of 2 by 2 block matrices of the form:

Imag()\i)

~ Real\;)
A Real\;)

7 | —Imag\\) (51)
and B; and(C; are adapted accordingly.
Note that certain components &f in (4 /)will be-

:BkFH = Aa:,f + Key, ,
ye = Czf +ep, (60)
SekelT = Zeékl s

with e, being a white noise sequence with zero mean
and covariance matriX,, A € R"*", Kk ¢ R"¥,
andC € R¥*™. For this type of models we have

HY(2) =1+ CF (21, — AT) KT, (61)

and (40) can again be used to get an idea of the impor-
tance of a certain mode. For completeness it is worth
mentioning that a notion of stochastic balancing ex-
ists, where the balanced representation is obtained by
solving a set of Riccatti equations rather than Lya-
punov equations. Ser i15] for more details on forward
innovation models and their properties.

come zero if a zero is present in the full order model

H™ at position);, a so called pole-zero cancellation.

Suppose for instance that™ (k,1)(\;) is zero, mean-
ing that the transfer function from inputo outputk
contains zeros at positions and \;, then we derive

5 Experimental results

The model reduction technique described in this pa-
per was used to detect spurious modes in a stochastic



subspace model from measurements on a steel trans-
mitter mast for cellular phone networks [12]. Nine ac-
celerometers were placed on the mast and the mast’s
response on the wind turbulence was measured. A
40t-order stochastic subspace model was thereafter
created for the mast using the N4SID procedures de-
scribed in 113]. For each couple of complex conju-
gated poles\;, \; in the model, the following error
norms were calculated:

dy = ||Hi| 12, doo = ||Hilloos (62)

with H;(z) as defined in the previous Section.
Before proceeding we have two caveats:

‘ ‘ ‘ ‘ First of all, in an experiment, not all accelerome-
Froquency () ¢ " ters are excited by all the modes present in the sys-
tem. Furthermore, some accelerometers may be ex-
cited more by the system as a whole than others, due
to scaling differences in the measuring equipment or
simply due to the locations of the accelerometers on
the structure. The measurés andd,, are strongly
dependent on the scaling of one or more outputs.
Hence, in case a certain mode is only present in a
single accelerometer, and this accelerometer happens

Figure 1:Spectrum of a steel mast

| damp.| freq.[ L°[ Lo | to be poorly excited by the structure as a whole, the
0.57% | 2.709Hz | 12.07| 132.44 obtained measures,, andd, will inevitably be very
1.30% | 1.179Hz | 10.07 | 109.81 small and the mode will always be identified as spuri-
0.56% | 2.605Hz| 8.09| 88.29 ous. Hence, it is recommended to scale all outputs so
1.17% | 1.171Hz| 6.58| 71.06 as to have a comparable amount of total energy stored
1.10% | 1.954Hz| 7.17| 63.21 in each output to avoid this problem.
0.44% | 4.629Hz| 6.63| 58.34 Secondly it is known that subspace identification
0.54% | 3.686Hz| 5.96| 51.94 methods for stochastic systems can fail due to prob-
0.65% | 6.169Hz| 3.71| 16.25 lems with stability or positive realness of the ob-
1.18% | 4.661Hz| 3.91| 15.34 tained model 14]. Several algorithms have been pro-
5.27%| 5.067Hz| 5.33| 12.27 posed in the literature to deal with these problems
3.66%| 5.071Hz| 4.15 9.73 [1=, 16, 17, 18, 19]. In the examples reported here
14.06%| 4.820Hz| 5.65| 8.58 we have used the methods describedi in [15] and [18]
16.27%| 2.643Hz| 4.11| 6.36 to obtain stable and positive real models.
6.84%| 5.114Hz| 3.87| 6.21 The results of the analysis are given in Table 1.
20.65%| 1.948Hz| 3.74| 5.19 For each mode found in the model, the corresponding
15.96%| 4.979Hz| 4.21| 4.99 damping value and resonance frequency are given in
9.73% | 5.501Hz| 3.67| 4.55 the first two columns. The last two columns contain
62.56% | 2.935Hz| 3.50| 2.42 the results of the.? and L, criteria, given in (62).
23.94%| 5.530Hz| 3.30| 2.30 Modes that were found to be physical in an indepen-

dent user interactive procedure described in [12] are
displayed in bold. Note that all emphasized modes in
the table correspond to higl¥ and L., norms, with
the results for thd ., norm apparently being the most
useful for the detection of spurious modes.

The results given in Table 1 can intuitively be
understood by looking at the true spectrum given in
figure 1. Since the true modes of the system have

Table 1: Modes extracted from mea-
surements on a steel mast and corre-
spondingL? and L., norms. Ranking
as a function of decreasinfj,, norm.



| damp.| ang.freq.] L?| L |
2.65% | 3.571Hz| 10.45| 55.23
4.96% | 3.433Hz| 10.85| 42.80
4.03% | 6.082Hz| 8.94| 29.47
3.72% | 3.582Hz| 3.62| 16.16
2.83% | 5.838Hz| 3.52| 14.12
2.58% | 2.707Hz| 1.43| 8.83
2.99% | 3.129Hz| 1.55| 8.26
3.75% | 5.353Hz| 1.90| 6.92
577%| 3.866Hz| 2.42| 6.59
2.01%| 3.365Hz| 1.26| 6.22
4.39% | 2.091Hz| 1.14| 4.85

s 5.73%| 3.697Hz| 1.57| 4.41
Frequency (Hz) 45.32%/| 0.182Hz| 0.84| 3.59
Figure 2:Spectrum of an airplane 3.14% 3.983Hz| 0.74| 2.69

1.53%| 4.179Hz| 0.22| 1.14
6.75% | 4.146Hz| 0.29| 0.71
8.17%| 2.816Hz| 0.16| 0.43

relatively low damping values and their frequencies
are relatively far apart, one can expect sharp and
easily detectable peaks, which is precisely what can
be seen in figure 1. For such clearly separated peaks
the Lo, and L? norms can intuitively be interpreted
as giving a measure for the height, respectively the
surface beneath the peaks in the output spectrum, up

to a certain constant determined by the variance of thi figure 2, which is quite representable for the output

feeding white noise. Hence, it comes as no surprisgpectra that were obtained for the other accelerome-
that the model reduction approach described in thigers in this experiment. Using model reduction in the

paper retains those poles that correspond to the peajfodel form however, a separation between true and
in this spectrum. The relation with the spectrum isspurious modes was again obtained, at least.n

not always as straightforward though, as will be seefmorm, although the results are not as convincing as in
in the following example where the individual peaksthe prior experiment. It is therefore important to note

Table 2: Modes extracted from mea-
surements on an airplane and corre-
spondingL? and L., norms. Ranking
as a function of decreasing., norm.

in the spectrum are hardly distinguishable. that although the proposed technique gives a good in-
_ dication in many cases as to whether a mode is spu-
Measurements on an airplane rious or not, its use should be combined with other

A second example involves in-flight measurements otgchniques with similar performance, for instance in
an airplane. A noisy dataset with 1 input and 10 outan approach involving many criteria like stabilization
puts was analyzed usingzﬁ)th order deterministic N the stabilization diagram and pole/zero cancella-
subspace model and the measures given in (62). REONS [1'1], to get a good overall performance.

sults are given in table 2, mostly in the same way as

for the prior example, with as modes in bold the ones

that where found to be physical in an independen® Conclusions

analysis done by the airplane manufacturer. Analysis

of the MAC-values, relating the mode shapes of dif4n this paper it was shown that by applying ideas from
ferent modes I.0], easily revealed that the modes witthe theory of balanced model reduction on a model in
angular frequencies 1.347 and 1.351 are in fact onthe modal form, it is in many cases possible to detect
and the same mode and could be grouped together, fepurious modes. The proposed technique could serve
instance by applying balanced model reduction on thas an extra indication in combined approaches that
corresponding fourth order subsystem. Notice thatake a set of parameters into account, ranging from
most true modes can not be distinguished in the oustabilization in the stabilization diagram to pole/zero
put spectrum of one of the accelerometers, displayecancellations.
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