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Maximally entangled mixed states of two qubits
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‘We consider mixed states of two qubits and show under which global unitary operations their
entanglement is maximized. This leads to a class of states that is a generalization of the Bell
states. Two measures of entanglement are considered: entanglement of formation and negativity.
Surprisingly all states that maximize one measure also maximize the other. We will give a complete
characterization of these generalized Bell states and prove that these states for fixed eigenvalues
are all equivalent under local unitary transformations. We will furthermore characterize all nearly
entangled states closest to the maximally mixed state.

03.65.Bz, 03.67.-a, 89.70.+c

In this letter we investigate how mch entanglement
in a mixed two qubit system can be created by global
© unitary transformations. The class of states for which no
more entanglement can be created by global unitary oper-
ations is clearly a generalization of the class of Bell states,
those latter restricted to pure states. This question is
of considerable interest as entanglement is the magic in-
gredient of quantum information theory and experiments
always deal with mixed states. Recently, Ishizaka and Hi-
roshima [1] independently considered the same question.
They proposed a class of states and conjectured that the
entanglement of formation [2] and the negativity [3] of
these states could not be increased by any global unitary
operation. Here we prove their conjecture and further-
more prove that the states they proposed are the only
ones having the property of maximal entanglement.

Closely related to these generalized Bell states is the
question of characterizing the set of separable density ma-
trices [4], as the entangled states closest o the maximally
mixed state necessarily have to belong to the proposed
class of maximal entangled mixed states. We can thus
give a complete characterization of all nearly entangled
states lying on the boundary of the sphere of separa-
ble states surrounding the maximally mixed state. As a
byproduct this gives an alternative derivation of the well
known result of Zyczkowski et al. [3] that all states for
which the inequality Tr(p?) < 1/3 holds are separable.

The original motivation of this Letter wasg the following
question: given a single quantum mechanical system con-
sisting of two spin-1/2 systems, i.e. two qubits, in a given
state, how can one maximize the entanglement of these
qubits using only unitary operations. Obviously, these
unitary operations must be global ones, that is, acting
on the system as a whole, since any reasonable measure
of entanglement must be invariant under local unitary
operations, acting only on single qubits. As measures of
entanglement, the entanglement of formation (EoF) [2]
and negativity [3] were chosen.

The entanglement of formation of mixed states is de-
fined variationally as £ (p) = mingy.y 3°, i E(¢):) where

p =3 pi’lf)i'z,[)z . For 2 x 2 gystems the Eo¥f is well-
characterized by introducing the concurrence ¢ [2]:
1++/1—C*
@@:ﬂamzﬂ(~7wm) )
Clp) = max(0,01 — 02 — 03 — 04) (2)

where {o;} are the square roots of the eigenvalues of the
matrix 4

A=pSp*S (3)
8§ =0, ®0ay. (4)

Here H{z) is Shannon’s entropy function, the eigen-
values are arranged in decreasing order and ¢, is the
Pauli matrix. It can be shown that f(C) is convex and
monotonously increaging. Using some elementary linear
algebra it is furthermore easy to prove that the numbers
{o;} are equal to the singular values [7] of the matrix
VP 8./p. Here we use the notation ./p = ®AY/2 with
$AP’ the eigenvalue decomposition of p.

The concept of negativity of a state is closely related
to the well-known Peres condition for separability of a
state [5]. H a state is separable {disentangled), then the
partial transpose of the state is again a valid state, i.e.
it is positive. For 2 x 2 gystems, this condition is also
sufficient [6]. It turns out that the partial transpose of
a non-separable state has one negative eigenvalue. From
this, a measure for entanglement follows: the negativity
of a state [3] is twice the absolute value of this negative
eigenvalue:

En(p) = 2max(0, —A4), (3)

where A4 is the minimal eigenvalie of p74.
We now state our main result:

Theorem 1 Let the eigenvalue decomposition of p be
p = BAR!

where the eigenvalues {A\;} are sorted in non-ascending
order. Then both the entanglement of formation and the




negativity are marimized if and only if a global unitary
transformation of the form

0 0 0 1
1/v2 0 1/vVZ 0|, o
1/vV2 0 —1/v2 0 |7
0 1 0 0

U={Th&lh)

15 applied to the system, where U1 and Us are local uni-
tary operations and Dg is o unitary diegonal matriz. The
entonglement of formetion and negativity of the new state
o' =UpUT are then given by

B5(p) = f (max (0,0 = s = 2v/% s ) )

Ep(p') = max (0, /0 = %) + (o = M)? = Az = M)

respectively.

The class of generalized Bell states is defined as the states
p' thus obtained.

We now present the complete proof of this Theorem.
The cases of entanglement of formation and negativity
will be treated independently. We start with the entan-
glement of formation.

Asg the function f{z) is monotonously increasing, max-
imizing the EoF is equivalent to maximizing the concur-
rence. The problem is now reduced to finding:

Claax = 0,00 — 09 — 03 — 6
Urélgﬁ)( 0| 0 T3 — O4) (6)

with {@;} the singular values of
Q = A2eTUTSUBAY2, (7)

Now, @, I/ and § are unitary, and so is any product of
them. It then follows that

< — —_ —
Cmaz < VE{%)(O’ 01 — 03 — O3 0'4) (8)

with {o;} the singular values of A2V A'/2. The inequal-
ity becomes an equality if there is a unitary matrix U7
such that the optimal V can be written as ®TUTSU®.
A necessary and sufficient condition for this is that the
optimal ¥ be symmetric (V = V7): as § is symmetric
and unitary, it can be written as a product S{ S;, with S
again unitary. This is known as the Takagi factorization
of 5 [7]. This factorization is not unique: left-multiplying
S; with a complex orthogonal matrix @ (070 = 1) also
vields a valid Takagi factor. An explicit form of 5 is
given by:

0 110

S__L -1 0 01
FTAL 0 i 0
i 0 04

(9)

If V is symmetric it can also be factorized like this:
V = V{'Vi. Tt is now easy to see that any U of the
form

U = stov, e, (10)

with O real orthogonal, indeed yields V = V{£'V,.

To proceed, we need two inequalities concerning singu-
lar values of matrix products. Henceforth, singular val-
ues, as well as eigenvalues will be sorted in non-ascending
order. The following inequality for singular values is well-
known [8]:

Lemma 1 Let A € M, ,(C), B € My ,(C}. Then,

k

k
S 0i(4B) <3 oi(A)oi(B), (1)

i=1 i=1
fork=1,...,g=min{n,r,m}.
Less known is the following result by Wang and Xi [9]:

Lemma 2 Let A € M,(C), B & M, (C), and1 <i; <
c-e i <n. Then

k k
>N 0i{AB) > > 0i(A)on_141(B). (12)

=1

Set n = 4 in both inequalities. Then put £ = 1 in the
first, and & = 3,43 = 2,43 = 3,43 = 4 in the second.
Subtracting the inequalities then gives:

o1(AB) — (03(AB) + 05(AB) + 04(AB)) <
a1(A)o1(B) — a2(A)ou(B) — 03(A)o3(B) — o4(A)g2(B)

Furthermore, let A = A'? and B = VAY?, with A pos-
itive diagonal and with the diagonal elements sorted in
non-ascending order. Thus, o;(A) = 03(B) = +/A;. This
gives:

(o1 — (09 + o3 + o) APV AYZY < A — (20000 + Xg).

Tt is easy to see that this inequality becomes an equality
iff V' is equal to the permutation matrix

1000
0001
0010 (13)
0100

multipliied by an arbitrary unitary diagonal matrix Dy.
Therefore, we have proven:

maxycrey) (01 — (02 + 03 + 02)){(AVEVAY?) =
M= (2Ved+As). (1)
We can directly apply this to the problem at hand. The

optimal V is indeed symmetric, so that it can be decom-
posed as V = V,TV;. A possible Takagi factor is:




10 0 o
Joyvio e
i=lo 0 1 0 (15)

0 i/vVZ 0 —i/V3

The optimal unitary operations {7 are thus all of the form:
U= SIOVL Dglﬁ/ ’@t with O an arbitrary orthogonal ma-
trixz. It has to be emphasized that the diagonal matrix
Dy will not have any effect on the state p’ = U SASTUT.

To proceed we exploit a well-known accident in Lie
group theory :

SU2) ® SU(2) = S0(4). (16)

It now happens that the unitary matrix 57 is exactly
of the form for making Si(U; ® U3)S] real for arbi-
trary {U1,Uz} € SU(2). It follows that S (U7 & ;)81
is orthogonal and thus is an element of SO(4). Con-
versely, each element (7 € SO(4) can be written as
Q=5 ® Ug)S}l. On the other hand the orthogonal
matrices with determinant equal to —1 can all be written
as an orthogonal matrix with determinant 1 multiplied
by a fixed matrix of determinant 1. Some calculations
reveal that

We conclude that for each O € O(4) and Dy unitary di-
agonal, there exist U3, Uz € SU(2) and Dy unitary diag-
onal, such that U7 = STOVi Dy®' = (U, @U2)ST1A Dy 01

It is now easy to check that a unitary transformation
produces maximal entanglemeni of formation if and only
if it is of the form

0 0 0 1
1/v/20 1/4/2 0
1/v2 0 ~1/+/2 0
0 1 0 0

(Uh ® Us) D, (17

This completes the proof of the first part of the Theorem.

‘We now proceed to prove the second part of the Theo-
rem concerning the negativity. This proof is based on the
Rayleigh-Ritz variational characterization of the minimal
eigenvalue of a Hermitian matrix:

Amin (PTA) = [rinll? Tr pTA E:l’:) (E*
z:|{z|i=1
= _mn T (8)

The eigenvalue decomposition of ({z}{z|)4 can best be
deduced from its singular value decomposition. Let Z de-
note a reshaping of the vector  to a 2 x 2 matrix with
#;; = (€' ® ef|z). Introducing the permutation matrix
=3 i e & e7* the partial transpose can be written
as follows:

(la) ()™ = Po(& @ &1). (19)

The proof of this statement is elementary. We denote the
Schmidt decomposition of the vector |x) by

i = UhBUL, (20)

where the diagonal elements of ¥ are given by o1,
Since x is normalized we can parameterize these as
cos(a),sin(e) with 0 < o < 7/4 (to maintain the or-
dering). We get

(2} = B(h @ U)o D) (s @ Uh).  (21)

This clearty is a singular value decomposition. The ex-
plicit eigenvalue decomposition can now be calculated us-
ing the bagic property of Py that Fo(AQB) = (B A)F
for arbitrary A, B. It is then easy to check that the eigen-
value decomposition of (|z}{z|)%4 is given by:

(Je)(z)™ = V(2)D(a(2)V (=)} (22)

where D{w(z)) is the diagonal matrix with eigenvalues
{0}, 0109,0%, —c102) and

1 0 0 0
0 1/vV2 0 1/V2 (23)
0 1/4/2 0 —1/4/2

0 0 1 0

Viz) = (Ui(z) ® Ua(2))

For the probiem at hand, we have to minimize the min-
imal eigenvalue of (UpU1)?4 over all possible U € U(4).
Thus, we have to minimize:

n[}i'n TrUSARTUTV (2) D(af2))V (z)
= minmﬂi{n".i‘rAWTD(a)Y/V, (24)

where we have absorbed the eigenvector matrix @ of p,
as well as V{z)?, into U, yielding W. Now, the min-
imization over W can be done by writing the trace in
components

gla) = Tr AW D(a)W
= di{a)[Wyi* s

(2N ]

= d(a)T J(W)A, (25)

where d(a) and A denote the vectors containing the di-
agonal elements of D{a) and A, respectively. J(W) is a
doubly stochastic matrix formed from W by taking the
modulus squared of every element. The minimum over
all W is attained when J(W) is a permutation matrix;
this follows from Birkhoff’s theorem [7], which says that
the set of doubly-stochastic matrices is the convex clo-
sure of the set of permutation matrices, and also of the
fact that our object function is linear. Since the compo-
nents of o and A are sorted in descending order and A is




positive, the permutation matrix yielding the minimum
for any « is the matrix

0001
0010

h=10100 (26)
1000

Thus W has to be chosen equal to Jp multiplied by a di-
agonal unitary matrix Dg. Hence, the minimum over W

is given by 3% i=1 Ajfap1-j(a). Minimizing over o gives,
after a few basic calculatlons

Ag — }\4
V=R
gl@) = (Yo + A - \/(,\1

cos(2a) =

— Ag)?
TR+ (Ag )\4)2) /2.

This immediately yields the conjectured formula for the
optimal negativity.

We now have to find the U7 for which this optimum is
reached. As V(z)!U® = W, it follows that the optimal
unitary transformation U is given by U = V (z)Jy Dy ®t:

0 0 0 1
1/v2 0 1/v2 0
1/vV2 0 -1/v/2 0

6 1 0 0

U= (U, @Us) Dy@t  (27)

This is exactly the same U as in the case of entanglement
of formation. This completes the proof of the Theorem.
O

Let us now analyze more closely the newly defined class
of generalized Bell states. We already know that U/ is
unigue up to local unitary transformations. It is easy
to check that the ordered eigenvalues of the generalized
Bell states for given entanglement of formation f{C) are
parameterized by two independent variables o and 3:

0<a<l

i
,Bgmm(\/————\/A A3 — o2 —2a)

1

A =1-— ——6—(3+ﬁ2)

Ag = ! C(Oﬁ -+ ﬁ6)2

Y = 122 @ - (Voa+ )

Ay = ! ;Caz (28)

For given EoF there is thus, up to local unitary transfor-
mations, a two dimensional manifold of maximally entan-
gled states. In the case of concurrence ¢ = 1 the upper
and lower bounds on § become equal and the unique
pure Bell states arise. Another observation is the fact

that A4 of all generalized Bell states is smaller then 1/6.
This implies that if the smallest eigenvalue of whatever
two-qubit state exceeds 1/6, this state is separable.

A natural question is now to characterize the entan-
gled states closest to the maximally mixed state. A sen-
gible metric is given by the Frobenius norm [|p - 1| =
Voo, A2 —1/4. This norm is only dependent on the
eigenvalues of p and it is thus sufficient to consider the
generalized Bell states at the boundary where both the
concurrence and the negativity become zero. This can
be solved using the method of Lagrange multipliers. A
straightforward calculation leads to a one-parameter fam-
ily of solutions:

1
<z <=
0_$_6
1 1 1
1 1
)\3:5— E(g—ﬂ:) M=z (29)

The Frobenius norm {jp — 1|| for all these states on the
boundary of the sphere of separahle states is given by
the number /1/12. This criterion is exactly equiva-
lent to the well-known criterion of Zyczkowski et al. [3]:
Trp? = 1/3. Here however we have the additional ben-
efit of knowing exactly all the entangled states on this
boundary as these are the generalized Bell states with
eigenvalues given by the previous formula.

In conclusion, we have generalized the concept of pure
Bell states to mixed states of two qubits. Therefore we
have proven that the entanglement of formation and neg-
ativity of these generalized Bell states could not be in-
creased by applying any global unitary transformation.
Whether their entanglement of distillation is also maxi-
mal i8 an interesting open problem.
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