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Local filtering operations on two qubits
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We constder one single copy of a mixed state of two qubits and investigate how its entanglement changes
under local quantum operations and classical communications (LQCC) of the type p’ ~ (AR B)p(A®B)T. We
comnsider a real matrix parametrization of the set of density matrices and show that these LQCC operations
correspond to left and right multiplication by a Lorentz matrix, followed by normalization. A constructive way
of bringing this matrix into & normal form is derived. This allows us to calculate explicitly the optimal focal
filtering operations for concentrating entanglement. Fuuthermore, we give a complete characterization of the
mixed states that can be purified arbitrarily close to a Bell state. Finally, we obtain a new way of calculating

the entanglement of formation.
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Entanglement of two separated quanium systems implies
that there are nonlocal correlations between them. This fea-
ture of nonlocality has found practical applications in quan-
tum information theory (see, for example, Ref. [1]). Most
applications reguire that both parties share maximally en-
tangled states. A realistic preparation and transmission of
entangled states, however, yields mixed states. Therefore,
Bennett et al. [2]. proposed a protocol that allows one to
obtain asymptotically a nonzero number of maximally en-
tangled pure states by carrying out collective measurernents
on a large number of copies of entangled mixed states. Their
scheme, however, required that the fidelity of the mixed
states exceed 1/2. The Horodeckis subsequently showed how
mixed states of arbitrary fidelity could be purified by first
applying a filtering operation to each copy separately [3).
Linden et el [4] then asked whether it is possible to obtain
singlets out of mixed states by allowing only local operations
on each copy separately. While this is possible for pure
states, they proved that this is impossible in general for
mixed states [4,5], as the best state one can obtain is a Bell-
diagonal state [6]. The Horodeckis, however, gave an ex-
ample of a mixed state that could be purified arbitrarily close
to a singlet state through a process called quasidistillation
[7].

We shed light on those results by observing that filtering
operations on two qubits correspond to Lorentz transforma-
tions on a real parametrization of their density matrix. Using
TLorentz transformations, this real parameirization can be
brought into one of two types of normal forms, thus giving a
characterization of all states that can be transformed into
gach other by local operations. Our scheme also vields a way
of calculating the entanglement of formation [8], with as a
by-product a simple proof of the necessity and sufficiency of
the partial transpose criterion of Peres [9,10]. The main re-
sult of this Rapid Communication, however, is the fact that
we provide a constructive way of finding the optimal positive
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operator valued measure (POVM) for concentrating the en-
tanglement. We show that there exist two classes of states
corresponding to the two normal forms: those that can be
brought into Bell diagonal form leaving the rank of the den-
sity matrix constant, and those that can asymptotically be
brought into Bell diagonal form with lower rank. This last
class contains a subelass of mixed states that can be purified
arbitrarily close to the singlet state.
In this paper we will consider the filtering operations

_ (ARB)p(A®R)T
TH(A®B)p(A®B)T]

Y

where ATA=1I,,BTB=<I,. Since a local projective measure-
ment destroys all entanglement, we will only consider the
cases det{4)#0 and det{B)#0. Let us now calculate how
the entanglement of formation (EoF) changes under these
local operations. The EoF of a two qubit system can be cal-
culated as a convex monotonically increasing function of the
concurrence [8]. As shown in Ref. [11], the concurrence of p
is given by max{0,7, — 7~ 73— 1y) with {7;} the singular
values of XT(O‘y® o)X with p=XX*. Under the filtering
operations we have X'=(A®B)X/VIr{ATA@B'Bp). Since
(A2B) (0,®0,)(A®B)=det(A)der(B)(o,®0,),  this
proves the following theorem.

Theorem 1. Under the filtering operations (1), the concur-
rence changes as

Crec |det(A)||det(B)]

- —. (2)
Tr(A*A®B'Bp)

It will turn out to be very useful to introduce the real and
linear parametrization of the density matrix [12]

1

where the summation extends from 0 to 3 and with oy the
2X2 identity matrix and o4,05,07; the Pauli spin matrices.
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Below we will often leave out the normalization of p and R.
Note that normalization of R is very simple since Rpg
=Tr(p).

We will now prove how R transforms under the LQCC
operations {1).

Theorem 2. The 4X4 matrix R with elements R
=Tr{p(0;®0,)) transforms, up lo normalization, under
LOCC aperations (1) as

=I4RLY, @)

where L, and Ly are proper orthochronous Lorentz trans-
Jormations given by

Li=T(A@A®)TT/|det(A)|, (5)

Lp=T(B®B*)T/|det(B)], 6)
10 0 1

., 1fo 1 1 0 .

Sz 0 i~ ™
1 ¢ 0 -1

This theorem can be proven by introducing the matrix
Priirir =P and noting that R=4Tp77. It is easy to
check that under the LQCC operations (1) p transforms as
P =(A®A®)p(B®R*)T, where the notation A™* is used to
denote the elementwise complex conjugate. Therefore, R
wransforms as R’ =L, RL}|det(A)||det(B)| with L,=T(A
' , Ly=T(B®B*)T"/|det(B)|. Using the
identities Ao, A T= det(A)o, and T"MT*=~0¢,®0, with
M the matrix associated with the Lorentz metric 3
=diag[1,—1,—1,—1], it is easily checked that L ML}
=M=ILzML}. Furthermore, the determinant of L, and Ly
is equal to + 1, and the (0,0) element of L is positive, which
completes the proof.

As the complex 2X2 matrices with determinant one in-
deed form the spinor representation of the Lorentz group,
there is a 1-to-2 correspondence between each I, and
Aldet(A). Tt is interesting to note that when both A and B
are unitary, the theorem reduces to the well known fact [12]
that the rows and columns of R transform under SO{3),
which is indeed a subgroup of the Lorentz group.

With the above theorem in mind, a natural aim is to find a
decomposition of R as R=I,3L3 with 3 diagonal and
L+,L, proper orthochronous Lorentz transformations. This
would be the analog of a singular value decomposition, but
now in the Lorentz instead of the Euclidean metric.

Theorem 3. The 4X4 mairix R with elements R
=Tr(p 0@ o) can be decomposed as

R=L;3LT, ®)

with Ly,L, proper orthochronous Lorentz transformations,
and 3. either of diagonal form = =diag[s,,s;,5:,55] with 5

=5

178,

a 0 0 b
0 d O 0

o0 -« o | ©)
c 0 0 atc—b

with a,b,c.d real.

The proof of this theorem is quite technical. It heavily
depends on results of matrix decompositions in spaces with
indefinite metric [13]. We first introduce the matrix C
=MRMRT, which is M self-adjoint, i.e., MC=C"M. Using
theorem (5.3) in Ref. [13], it follows that there exist matrices
X and J with C=X"'JX, J consisting of a direct sum of
real Jordan blocks and XMX"=N; with N a direct sum of
symmetric #Xn matrices of the form [Sy;]=%[6;+; 411
with n the size of the corresponding Jordan block. Using
Sylvester’s law of inertia, there exists orthogonal O such
that N,=0TMO;. It is then easy to check that O, X=L] is
a Lotentz transformation. Therefore, the relations €
=MRMRT=ML MO JOTLT hold. Left multiplying by M,
Sylvester’s law of inertia implies that there exists a matrix 3
with the same rank as J such that MO, JOT=3MS7. There-
fore, we have the relation RMRT=L,2M3TL] . If R has the
same rank as RM R, this relation implies that there exists a
Lotentz transformation L, such that R=L, 3 L7

Let us now investigate the possible forms of 2. Since
NJ=O§MOJ has the signature (+—— —), Jcan only be a
direct sum of the following form: four 1 X1 blocks; one
orthogonal 2X 2 block and two 11 blocks; one 2X2 Jor-
dan block and two 1% 1 blocks; one 3 X3 Jordan block and
one 1X1 block. Noting the eigenvalues of C as {\;}, it is
easy to verify that a ‘‘square root’’ 2, in the four cases is
respectively given by

(1) x= dlag[m VML VINS] VIS[1P with P a permu-
tation matrix permutating the first column with one other
column;

| feos@)  sin()
) = il o SRR

' b
(3) 3 =diag (a m*b),m,m];

e
I /1a 0 0
b \,fa2+b2 0

(4) Y=diag , RUPeY
—ab a“

Va?+b? et b?
with a=+]Ag| and b=—1/V2]x,|.

Now we return to the relation R=L,5LY. L, and L, can be
made proper and orthochronous by absorbing factors — 1
into the rows and columns of X, vielding %'. Theorem 2
now implies that this 3’ corresponds to an unnormalized
physical state, which means that p’ corresponding to 2" has
no negative eigenvalues. It is easy to show that this require-
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ment excludes cases 2 and 4 of the possible forms of 3. The
third case corresponds to Eq. (9). Furthermore, in the first
case the permutation matrix has to be the identity and X
= max{{A\L,|Az]As)). Multiplying by proper orthochronous
Lorentz transformations, the elements {s;} of this diagonal 5,
can always be ordered as 535, 25,32 |55].

The case where the rank of C is lower than the rank of K
still has to be considered. This is only possible if the row-
space of R has an isotropic subspace @ for which M o7
=0, Some straightforward calculations reveal that the only
physical states for which this holds have normal form (9)
with a=b=c¢ and d=0 or g=b and c=4=0. This com-
pletes the proof.

The two normal forms can be computed very efficiently
by calculating the Jordan canonical decomposition of C
=MRMRT and of C'=MRTMR. 1t is easy indeed to show
that, for example, in the case of diagonalizable R, the eigen-
vectors of C form a Lorentz matrix and |s;|= y\,(C). Note
that we always order the diagonal clements such that s;
=g =5, 55

States that are diagonal in R correspond to (unnormalized)
Bell-diagonal states with ordered eigenvalues

A = {5t s +8,—83)/4, (10)
Ap=(sgt+5,—52+53)/4, (11)
A= (§p— 81+ 52t 53)/4, (12)
Ay= (5851 — 52— 53)/4, {13)

whereas states of type (9) correspond to the rank deficient
states

at+te O 0
1 0 0 0
P=3 0 b—c 0 (14)
d 0 0 a—b

For both cases it is easy to calculate the entanglement of
formation analytically, respectively given by Ref. [14]

C:max((),(hl _7\2—7\3_7\4)/(?\.1 + ?\z‘l‘ ?\.3"' ?\4))
:maX(O,(*SOJrSl +5'2"53)/(2S0))

and C=max(0,/d|/a).

Let us now consider an arbitrary state g with correspond-
ing R. Combining theorems 1, 2, and 3, it follows that the
concurrence of p is equal to the concurrence of the state
corresponding to 3, multiplied by Ryy. We have therefore
proven the following theorem.

Theorem 4. Giver a state p, and associated with this
state R=L,SLY, the concurrence of p is given by C
=max(0,(—so+ 51+ 8,—53)/2) or by C=max(0,id|) de-
pending on the normal form 2.

We thus have obtained a new method of calculating the
entanglement of formation of a system of two qubits, Inter-
estingly, it turns out that this characterization relates the con-

'RAPID COMMUNICATIO
PHYSICAL REVIEW A 64 010101(R)

cepts of entanglement of formation and of partial
transposition (PT) [9]. Let us therefore define Rf;T
=Tr(p"Te,©0;), which changes the sign of the third col-
umn of . In the case of diagonal normal form of R, it is
readily verified that the normal form of R”” equals that of R
except for the last element, where s§ T= —§s,. Retransform-
ing 2°7 1o the p®7 picture, we see that the corresponding
Bell-diagonal partial transposed state has minimal eigen-
value {(5,— 5, —8;+53}/4. We readily recognize the expres-
sion of the concurrence of Theorem 4 and therefore this el-
genvalue is negative if and only if the concurrence exceeds
0. Moreover, we know that pf7 is related to this Beli-
diagonal state by some similarity transformation A®B,
which cannot change the signatere of a matrix due to the
inertia law of Sylvester. In the case of normal form (9), ana-
log reasoning shows that p”7 has a negative eigenvalue if
and only if |d|>0, which again is necessary and sufficient to
have entanglement. This completes the proof of:

Theorem 5. Given a system of two qubits, this state is
separable if and only if its partial transpose has a negative
eigenvalue.

Although this result was already proven by Horodecki
[ 10}, we believe the previous derivation is of interest, since it
connecis the entanglement measures concurrence and nega-
tivity. Using this formalism, it indeed becomes possible to
prove that the concurrence always exceeds the negativity,
and it is furthermore possible to find a complete character-
ization of all states with maximmal or minimal negativity for a
given concurrence. This is important because in the two qu-
bit case the negativity is a measure of the robusiness of en-
tanglement against noise.

Next we want to solve the problem of finding the POVM
such as to have a nonzero chance to produce a new state with
the highest possible entanglement. From Eq. (2), the maxi-
mumn BoF is obtained with A,B minimizing the expression
Ti(ATA®BTBp)/(|det(A)det(B)|). Absorbing the factors
|det(A)| and |det( B)| into A and B, it is sufficient to consider
A and B with determinant 1. In the R picture, the optimiza-
tion is then equal to minimizing the (0,0) element of R
=L,2LY by appropriate L, ,Ly. Absorbing L, and L, into
Li=L,LTM and Lp=LpLiM, this is equivalent to finding
the optimal vectors I, and /p such that /%, is minimized
under the constrains M I,=1=I1LM 5.

Let us first consider the case of diagonal 3. with elements
§y==81= 8,7 |s4|. Parametrizing I, as (V1 +|]%,) and I
as (V1+]y]%y), the following inequalities hold: [{X1,
230\/1 +|\;§|}2Vf1 +liyl2=s:1 217l =so. Therefore, the con-
currence will be maximized for x=y =0, leaving 3 in diag-
onal form. Collecting the previous resulis, it follows that if R
is diagonalizable, the state with maximal concurrence that
can be obtained from it by single copy LQCC operations is
the one corresponding to 2 that is a Bell-diagonal state. This
is in complete accord with the results of Kent et al. [6]. The
optimal A and B are thus given by the 2X2 mairices corre-
sponding to L{M and LIM. The optimal POVM can then be
obtained by dividing A and B by their largest singular value
such that ATA=<t1 and BYB=<1, followed by calculating the
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square roots A,= vI,—A'A and B,=+/I,—B'B, which are
rank [. The optimal POVM’s to be performed on the two
qubits are then given by {A,A.} and {B,B_}, respectively.
Note that the probability of measuring (A,B) is given by the
inverse of the gain in concurrence divided by the product of
the largest singular values of A and B, and that the rank of
the Bell-diagonal state is equal to the rank of the original
state. Tt has to be emphasized that this single copy distillation
protocol is optimal. Moreover, the previous derivation gives
us a complete continuous parameirization of the surfaces of
constant concurrence in state space: these surfaces are gen-
erated by applying all trace-preserving Lorentz transforma-
tions to all the Bell-diagonal states with given entanglement,
with as a special case the boundary between separable and
entangled states.

The optimal single copy distillation protocol for states
with normal form (9) still have to be derived. An analogous
reasoning as in the diagonal case leads to the conclusion that
{4 and g are vectors associated with the Lorentz transforma-
ttons bringing Eq. {9) into diagonal form. This is, however,
only possible in the limit where [, and I contain factors
lirg, [ V1+ 2,0,0,/] and lim, [ 1+ 20,0,— t], respec-
tively. This indeed allows one to bring & asymptotically into
diagonal form with diagonal elements given by
[Wa—b)a+c).d,—d.J(a—b)a+c)] and off-diagonal
elements of order 1/¢%, yielding a state infinitesimally close
to a Bell-diagonal state. The probability of getting this staie
during a measurement of the optimal POVM, however,
scales as lim,_,,1/¢%. This is equivalent to the quasidistilla-
tion protocol by Horodecki [7]. In this limit of t—e, the
rank of the new siate is less than the original one, and its

concutrence is given by [d|/\/(a —bB)a+c).

In the case where @ —b=a+c=|d|, we are therefore able-

to create a state arbitrarily close to the singlet state. There-
fore, the only mixed states that can be quasipurified to the
singlet state by single copy LQCC operations are the rank 2
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states having normal form (9) with a—bh=a+c=|d|. These
states are mixtures of & Bell state with a separable pure state
orthogonal to it, and are therefore of measure zero in com-
parison with the class of rank 2 states.

In conclusion, we obtained insight into the problem of
local fileering on one copy of two qubits by introducing the
notion of Lorentz transformations on a real matrix parametri-
zation of their density matrix. This matrix can be brought
into one of two types of normal forms. These normal forms
contain all the information about the entanglement of forima-
tion and reveal an elementary conmection between concur-
rence and the partial transpose criterion of Peres. Moreover,
this formalism enabled us to derive in a constructive way the
optimal local filtering operations for concentrating entangle-
ment on an arbitrary mixed state of two qubits. This could be
of great utility in constructing optimal distillation protocols.
We showed that states of the first type can be locally trans-
formed into a Bell-diagonal state of the same rank with finite
probability, whereas states of the second kind can asymptoti-
cally be transformed into Bell diagonal states with lower
rank. This last class is of special interest as is contains the
mixed states that can be transformed arbitrarily close to the
singlet state.
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