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Abstract

The structured total least squares (STLS) problem is an extension of the total least squares (TLS) problem for solving
an overdetermined system of equations Ax ≈ b. In many cases the extended data matrix [A b] has a special structure
(Hankel, Toeplitz, : : :). In those cases the use of STLS is often required if a maximum likelihood (ML) estimate of x is
desired. The main objective of this manuscript is to clarify the di1erence between several IQML-like algorithms—for
solving STLS problems—that have been proposed by di1erent authors and within di1erent frameworks. Some of these
algorithms yield suboptimal solutions while others yield optimal solutions. An important result is that the classicial
IQML algorithm yields suboptimal solutions to the STLS problem. We illustrate this on a speci,c STLS problem,
namely the estimation of the parameters of superimposed exponentially damped cosines in noise. We also indicate
when this suboptimality starts playing an important role. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The ordinary total least squares (TLS) method
[11] is a frequently used method in parameter esti-
mation problems. It can be formulated as follows:

min
x;OA;Ob

||[OA Ob]||F ;

such that (A+OA)x= b+Ob; (1)

where ||:||F denotes the Frobenius norm, A;
OA∈Rm×n, b;Ob∈Rm×1 and x∈Rn×1. The matrix
S ≡ [A b] contains the measurements, whereas x is
the parameter vector that characterizes the underly-
ing linear(ized) system. In many signal processing
applications the matrix S has a special structure
(Hankel, Toeplitz, : : :). A possible example might
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be that S is a Toeplitz matrix created by storing
a signal vector s∈R(m+n)×1 in the ,rst row and
,rst column of S. Under the assumption that the
error on s is independently identically distributed
(i.i.d.) Gaussian noise, it is intuitively clear that
OS ≡ [OA Ob] should have the same structure
as S if a maximum likelihood (ML) estimate of
x is required (for a proof see [2]). This leads to
a natural extension of the TLS problem called the
structured total least squares (STLS) approach.
The STLS problem can be formulated as follows:

min
x;Os
OsTWOs; such that (A+OA)x= b+Ob

and [OA Ob] has the same linear

structure as [A b]; (2)

where Os∈Rq×1 contains the q di5erent elements
of OS ≡ [OA Ob], and W ∈Rq×q is a weighting
matrix, which for x to be a maximum likeli-
hood estimate needs to have a special structure.
We say that S is linearly structured if we can
write it as follows: S=

∑q
i=1 s(i)Ti, where the

Ti ∈Rm×(n+1); i=1; : : : ; q are constant basis matri-
ces and the elements of the vector s∈Rq×1 repre-
sent the di5erent elements of S (e.g. for a Toeplitz
matrix, s would contain the m+n di1erent elements
of S).
In the remainder of the paper we will adopt a

Matlab like notation for vectors and matrices:
• A(i; j): the entry in the jth column of the ith row
of A.

• A(i; :): the ith row of A.
• A(:; j): the jth column of A.
• A(p : q; r : s): the (q − p + 1) × (s − r + 1)
submatrix of A containing the entries that belong
to rows p till q and to columns r till s.

• b(i): the entry on the ith row of column vector b.
• b(p : q): the (q − p + 1) × 1 subvector of b
containing the entries of row p till row q.

• b(q : −1 : p): this vector is equal to the previous
one but with the elements in reversed order.

The transition from (1) to (2) can further be clari,ed
by the following example. Suppose a noisy signal
s∈R6×1 is measured. Knowing that the noiseless
signal should satisfy a linear system of order 2 the

following set of equations results:

Ax ≈ b; (3)

where A∈R4×2; b∈R4×1 and

[A b] ≡




s(3) s(2) s(1)

s(4) s(3) s(2)

s(5) s(4) s(3)

s(6) s(5) s(4)



:

Note that the “≈” symbol has to be used in (3), since
s is the noisy and not the noiseless signal. Solving
(3) in a TLS sense corresponds to solving (1) using
the above de,ned matrix [A b]. Note that for this
particular choice of [A b], (1) can be rewritten as

min
x;Os
OsTWOs; such that (A+OA)x= b+Ob;

[OA Ob]=




Os(3) Os(2) Os(1)

Os(6) Os(5) Os(4)

Os(9) Os(8) Os(7)

Os(12) Os(11) Os(10)




with W = I12×12 the 12 × 12 identity matrix. It is
now very easy to understand that going from (1) to
(2) consists of
(i) adding a constraint on the structure of

[OA Ob] namely

[OA Ob] ≡




Os(3) Os(2) Os(1)

Os(4) Os(3) Os(2)

Os(5) Os(4) Os(3)

Os(6) Os(5) Os(4)



:

Notice that in the STLS case Os∈R6×1 in-
stead of Os∈R12×1 as in the TLS case.

(ii) introducing a general weighting matrix
W ∈R6×6.

The statistical meaning of W that appears in (2) is
explained in Appendix A. However, intuitively it
is also easy to understand that for (2) to be a ML
estimator, W needs to be equal to the inverse of the
noise covariance matrix 3

R ≡ E(OsOsT);

3 From formulation (2) it is clear that it is suRcient to know
the inverse of the noise covariance matrix up to proportionality
constant.
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where E(:) is the expected value operator. This is
what is called a “prewhitening step” in many sig-
nal processing applications. In Section 3, we con-
sider numerical examples where the data s consists
of noiseless data perturbed by additive i.i.d. Gaus-
sian noise. This explains the choice of W = I , since
R= I . Summarizing we can say that the choice of
W is determined by the statistical properties of the
additive noise that perturbs the measurements.
In recent years many di1erent formulations have

been proposed for the STLS problem: the con-
strained total least squares (CTLS) approach [1,2],
the structured total least norm (STLN) approach
[8,10], the Riemannian singular value decomposi-
tion (RiSVD) approach [4,5] and the bootstrapped
total least squares (BTLS) approach [9]. All these
approaches start more or less from a formulation
similar to (2), but the ,nal formulation for which
an algorithm is developed might be quite di1er-
ent. For example in the RiSVD approach problem
(2) is reformulated into a nonlinear “Riemannian”
SVD, which is then solved with an inverse iteration
algorithm. In [6] it is proven—for the ,rst three
mentioned approaches—that, although the ,nal for-
mulations used in the di1erent approaches are quite
di1erent, they are equivalent under mild conditions.
The main objective of this paper is to discuss

di1erent iterative quadratic maximum likelihood
(IQML)-like algorithms for solving the STLS
problem. Besides the classical IQML algorithm
presented in [3], we will consider other IQML-like
algorithms that originate from the CTLS, RiSVD
and BTLS framework. All of these algorithms are
very similar but nevertheless some of them yield
suboptimal results for the STLS problem.
It is important to understand exactly what is

meant here by “optimality of an algorithm”. There-
fore, we ,rst look at the general form of the STLS
problem (2). The STLS problem is clearly a con-
strained optimization problem with a quadratic
cost function and nonlinear constraints. As will be
indicated further on, the STLS problem (2) can be
transformed into the equivalent formulation (4),
which consists of a highly nonlinear cost function
in the parameter vector y and a simple constraint
on the same parameter vector. As pointed out in
the next section, the cost function in (4) is scaling
invariant, meaning that y; 2y; : : : (y �=0) yield the

same cost. The constraint on the parameter vector
thus simply serves to select one of the solutions that
lie in the direction where the cost function in (4)
achieves its lowest value. An algorithm is now said
to be optimal when the parameter vector y con-
verges to the parameter vector yopt, where yopt is
the parameter vector in which the global minimum
of the cost function in (4) is reached, provided the
initial estimate for y lies close enough to yopt. It is
important to make a distinction between the prob-
lem of determining good starting values and the
question whether an algorithm yields optimal or
suboptimal results. The starting value problem is
discussed in [7] where it is shown that depending
on the choice of the starting values even optimal
STLS algorithms can get stuck in a local minimum.
The latter solution could also be called “subopti-
mal”, however the suboptimality we refer to, has
nothing to do with the fact that an algorithm can
end up in a local minimum. Finally, note that in
Section 3 the Monte-Carlo simulations start from
the optimal solution (which is known because we
deal with simulation examples), precisely to avoid
a mix up of the local minima problem and the
suboptimality of the algorithms.
The paper is structured as follows. In Section 2

we present the di1erent IQML-like algorithms for
solving the STLS problem. It is explained why some
of these algorithms are suboptimal. The last section
illustrates how the choice of a suboptimal algorithm
can a1ect the statistical accuracy of the obtained
solution and provides some insight in the condi-
tion under which this suboptimality becomes more
important.

2. The IQML-like algorithms

In this section we describe several IQML-like al-
gorithms for solving STLS problems. The di1erent
algorithms originate from di1erent approaches to
the STLS problem.
In order to clarify the objective of this paper,

we give a more extensive explanation of the previ-
ous two sentences. First of all, we will study algo-
rithms for solving the STLS problem (2). Often, the
STLS problem as formulated in (2) is reformulated
and only then an algorithm for solving the newly
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obtained formulation is proposed. These di1erent
reformulations correspond to what we indicate as
the di5erent approaches or frameworks for solving
the STLS problem. In the following subsections the
CTLS, RiSVD and BTLS approaches will be con-
sidered. In this paper we will compare IQML-like
algorithms for solving the formulations proposed in
the di1erent approaches.

2.1. CTLS approach

The CTLS approach described in [1,2] transforms
the original STLS problem (2) into the following
optimization problem: 4

min
y∈R(n+1)×1

yTSTD−1
y Sy; y(n+ 1)=− 1; (4)

with Dy ≡ HyW−1HT
y , with W ∈Rq×q a weighting

matrix, Hy ≡ [T1y T2y : : : Tqy]∈Rm×q where q is
again the number of di1erent entries in S (and thus
also in OS, since S and OS have the same structure)
and Ti; i=1; : : : ; q are the so-called “basis matri-
ces” (as de,ned in Section 1), i.e. they are used to
construct the linearly structured matrix S starting
from the vector s∈Rs×1 that contains the di5erent
elements of S: S=

∑q
i=1 s(i)Ti.

Note that the objective function in (4) looks like
a Rayleigh quotient. The di1erence with a classical
Rayleigh quotient is the introduction of the matrix
Dy, which depends on y and on the speci,c structure
that needs to be preserved in the STLS problem. If
no structure were imposed on OS in (2), we would
obtain (1) but above all, Dy would 5 become ||y||22
and (4) would yield the eigenvector corresponding
to the smallest eigenvalue of STS (since then (4)
would indeed correspond to the minimization of
the well-known Rayleigh quotient). Normally, we
would use the SVD of S in order to determine the
solution of the TLS problem. More speci,cally we
would determine the right singular vector corre-
sponding to the smallest singular value of S, but
in theory we could also look for the eigenvector

4 Note that in the remainder of the paper only structures
having nonsingular Dy matrices are considered. This is not an
overly stringent condition, since many popular structures such
as Hankel and Toeplitz matrices belong to this class.

5 Simply write out the formula for Dy in case S is unstruc-
tured.

corresponding to the smallest eigenvalue of STS.
This is exactly what is done through the Rayleigh
quotient minimization. Intuitively we can thus
summarize the previous as follows. The solution
of the STLS problem is found by minimizing a
Rayleigh quotient-like cost function, in which the
speci,c structure to be preserved in the STLS
problem is reSected by the speci,c form of Dy.
As proven in [6], (4) and (2) are equivalent for-

mulations in the sense that they yield the same pa-
rameter vector x (or y(1 : n) in the CTLS notation).
Note that problem (4) basically is an unconstrained
optimization problem, since the constraint can eas-
ily be substituted in the objective function. We then
can use standard unconstrained optimization tech-
niques for solving problem (4). Note however that
the objective function is highly nonlinear and can
have many local minima. Due to the equivalence of
(4) and (2) this is a common problem to all algo-
rithms solving the STLS problem [7].
In [1,2] a Newton algorithm using analytically

calculated gradients and Hessians is proposed for
solving (4).
Looking at the formula for Dy it is clear that the

objective function in (4) is scaling invariant in y.
Therefore, under mild conditions, 6 the following
optimization problem is equivalent to (4) and thus
also to (2):

min
y∈R(n+1)×1

yTSTD−1
y Sy; yTy=1: (5)

We add this extra formulation since we will intro-
duce a heuristic algorithm for solving the latter for-
mulation in the next paragraph.
Due to the above mentioned equivalences, it

should be clear now that if the optimization al-
gorithm chosen to solve (4) or (5) converges to
the global minimum, the obtained solution is the
optimal solution of the STLS problem (2). The
iterative quadratic maximum likelihood (IQML)
algorithm was initially [3] designed for estimating
the parameters of superimposed complex damped
exponentials in noise. For this purpose a cost func-
tion similar to the objective function in (4) was

6 The equivalence between (4) and (5) is only true when
at the solution of the STLS problem y(n+ 1) �=0. The latter
problems are so-called generic STLS problems. Most STLS
problems belong to this class.
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derived. 7 The same algorithm as in [3] can thus
be used for solving the STLS problem. We present
two versions of the IQML algorithm, correspond-
ing to the di1erent non-triviality constraints on the
parameter vector.

IQML1 algorithm
Input: data matrix S, user-de,ned precision �, struc-
ture that has to be preserved in the STLS problem
(i.e. the formula for calculating Dy)
Output: the parameter vector x
Step 1: Initialize y[0] = argminy;y(n+1)=−1yTSTSy;

k=0
Step 2: y[k+1] = argminy;y(n+1)=−1yTSTD−1

y[k]Sy
Step 3: if ||y[k+1] − y[k]||2¡� then x=y(1 : n)

else k= k + 1 and goto Step 2
The latter is a heuristic algorithm for solving prob-
lem formulation (4), because in every iteration for-
mulation (4) is solved while considering Dy to be
constant and only updated at the end of each itera-
tion. Since y(n+1)=−1 it is obvious that Step 2 of
the algorithm IQML1 corresponds to the following
least squares (LS) problem:

min
y(1:n)

||L[k]TS(:; 1 : n)y(1 : n)− L[k]TS(:; n+ 1)||2;

where L[k]L[k]T =D−1
y[k] , L[k] and L[k]T being the

Cholesky factors of D−1
y[k] .

IQML2 algorithm
Input: data matrix S, user-de,ned precision �, struc-
ture that has to be preserved in the STLS problem
(i.e. the formula for calculating Dy)
Output: the parameter vector x
Step 1: Initialize y[0] = argminy; ||y||2=1y

TSTSy,
k=0

Step 2: y[k+1] = argminy; ||y||2=1y
TSTD−1

y[k]Sy
Step 3: if ||y[k+1] − y[k]||2¡� then x= − y(1 :

n)=y(n+ 1)
else k= k + 1 and goto Step 2

The IQML2 algorithm is a heuristic algorithm for
solving problem (5). Again it is straightforward
to see that Step 2 of the IQML2 algorithm corre-
sponds to ,nding the eigenvector corresponding to

7 As a matter of fact, writing out the objective function in
(4) for the STLS problem in case a Toeplitz structure has to
be ,xed and W = I , yields the cost function described in [3].

the smallest eigenvalue of STD−1
y[k]S. The following

lemma shows that IQML2 yields suboptimal re-
sults. A similar result can be constructed to prove
the suboptimality of IQML1.

Lemma 2.1. The result y obtained with algorithm
IQML2 yields a suboptimal solution (y(1 : n)) to
the STLS problem.

Let yIQML represent the vector y obtained at con-
vergence of the IQML2 algorithm. By de,nition
yIQML thus solves the following problem:
yIQML = argminy; ||y||2=1y

TSTD−1
yIQMLSy. As men-

tioned before this means that yIQML is the eigen-
vector of STD−1

yIQMLS that corresponds to its smallest
eigenvalue. We will now show that yIQML is not
the optimal solution to (2). Therefore we apply the
method of Lagrange multipliers to the equivalent
problem (5). The Lagrangian of the latter problem
is G=yTSTD−1

y Sy−  (yTy− 1). Di1erentiating G
with respect to y and  gives the following neces-
sary conditions for y to be an optimal solution of
(5) and thus of the STLS problem:

2STD−1
y Sy − zy=2 y

with zy=




yTSTD−1
y

"Dy

"y(1)D
−1
y Sy

...

yTSTD−1
y

"Dy

"y(n+1)D
−1
y Sy


 (6)

yTy=1: (7)

Let us represent the optimal solution of (5) by
yCTLS. From (6) we clearly see that yCTLS is not an
eigenvector of STD−1

yCTLSS. Since we know that yCTLS
is an optimal solution of the STLS problem (2) and
we just proved that yIQML di1ers from yCTLS, we can
conclude that algorithm IQML2 yields suboptimal
solutions to the STLS problem.
Remember that the objective function of prob-

lem (5) is scaling invariant and thus the constraint
yTy=1 only serves to select one of the in,nite
number of solutions. The latter implies that  =0
in (6) and (7). Thus it is easy to derive a heuristic
algorithm, similar to IQML2, by changing Step 2
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into

y[k+1] =− (2STD−1
y[k]S)

−1zy[k] ;

y[k+1] =y[k+1]=||y[k+1]||2:
Using this as Step 2, it is seen that upon convergence
the stationary condition for optimality of the STLS
problem is satis,ed.
Summarizing we can say that the classical IQML

algorithms IQML1 and IQML2 yield suboptimal
solutions to the STLS problem (2), because a term
(namely zy) in the di1erentiation of the objective
function w.r.t. y in (5) is not taken into account.
Mostly the correct ML arguments are invoked, lead-
ing to the correct STLS formulation for the problem
at hand (namely (4) or (5)). In many cases however
(see e.g. [13]), the next step consists of applying a
suboptimal IQML algorithm to the optimal STLS
problem formulation. Evidently the statistical ac-
curacy of the estimates can seriously be degraded
by this wrong choice of algorithm. This will be il-
lustrated in Section 3. It will also be shown that
depending on the circumstances, this suboptimality
will lead to a big loss of statistical accuracy.

2.2. RiSVD and BTLS approach

As shown in [6] the RiSVD approach is equiv-
alent to the STLS problem (2) under mild condi-
tions. 8 The RiSVD approach is derived in [4,5]
by using the technique of Lagrange multipliers.
The result is the following equivalent problem
formulation

Find the triplet (u; $; v) corresponding the smallest

$ such that

Sv=Dvu$ uTDvu=1; (8)

STu=Duv$ vTDuv=1; vTv=1 (9)

withDv ≡ HvW−1HT
v ,Du ≡ HuW−1HT

u ,W ∈Rq×q a
weighting matrix, Hv ≡ [T1v T2v : : : Tqv]∈Rm×q,
Hu ≡ [T T1 u T T2 u : : : T Tq u]∈Rn×q, where q is
again the number of di1erent entries in S and
Ti; i=1; : : : ; q are the so-called “basis matrices”

8 The condition being again that the STLS problem has to
be generic.

(as de,ned in Section 1), i.e. they are used to con-
struct the linearly structured matrix S starting from
the vector s∈Rs×1 that contains the di5erent ele-
ments of S: S=

∑q
i=1 s(i)Ti.

Note that the Eqs. (8) and (9) are very sim-
ilar to the classical SVD equations. The di1er-
ence with the classical SVD equations is the
introduction of the matrices Du and Dv, which
depend on respectively u and v and on the spe-
ci,c structure that needs to be preserved in the
STLS problem. If no structure were imposed
on OS in (2), we would obtain (1) but above
all, we would 9 obtain the classical SVD Eqs.
(8) and (9). This should come as no surprise
since the SVD is the standard way for solving
the TLS problem. Intuitively we can summa-
rize the previous as follows. The STLS problem
is solved by determining the right singular vec-
tor corresponding to the smallest singular value
of a nonlinear SVD (8) and (9), in which the
speci,c structure to be preserved in the STLS
problem is reSected by the speci,c form of Du

and Dv.
It is clear that the following two equations can

be derived from and are equivalent to (8) and (9):

STD−1
v Sv=Duv$2; vTv=1; (10)

u=D−1
v Sv=$; uTDvu=1: (11)

As suggested in [5] (10) and (11) can be used
to solve the STLS problem (2) in an iterative
way. As a matter of fact we see that—at least
for constant u—(10) is a “nonlinear” generalized
eigenvalue problem of which we have to ,nd
the eigenvector v corresponding to the smallest
eigenvalue $2.
The latter observation has lead to two di1er-

ent algorithms: one developed in the RiSVD [5]
framework—further referred to as the RiSVD gen-
eralized eigenvalue (RiSVD-GE) algorithm—and
another one developed in the BTLS [9] framework
and further referred to as the BTLS generalized
eigenvalue (BTLS-GE) algorithm. An outline of
these two algorithms follows.

9 Simply write out the formulas for Du and Dv in case S is
unstructured.
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RiSVD-GE algorithm
Input: data matrix S, user-de,ned precision �, struc-
ture that has to be preserved in the STLS problem
(i.e. the formulas for calculating Du and Dv)
Output: the parameter vector x

Step 1: Initialize (u[0]; $[0]; v[0]) with the
triplet corresponding to the smallest singu-
lar value of S; k=0

Step 2: v[k+1] = (STD−1
v[k] S)

−1Du[k]v[k]($[k])2

v[k+1] = v[k+1]=||v[k+1]||2
u[k+1] =D−1

v[k+1]Sv
[k+1]=$[k]

&=(u[k+1])TDv[k+1]u[k+1]

u[k+1] = u[k+1]=&1=2

$[k+1] = u[k+1]TSv[k+1]

Step 3: if ||v[k+1] − v[k]||2¡� then
x=− v(1 : n)=v(n+ 1)
else k= k + 1 and goto Step 2

BTLS-GE algorithm
Input: data matrix S, user-de,ned precision �, struc-
ture that has to be preserved in the STLS problem
(i.e. the formulas for calculating Du and Dv)
Output: the parameter vector x

Step 1: Initialize u[0] and v[0] with the left respec-
tively right singular vector corresponding
to the smallest singular value of S; k=0

Step 2: Solve the following generalized eigen-
value problem
STD−1

v[k] Sv=Du[k]v$2

for the eigenvector v[k+1] corresponding to
the smallest eigenvalue $
v[k+1] = v[k+1]=||v[k+1]||2
u[k+1] =D−1

v[k+1]Sv
[k+1]=$

Step 3: if ||v[k+1] − v[k]||2¡� then
x=− v(1 : n)=v(n+ 1)
else k= k + 1 and goto Step 2

If we compare the RiSVD-GE and BTLS-GE al-
gorithm to the IQML2 algorithm, we see that the
former two solve a generalized eigenvalue problem
whereas the IQML2 algorithm solves an ordinary
eigenvalue problem. The other major di1erence be-
tween the RiSVD-GE and the BTLS-GE algorithm
on the one hand and the IQML2 algorithm on the
other hand is the introduction of the vector u in the

Table 1
This table summarizes the di1erent IQML-like algo-
rithms for solving the STLS problem. It shows the
framework from which the algorithms originate, the
kernel problem (EVD=eigen value decomposition and
GEVD=generalized EVD) that has to be solved in each iter-
ation and whether the obtained results are optimal or not.

Approach IQML-like Kernel Optimal?
algorithm problem

CTLS IQML1 LS No
IQML2 EVD No

RiSVD RiSVD-GE GEVD Yes
BTLS BTLS-GE GEVD Yes

former two. As shown in [5] this vector u is in fact
a vector of Lagrange multipliers. From the previous
subsection we know that algorithm IQML2 yields
suboptimal results. Upon convergence of algorithm
RiSVD-GE (and also algorithmBTLS-GE), the ,rst
order optimality conditions—namely (8) and (9)—
are satis,ed, and thus both algorithms yield optimal
results.
Notice that the di1erence between the RiSVD-GE

and the BTLS-GE algorithm mainly consists in the
frequency in which Du is updated. In Step 2 of the
BTLS-GE algorithm the generalized eigenvalue
problem is solved completely before Du is updated,
whereas in the RiSVD-GE algorithm Du is updated
after each step of the inverse iteration algorithm,
used for solving the generalized eigenvalue prob-
lem. This is also an intuitive explanation for the
convergence problems observed in the case of the
BTLS-GE algorithm: both algorithms are alternat-
ing coordinates optimization algorithms, but in the
case of RiSVD-GE, the alternation between u and
v is more frequent.
Table 1 summarizes this section. It shows

the framework from which the di1erent IQML-
like algorithms originate, the kernel problem
(EVD=eigen value decomposition and GEVD=
generalizedEVD) that has to be solved in each
iteration and whether the obtained results are opti-
mal or not.

3. Numerical experiments

In this section we illustrate the suboptimality
of the IQML2 algorithm on a small example of a
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special STLS problem: the estimation of the pa-
rameters of superimposed exponentially damped
cosines in i.i.d. Gaussian noise. We ,rst brieSy
explain why the latter is an STLS problem.
Let u∈R(m+n)×1 be a vector that is a sum of

exponentially damped cosines:
u(i)=

∑K=2
k=1 ake

dk (i− 1)Otcos(2+fk(i− 1)Ot + pk);
i=1; : : : ; m+ n, where Ot is the sampling interval
and chosen equal to 1 in this example. When u is
placed in an (m+n−K)× (K +1) Toeplitz matrix
(with ,rst row u(K + 1 : −1 : 1) and ,rst column
u(K + 1 : m + n)), it is obvious that this Toeplitz
matrix will be rank de,cient since all K+1 consec-
utive samples of u satisfy a linear prediction
equation (this is due to the fact that u is a sum of
exponentially damped cosines). Furthermore, the
parameters of the exponentially damped cosines
can be derived from the prediction error coeR-
cients in a similar way as described in [3] (the
prediction error coeRcients are the elements of the
null vector of the rank de,cient Toeplitz matrix).
We now consider the noisy signal case. Let

e∈R(m+n)×1 be a noise vector containing i.i.d.
Gaussian noise entries of standard deviation -e.
The goal is now to determine the signal param-
eters (i.e. ak , dk , fk , pk , k=1; : : : ; K=2) starting
from the noisy measurement vector s ≡ u + e.
From the previous it should be clear that under the
given noise circumstances, maximum likelihood
(ML) estimates of the parameters can be obtained
in the following way: store the noisy signal s in a
Toeplitz matrix S (with ,rst row s(K + 1 : −1 : 1)
and ,rst column s(K + 1 : m + n)) and solve the
STLS problem (2) in which the Toeplitz structure
of S is preserved and W is the identity matrix. The
resulting vector [xT − 1]T allows us to determine
the signal parameters. Note that this speci,c STLS
problem is thus completely equivalent to methods
as described e.g. in [12], where through the use of
a di1erent parametrization this STLS problem is
reformulated into a nonlinear least squares mini-
mization. For ,nding the true solution of the STLS
problem, we will use algorithm RiSVD-GE. We
,rst consider a small example.

Example 3.1. m=4, n=2, K =2, f1 = 0:3,
d1 =− 0:08, a1 = 2, p1 = 0:2, -e=0:6.

To illustrate the suboptimality of the IQML2
algorithm we compute 2STD−1

y Sy − zy for both
yIQML (the solution vector obtained with algo-
rithm IQML2) and yRiSVD-GE (the solution vec-
tor obtained with algorithm RiSVD-GE) for
one realization of the noisy signal s from Ex-
ample 3.1. When ,lling in yIQML this yields
[0:0756 − 0:1193 − 0:0015]T and when ,lling in
yRiSVD-GE we get 10−13[− 0:2626 0:0366 0:1998]T,
which clearly illustrates the suboptimality of the
IQML2 result because the resulting vector should
be [0 0 0]T (see (6)). The result of algorithm
RiSVD-GE, shows that this algorithm solves the
STLS problem in an optimal way.
To show the e1ect that this suboptimality can

have on a larger example, we consider a new ex-
ample, containing the component of the previous
example and an additional one.

Example 3.2. f1; a1; d1, and p1 as in Example
3.1.
d2 = 0, a2 = 1, p2 = 0:1. Furthermorem=54, n=4,
K =4 and again -e=0:6.

Using this example, we perform 500Monte-Carlo
simulations, with both the IQML2 and RiSVD-GE
algorithm. Since we know the exact parameters,
we can calculate the “true” y vector, represented
by yex. As mentioned in Section 2.1 the STLS
problem is highly nonlinear and as a result it can
have many local minima. Since the goal of this
paragraph is to estimate the statistical accuracy
of the algorithms IQML2 and RiSVD-GE and not
their sensitivity w.r.t. the choice of initial values,
the initial values are set equal to the exact values
(obtained from yex). In this way, we avoid that
suboptimality resulting from di1erent local minima
interferes with our experiment.
To get an idea of the statistical performance of

both methods, we average the following relative er-
rors over the 500 runs: ||yIQML − yex||2=||yex||2 and
||yRiSVD-GE − yex||2=||yex||2. To illustrate when the
statistical suboptimality starts playing an important
role, f2 from Example 3.2 is varied from 0:301 to
0:329 in steps of 0:001. The resulting relative errors
are shown in Fig. 1 (the dashed line represents the
relative errors of the solutions obtained with algo-
rithm IQML2, whereas the full line represents the
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Fig. 1. This ,gure illustrates the di1erence in statistical accuracy obtained with algorithm IQML2 (dashed line) and algorithm
RiSVD-GE (full line). It shows the relative errors (in %) of the solutions obtained by the algorithms as a function of the parameter
f2. Note that the ,rst component lies at f1 = 0:3 and thus the closer f2 gets to f1, the bigger the di1erence in statistical accuracy.

relative errors of the solutions obtained with algo-
rithm RiSVD-GE).
Looking at Fig. 1, we see that when f2 gets close

to f1 (i.e. when f2 gets close to 0:3; note that the
latter means that the diRculty of the parameter es-
timation problem increases), the suboptimal algo-
rithm IQML2 performs a lot worse than the optimal
RiSVD-GE algorithm. Therefore, the ,gure clearly
shows that for high-frequency resolution applica-
tions, the suboptimality of IQML2 starts playing an
important role.

4. Conclusion

We have given an overview of di1erent ex-
isting IQML-like algorithms for solving the
STLS problem. We have proven the suboptimal-
ity of the classical IQML algorithms (IQML1
and IQML2) for solving STLS problems. This

suboptimality is shown to a1ect the statistical
performance of the classical IQML algorithms
(i.e. IQML1 and IQML2) when compared to
the optimal STLS algorithm RiSVD-GE. Fur-
thermore it is shown that in very demanding
applications—e.g. when high-frequency resolu-
tion is needed—the suboptimality of suboptimal
IQML algorithms starts playing an important
role.

Appendix A.

In order to discuss the statistical properties of
the STLS estimator (2), we ,rst have to de,ne the
statistical “measurement” model that we consider.
For the ordinary TLS case the corresponding model
was shown to be the classical errors-in-variables
(EIV) model (see [11]). The classical EIV model
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is described by

b0 =A0x0

with b= b0 + Ob0 and A=A0 + OA0; (A.1)

where [A0 b0] contains the true unobservable quan-
tities, [A b] contains the measured quantities and
[OA0 Ob0] contains the random variables cor-
responding to the noise on the measurements.
Furthermore, the rows of the matrix [OA0 Ob0]
are assumed to be i.i.d. with common zero mean
vector and common covariance matrix C=-2/ In+1,
with -2/ unknown.
To demonstrate the statistical properties of the

STLS estimator, we consider a similar model, based
on the same equations as in (A.1) but with dif-
ferent statistical assumptions on the elements of
OS0 = [OA0 Ob0]. As an example we consider the
statistical measurement model for the Hankel STLS
problem (i.e. an STLS problem (2) in which OS
needs to preserve the Hankel structure of S). In the
latter case, a vector of samples s∈Rq×1 is measured
and afterwards a Hankel matrix S is constructed us-
ing this measured vector, simply by storing it in the
,rst column and last row of the Hankel matrix. It is
obvious that in the statistical measurement model
for this STLS problem, OS0 should have a Hankel
structure too. Furthermore OS0 can be represented
by a vector Os0 ∈Rq×1 in a similar way as S can be
represented by s. Thus, along the antidiagonals of
OS0 the same random variables occur, thereby vi-
olating the independency assumption between the
rows of the EIV model. Furthermore the random
variables in Os0 are assumed to be i.i.d. with co-
variance matrix R.
Having proposed the model and the assumptions

on the “measurement” errors, we can now derive
a ML estimator for the model parameters in x. For
ease of notation we let y=[xT − 1]T. If the matrix
S=[A b] contains the measured values, we know
that the unobservable true values should obey a
linear relation or

(S −OS0)y= Sy −HyOs0 = 0

or

Sy=HyOs0 ≡ e; (A.2)

where Hy is de,ned by HyOs0 ≡ OS0y. 10 The
e de,ned in the last equation can be seen as an
“equation error”. Since the elements of e are linear
combinations of Gaussian random variables, they
obey Gaussian distributions themselves. It is then
well known that aML estimate for y can be obtained
by minimizing

eTU−1e=yTSTU−1Sy;

where U is the covariance matrix of e and thus

U =E(eeT)=HyE(Os0OsT0 )H
T
y =HyRHT

y ;

where E is the expected value operator and the last
equation followed from the noise assumptions we
made in our model about Os0. Summarizing we see
that for the proposedmodel, aML estimate for y can
be obtained from the observations in S by solving

min
y
yTST(HyRHT

y )
−1Sy; (A.3)

where y=[xT − 1]T. If we compare (4) and (A.3)
we clearly see that the ML estimate is thus obtained
by solving the STLS problem involving S, where
W is set to R−1.
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