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Abstract

The solutions of the partial realization problem have to sat-
isfy a finite number of interpolation conditions at co. The
minimal degree of an interpolating deterministic system is
called the algebraic degree or McMillan degree of the partial
covariance sequence and is easy to compute. The sotutions
of the partial stochastic realization problem have to satisfy
the same interpolation conditions and have to fulfill a posi-
tive realness constraint. The minimat degree of a stochastic
realization is called the positive degree. The interpotating
deterministic solutions can be parameterized by the Kimura-
Georgiou paramelerization. In the literature, the solutions of
the partial stochastic realization problem are then described
by checking the positive realness constraints for each inter-
polating deterministic system. In this paper, an alternative
parameterization for the deterministic solutions of the inter-
polation problem is presented. Both the solutions of the par-
tial and parlial stochastic realization problem are analyzed in
this alternative parameterization. Based on the structure of
the parameterization, a lower bound for the positive degree
is obtained.

1 Introduction

In signal processing, speech processing and system iden-
tification applications, one can often model signals as a
stationary random sequence that is generated by passing
white noise through a filter or system with a stable transfer
function and ltetting the system come to a statistical steady
state [5, 7, 16, 24, 25]. However, the generating filter or sys-
tem is not known a priori in many real life situations. The
system then has to be estimated from given observations, af-
ter which one can use the filter and the corresponding spec-
tral density e.g. in design processes. In practice, only a finjte
number of samples of the signal is available and a finite co-
variance sequence can be computed.

For such a given covariance sequence, the systems that are
solutions of the partial realization problent malch the first
correlation coefficients of the given covariance sequence.
This problem of matching the first correlation coefficients
is solved in deterministic realization theory [10, 11, 13, 15]
and corresponds to interpolation theory [1, 19, 21, 22, 23]
through the interpolation conditions at 0o. The MeMillan or
algebraic degree are defined as the minimal degree of an in-
terpolating deterministic system, An interpolating solution
with degree equat to the McMillan degree is often preferred.
e.g. for reasons of computational efficiency.

The solutions of the pariial stochastic realization problem
have to fulfill the same interpolation conditions of the par-
tial realization problem and the solutions have to be (stable)
stochastic systems, The latter condition is called the posi-
tive real condition: (he solutions have to be stable and must
have & spectral density which positive on the unit circle. Fol-
lowing [4, 6], the minimal degree of such an interpolating
stochastic system will be called the positive degree in this
paper. This positive degree is bounded from below by the
algebraic degree and from above by the tength of the covari-
ance sequence. However, the methods described in the kter-
ature propose to calculate the vahie of the positive degree by
using a trial and error approach.

Tnn this paper, an alternative parameterization [20, 21, 23]
for the partial realization problem is presented. This parame-
terization was derived by one of the authors for interpolation
conditions at finite points in and for mixed Lypes of interpo-
Iation conditions in [20] and [21}, respectively. In [23] the
partial realization problem was studied in this parameteriza-
tion. Since this parameterization gives all the solutions of
the partial realization problem, the solutions of the partial
stochastic realization problem are obtainad by additionally
checking the positive reainess constraints for each such in-
terpolating solution. Both the partial realization problem ar:d
the partial stochastic realization problem are discussed in this
alternative parameterization. The main focus of this analysis
is the “open problem’ of determining the value of the positi~e
degree without using trial and error methods. By analyzing
the structure of the parameterization, a lower bound for the
positive degree is obtained.



2 Preliminaries

Some theory of stochastic systems is reviewed in subsec-
tion 2.1. In the literature {2, 4, 8, 14}, the so-calted Kimura-
Georgiou parameterization is used to parameterize the (deter-
ministic) solutions of the partial realization problem. In this
set of solutions, the solutions of the corresponding partial
stochastic interpolation problem are obtained by checking
the positive real constraints for each interpolating solution,
This is refreshed in subsection 2.2. In the last subsection, the
minimality of the solutions is discussed and the definitions
of atgebraic and positive degree are reviewed.

2.1 Stochastic Systems

Let the observed discrete time signal y; be generated by pass-
ing normalized white noise e; through a linear filter with sta-
ble rational transfer function

2

wlz) =wo 4wzt twez ..,

with wy € R. The stationary (real) process {1 }iez has a
rational spectral density

®(2) = w(zhu(z "),

which is assumed to be positive on the unit circle. The sta-
ble transfer function w(z) is called a stable spectral factor of
®(z), which is taken minimum phase. This means that the
rational function

.. o{2)
w(z) = alz
has all its poles and zeros in the open unit disc and wy =

w{co) # 0.

Hence, the output {y; }iez is the output of a shaping fil-
ter w(z) driven by a normalized white noise input e, as is
depicted by Figure 1. The Fourier transform of the spectral
density ®(z) is then equal to

P(z) = ¢o + ic,— (z‘ + z“') ,

i=1

where eg, e1, €2, . . . 18 the covariance sequence defined as

e = E{yram},

! = 0,1,2,.... Without loss of generality, we will work
with normalized sequences, i.c., with ¢ = 1 in the sequel
of this paper. One can then construct the partial covariance
sequences

Cn = {11611 v lc?l}!

which have the property that the Toeplitz matrices

1 oo ¢ - e
o 1 € - Cn-t

are positive definite! for 0 < n. If the Toeplitz matrix is not
positive definite, the parlial covariance sequence is not gen-
erated by a stochastic system. Hence, there exists no solution
of the stochastic realization problem.

N W{Z) [

Figure 1: Shaping filter.

The partial stochastic realization problem now can be
stated as follows: Given a partial covariance sequence
Cy = {L,c1,...,ca}. Find an infinite rational extension
{enstieniz, -3 st T(Ch) > O foralln > 0 or find a
positive real part v(z) of &(2) = v(z) + v(z™1),

15(z ad b
v(z) = érz((z)) =—-+ gckz "}

DI

which is rational with
a(z) =
b(z) =

The monic polynomials a{z) and b{z) have to satisty the fol-
lowing conditions:

Mo 4 an
2+ b2" L b

1. Interpolation conditions at co:

b
HgN% =2 N F(2), (1

with
1 —1 N
F(z)=§+clz +... ezt

and the projection operator

B
me S feak = fust
k ke

2. Positive real conditions: if a(z} and b(z) are relatively
co-prime, then the rational function v{z} is positive rezl
iff

(i) v(z) is analyticon {2] > 1
zeros in |z| < L

(i) v(z) +v(z") > 0o0n |z =1 or
a(2)b(z" Y + alz7b(z) > 0

oniz] = 1.

or a(z) hasallis

Condition (i) corresponds to the stability of the modeling fii-
ter, whereas condition (ii} is equivalent to v(z) being pseuds-
positive real fe(u(z)) > 0 on the unit circle [§7].

The solutions of the partial deterministic realization prom-
lem only have to satisfy the interpolation conditions at o,
i.c. Condition [.

Wihen 7{Cy) > 0 and det T(Cy) = 0, there exists a unique positi «¢
reat solution. In this ¢ase, Oy, is called singularly nonnegative.




2.2 Kimura-Georgiou Parameterization

Based on the covariance sequence C'y, the Szegd polynomi-
als of the first and second kind can be calculated:

wilz) = zH4+end L+, {2)
Pu(z) = 2 +dnt (3)
These polynomials are cateulated by the recursions:
prer = zpu(2) — i (2),
t=0,1,...,N -1, ofz)=1,
g = api{z) — e2),
t=0,1,...,N-1, gy{z}=1,
and
deer = zd(2) + b (2),
t=0,1,...,N—1, ¢z} =1,
Vi = 2 (2) + (),
{=0%1...,N=-1, ¥la)=1,
with the reversed polynomials 97 (z) = 2%, (1/2) and

w;i{z) = 24py(1/2). The Schur parameters are defined by:

1 t
VEZ;Z(Pt.tuiCHh t=0,1,2,...,N -1, )
(e

repr = (1= 98, 0=0,1,2,...,N =L rp =1

The well known Maximum Entropy solution [26) con-
structed from the N'th order polynomials satisfies the inter-
polation condition at oo

Ln(z) _ 1

= = - 2 2N
2(‘91\’(2) 5 e +CJ\Z +

+ c;z_1 + coz”

and is an all pole realization:

v N
w(z) = VINE
wn{z)
However, in many applications finite spectral zeros are de-
sired [5, 7). Based on the Szegs polynomials, all solutions
(up to order N) of the interpolation problem (1) are described
in the Kimura-Georgiou parameterization [8, 14]:

_ lif),\r(z) + ct[i,f),\rﬁl(z) 4 ...+ (l'N!,l')g(z)
2on(z) +aron-1(z) +... 4+ anpe(z)

u(z) &)
Naoltice that the elements of this parameterization only satisfy
the interpolation conditions (1). The set of all positive real
solutions still has to be searched for in this set by checking
conditions (i} and (ii) for each possible choice of parameters
fo; }Y,. Condition (i} can be checked by some well known
stability tests (e.g. the Jury and Schur-Cohn Criterion [1]).
In [2] condition (i} was translated to conditions on the sig-
nature of a Hankel matrix. In [9] condition (ii) is checked
by repeatedly applying the Schur-Cohn algorithm. In this

parameterization, it is not guaranteed that a(z) and b(z) are
relatively prime and an additional check is needed. This can
e.g. be done by checking whether the resultant of a(z) and
b(z) vanishes [12].

An alternative parameterization can be based on the result
of [3, 4]. For each choice of a Schur polynomial o(z), there
exists just one positive real realization, i.e., there exists just
one corresponding a{z), which is the solution of a convex
optimization problem. All solutions {up to order V) are then
described by parameterizing the Schur polynomials o{z) and
calculating the corresponding a{z).

2.3 Algebraic and Positive Degree

The notion of minimality is an important property as well for
the solutions of the partial deterministic as for the solutions
of the partial stochastic realization problem. The minimal
degree of all deterministic realizations is called the MeMiil-
lan degree of the covariance sequence and is denoted by &..
In [4] this is also called the algebraic degree.

The minimal degree of all stochastic realizations of a finite
covariance sequence is called the positive degree [4] and is
denoted by §+. The following constraints hold for the posi-
tive degree:

§o <6F <N, i6)
Obviously, each solution of the partial stochastic realization
problem is also a solution of the corresponding partial deter-
ministic realization problem. The second inequality holds
since the degree of the Maximum Entropy solution is not
larger than N,

3 Parameterization for the Interpolation
Problem

In this Section, the parameterization [20, 21, 23] of the so-
lutions of the interpolation problem is presented for interpo-
lation conditions all taken al co. In subsection 3.1, we in-
troduce some extra notation and the (equivatent) Linearized
Rational Interpolation Problem. The parameterization is de-
scribed in subsection 3.2. Based on this parameterization,
some properties of realization theory are derived. A main re-
sult is that a tower bound for the positive degree 87 is easily
obtained. This is done in subsection 3.3. More details can be
found in [23].

3.1 Notation

The numerator n,(z) and the denominator dp(z) of

u(z) = np(z}
dp{z)
are combined in the ordered polynomial couple p(2) =
{np{z),dy(2)) # (0,0). Two rational expressions or poly-
nomial couples (np1{z),dp(2)) and (np2(2),dya(z)) are
called equivalent if

11 (2)dpa{2) = npe(2)dm (2).




The degree 6 of the rational expression (n,(z), dp(2)) is de-
fined as 8 = max{deg n,(z), deg dp(2}}.

We say that the polynomial couple p(z) = (np(2), dp{2})
salisfies the first { interpolation conditions of the Proper Ra-
tional Interpolation Problem (PRIP) {1} iff:

np(2) ~1

P P+ 027, z— o0 7
dp(z)

The couple p(z) = (n,(z), dp(z}} with & > deg d,(z) satis-

fies the first I interpolation conditions of the Linearized Ra-

tional Interpolation (LRIP) problem iff:

np(z) — dp(2)F(2) = O(z"%), 2—o00.  (8)

The entity § chosen in (8) is called the potential degree of the
polynomial couple p(z) = (ny(z),dp(2)). The extra flexi-
bitity introduced by choosing § > deg dp(z) will be used
in subsection 3.2, We call the highest potential degree co-
efficients of p(z) the coefficients of np{z) and dp{z} with
degree equal to the potential degree 5. Also note that for
[ > § — deg dy(2), degdy(z) = degnp(z) = deg p(z).
If § = degd,{z), then the PRIP (7} follows from the
LRIP (8). Given the PRIP (7), the LRIP (8) follows with
& > deg dp(z).

The vector space of all polynomial couples with degree
not greater than & and satisfying the first ! interpolation con-
ditions (8) is denoted by 5; 5. The following important re-
lations hold between various “neighboring™ vector spaces of
S{,J:

Sie C Shaet
Sty € Sis
Sis € Sieisn

We also have

{p(2) € Si41 541 highest pot. deg. coeff. of
p(z) are zero} = Sy 5.

&)

The residual of the polynomial couple p(z) with potential
degree § satistying the first { interpolation conditions at the
{1+ 1)th interpolation condition is denoted by R{, ,p(z)} and
is given by:

2 RE, p(2) = N2 np(2) — 27 F(2)dy(2)).  (10)

For two polynomial couples u(z) € Si—y4,, w(z) € Si-1.5.,
and two polynomials z{z), ¥(2), we have that the residuat of
a linear combination is equal to

R (x{z)u(z) + y(2)w(2)) = 2, Rf“n(z) + Rf"‘w(z),
(1)

if the potential degree § of the linear combination is equal to
§ = degx(z)+ potdeg u(z)
= degy(z) + potdeg w{z),
with ay, and yy, being the highest degree coefficients of the
polynomials (2} and y(z) respectively. From the above def-

initions it is easy to see that a polynomial couple p{z) € 55
itf

o the residuals Ripare equal to zero fori = 1,...,1

» the degree of p(z) is smaller than or equal to the poten-
tial degree 4.

The last notation tat is needed is that of a ser of poly-
nomial couples: given a § € N and polynomial couple
p{z} with potential degree §,, the set of polynomial couples
{p(2)}? is defined as follows:

)y = 9 (12)
if 4§ < dp,

()Y = {p(2),2p(z),.... 2 %p(2)}, (1B
it 026,

3.2 Parameterization

A parameterization for alt sokutions of the LRIP (B) is given
in Theorem t. The parameterization for the corresponding
PRIP (7} is described by Property 2.

Theorem 1 [21, 23] There exist two polynomial couples
wy(2) and wi{z):

w{z) (ngul2), dru(2))
'wf(z) = (m.w(z),dg'w(z)),

Il

with potential degree & ,, and 8y, respectively, such that for
each § < oo, a basis BS, ¢ for the vector space S 5 is given
by

BSys = {w(2)}° U {w(2)}’.

A proof by induction can be found in [23]. The Algorithm
to construct the polynomial couples uy 1 (2) and wy 41(z)
with corresponding potential degrees dy41,., and Sy 1, 05
given in Algorithm 1. In the sequel of the paper, the order-
ing of Algorithm [ is assumed, i.e. u;(2) is the polynomial
couple with lowest potential degree.

Algorithm 1 Construction of a basis for the Linearized
Rational Interpolation Problem

Initialization
ngwu(2} now(2)
wolz) wolz ’ '
[ Z)O( ) 6[(})( ) ] = do(2)  dowiz)
O " (50‘11 ‘Sﬂ,w
1 4
= 0 i
0 0
for 1=0,1,..., N,
it R =0

Uii(2) = [ é

— O
[




[Breva St} = Bre Stw+1]

elsel —hStw— 0. 1
I-+1 (2) = 1 0

. s 5i,m 6(.'1
with b = RJY /R0

{41, Oigrw] = Bw dut+1]
":f 51'+!,u’ < ‘sf+!,w'
Upga(2) = Ua’+1(3)
[§1+l,u 6!+1,wl = [5i'+1,u'
else

Uppi(2) = Uz'+1(z) [ 2 (]) }

. 0 1
(Brane Sl = [Friw ¢e+1.w'l[ 10 J
endif

6l+1.w'}

endif

endfor
ezl napLw(z) ] U Ui (2} U
dN+I,u (z) dN-{-—l,w(z) D(Z) 1 (Z) N+1 (Z)

Based on the construction of w(2) and wi{z) in Al
gorithm 1, the following important properties concerning
the minimality of u{z) = (y,.(2), dru(2)} and wy(z) =
(ng,wlz), di,wlz)) hold [21]:

Property 1 Both polynomial couples are co-prime, ie,
.y (2) and dy o (2) have no common factors and vy, (z) and
dy w (2} have no common fuctors.

Property 2 The parameterization of all solutions of the
PRIP (7) with degree 8 satisfying the first L interpolation con-
ditions is given by

Pe(z) = z(2)w(z) + y(2)wi(z), (14)

with the following restrictions on the polynomial parameters

z{z} and y(z):

degz(z) < 6—dpu, (15)
deg y(z) < é— Jl.uu (16)
deg pry{z) = & (n

The last condition (17) means thar the linear combination
(2{2),y(2)) may not result in a zero highest degree coef-
ficient.  Two solutions of the rational interpolation prob-
lem pey gy, and pr, .y, are equivalent iff (21(2),;(2)) =

k(za(2), y2(2))-

The proof follows from the parameterization of the LRIP (8)
and the equivalence with the PRIP (7). The two ra-
tional expressions py, 4, (2} = (nz, . {2),dr, (7)) and
Prawal) = (a0 (2), des e (2)) are equivalent iff

det [ "xl.yl(z) ”Iz»y:e(z) ] =0 (ES)

({II‘UI (Z) d.r-_:,yz (Z)
w1z} walz) | _
@det[ vz} 12(2) } -0
nl,u(z)

since det[ m'w(zi } # 0.

drwlz

dr u{z)

From the minimality of py, y, {#) and pg, 4, (2), both 21{2)
and »1(z) have no nontrivial common factors and nei-
ther have zo(2) and y2(2).  Hence, (@1{z},1n(z)) =
k(w2(z), y2(2)), with & a constant and not a polynomial.

3.3 Properties

The two following propertics from deterministic realization
theory are now easy Lo prove.

Property 3 If the degree of un1{z) is equal 1o the poten-
tial degree, then the McMillan degree or algebraic degree
is this potential degree 8, = dnyi,a. In the other case,
‘5(1 = 6N+l,w-

The question when the solution with algebraic degree 8, is
unique was solved in [18] by imposing a rank condition on a
finite Hankel matrix, formed with the elements of the covari-
ance sequence. In the above parameterization, the condition
becomes:

Property 4 There exists only one solution with the algebraic
degree 8, iff 6o = Ovare < Sy Lwe

The McMillan or algebraic degree of a polynomial couple
satisfying the interpolation conditions of the covariance se-
quence Cy is given by Property 3. However this realization
is nol guaranteed to be positive real. Therefore, the McMil-
lan degree &, is not necessarily equal to the positive degree
&*. The following relations hold:

Property 5 Based on the properties of the interpolation con-
ditions, the following relations can be derived with respect to
the algebraic and positive degree:

(a) The algebraic degree 5, of all solutions is given
by Property 3. Iff the corresponding solution is posi-
tive real, the positive degree is equal to this algebraic
degree.

(b} If &, = deg u{z) and u{z) is not positive real, a lower
bound for 6% is S 1,

{c} If 8, = deg w(z), the lower bound for 5% remains §,.

Part (a) is trivial. Part {(b) follows from the parameterization
for the partial realization problemn given by Property 2.

From incqualities (15)-(16) it follows that the minimal de-
gree for a solution different from u(z) is dv41,.. Hence,
since u{z) is not positive real, a lower bound for &% iy
&yt Part () is easily proven by similar reasoning.

Combination of parts (b} and (¢) with Property 4 leads 10
the following interesting insight. When there exists only one
solution (Property 4) for the interpolation problem, the next
degree that is possible is equal to Sy 41, Hence, when the
solution with the McMillan degree is not positive real, the
minimal solution of the partial stochastic realization prob-
lem should at least have degree §y.41,. The number of free
parmmeters is equil 10 Sy 41,0 — 0q + L.

Besides the lower bound for the positive degree, un
advantage of the parameterization of Property 2 is that the




search for the positive degree can be started from the lower
bound. Especially for large covariance sequences, this has
substantial benefits with respect to the Kimura-Georgiou pa-
rameterization (5). Another advantage is that for non-trivial
choices of z(#) and y(z), ny 4(2) and d; (2} are relatively
prime by Property 2, which has to checked in the Kimura-
Georgiou parameterization.  Finally we mention that this
parameterization also allows for solutions with degree higher
than N. An algebraic description of all solutions for the
partial stochastic realization problem is given in Algorithm 2.

Algorithm 2 Algebraic description of the rational solutions
of the covariance extension problem

Step 0 Check if T(Cn) = 0, iff not Stop.

Step 1  Caleulate the polynomial couples un+1(%),
wy ey (2} with
their potential degrees Sy 1, SN 11,0 (Algo-
rithm 1).
Calculate the algebraic degree 8q based on
Property 3.

Step2  Foreachd, §, < 8, for each possible choice of
the polynomials x:(2) and y(2) in (14) of Prop-
erty 2:

Step 2a  Check if a(z) = pe(2) is stable (e.g. Schur-

Cohn Criterion).
Step 2b  Check if p(2) is psewdo-positive real, {2, 9].

4 Example

Let us start from the Laurent series [4, 6] of v(z} = § 2H1££,

with ¢ > 0. By an appropriate (small) choice of € > 0,
N can be made arbitrarily large such that 7{Cn) > 0 and
T(Cwyt) # 0, since v{z) has a zero outside the unit disc.
The corresponding partial covariance sequence is given by

1
Cr.'\’ = {5361:"')(:1\'}1

with ¢; = e(=1)+1(1 — €)"! for i > 1. The corresponding
sotutions of Algorithm 1 for N > 2 are

n,{z) ne(2) z+E4¢ z+ 2
dy{z) de(z) | =] 2(z+1-¢) 2z
Ju Jw 1 N

This means that for N > 2 and T(Cn} > 0,
the positive degree 4+ = N.  For example, for
¢ = 0.1, Cis = {1,0.1,-0.09,0.081, —0.0729, 0.0656,
—0.0500, 0.0531,-0.0478, 0.0430, -0.0387, 0.0344,
—0.0314,0.0282, —0.0254,0.0229} with 7(Cy5) > 0,
while T(Cis) # 0. The solutions of Algorithm 1 for U5
are:

(2} ny,(z) 10z + 11 Bz+1
d.(2) d,(2) 2(10z + 9) 102
du S 1 15

Hence, since u{z) is not positive real, the positive degree
dt = 15. Also note that as an intermediate result, ug(z) =
(nu{z), dy(2)} and ws(2) = (ny{z), dw(2)) with patential
degrees 83, = 1 and 83, = 2 respectively, are obtained.
This soluticn corresponds to the “deterministic” system that
generated the valid partial covariance sequence. For all next
interpolation points Rfﬂr";u; = Oforl=3,4,... and the po-
tential degree d,, is increased by one, resulting into the solu-
tion {19). For this example, the lower bound of Property 5 is
strict. A positive real solution with minimal degree is e.g. the
Maximum Entropy solution.

5 Conclusions

An alternative parameterization [20, 21, 23] is presented to
parameterize the {deterministic) solutions of the partial real-
ization problem. Minimality of the solutions parameterized
by this solution is satisfied. This implies that he minimal
degree of an interpolating solution is easily obtained. Fhis
degree is called the McMillan or algebraic degree. From
the structure of the parameterization one can directly check
whether the minimal solution is unique. A description of
ali solutions of the corresponding partial stochastic realiza-
tion problem is obtained by checking the positive real con-
straints for all deterministic solutions. When compared to the
Kimura-Georgiou parameterization, we now obtain a non-
trivial lower bound for the minimal degree of an interpolat-
ing stochastic solution. This degree is the so-called positive
degree. The results are illustrated by means of an example.
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