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Abstract

We de2ne a notion of subspace angles between two linear, autoregressive moving average, single-input–single-output
models by considering the principal angles between subspaces that are derived from these models. We show how a recently
de2ned metric for these models, which is based on their cepstra, relates to the subspace angles between the models. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Principal angles between subspaces; ARMA models; Linear systems; Stochastic realization; Distance measure; Time series;
Cepstrum

1. Introduction

The concept of principal angles between subspaces
of linear vector spaces is due to Jordan [9] in the
19th century. This notion was translated by Hotelling
[8] into the statistical quantities of canonical correla-
tions, which are widely applied (see e.g. [5]). In the
area of systems and control, the principal angles be-
tween two subspaces are used in subspace identi2ca-
tion methods [13] and also in model updating [3] and
damage location [4]. In the latter two applications, one
starts from a 2nite element model and measurements
of a certain mechanical structure and one tries to 2nd
the subset of parameters of the model that should be
adapted to explain the measurements, which is done
by computing the principal angles between a certain
measurement space and the parameterized space. In
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that way, damage to the structure can be located.
The subspace-based fault detection algorithm of Bas-
seville et al. [1], on the other hand, is based on linear
dynamical models, the type of models that we deal
with. Changes in the eigenmodes of the observed
system are determined by monitoring the diEerence
between the column spaces of the observability matrix
of the nominal linear dynamical model and the ob-
servability matrix of the model that can be identi2ed
from the measurements. The diEerence between the
column spaces can be quanti2ed by the principal an-
gles between the subspaces. As will become clear in
Section 4, these are the angles that we will de2ne as
the subspace angles between two autoregressive (AR)
models. A generalization to the subspace angles
between autoregressive moving average (ARMA)
models, which also take into account the zeros of the
models, is given in Section 5. Furthermore, we show
how the subspace angles between two ARMA models
are related to the cepstral metric for ARMA models
de2ned by Martin [11]. The statistical properties and
the applicability of these concepts are topics of future
research.
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The paper is organized as follows. In Section 2,
we brieGy recall the de2nition of principal angles be-
tween and corresponding principal directions in two
subspaces. In Section 3, we discuss a cepstral distance
measure for ARMA models that has recently been de-
2ned by Martin [11]. Our de2nition of the subspace
angles between AR models and their relation to the
distance measure of Martin is given in Section 4. In
Section 5, the de2nition of subspace angles is extended
to the ARMA model class. Finally, in Section 6 we
give the conclusions and point out possible further de-
velopments of our work.

2. Principal angles between subspaces

In this section we discuss the notion of principal
angles between and principal directions in two sub-
spaces. We start with the de2nition in Section 2.1, and
in Section 2.2 we show how the angles and directions
can be characterized by solving a generalized eigen-
value problem.

2.1. De7nition

Let A∈Rm×p and B∈Rm×q be given real matrices
with the same number of rows and assume for con-
venience that A and B have full column rank and that
p¿ q. We denote the range (column space) of a ma-
trix A by range(A).

De�nition 1. The q principal angles �k ∈ [0; 	=2];
between range(A) and range(B) and the correspond-
ing principal directions Axk and Byk in range(A);
respectively range(B); are recursively de2ned for
k = 1; 2; : : : ; q as

cos �1 = max
x∈Rp
y∈Rq

|xTATBy|
‖Ax‖2‖By‖2 =

|xT1ATBy1|
‖Ax1‖2‖By1‖2 ;

cos �k = max
x∈Rp
y∈Rq

|xTATBy|
‖Ax‖2‖By‖2 =

|xTk ATByk |
‖Axk‖2‖Byk‖2

for k = 2; : : : ; q

s:t: xTi A
TAx = 0 and yT

i B
TBy = 0

for i = 1; 2; : : : ; k − 1:

Note that the principal angles satisfy 06 �16 · · ·
6 �q6 	=2. Following the notation in [13], the or-
dered set of q principal angles between the ranges of
the matrices A and B is denoted as

(�1; �2; : : : ; �q) = [AlB]:

2.2. The principal angles and directions as the
solution of a generalized eigenvalue problem

It can be shown (see e.g. [7]) that the principal
angles and the principal directions between range(A)
and range(B) follow from the symmetric generalized
eigenvalue problem:(

0 ATB

BTA 0

)(
x

y

)
=

(
ATA 0

0 BTB

)(
x

y

)
�;

(1)

s:t: xTATAx = 1 and yTBTBy = 1:

The link between the generalized eigenvalue
problem in (1) and De2nition 1 goes via the
so-called variational characterization of the eigenvalue
problem.
Assume again that A∈Rm×p, B∈Rm×q and p¿ q

and that the p + q (real) generalized eigenvalues
�i are sorted in non-increasing order as �1¿ · · ·¿
�p+q; then one can show that

�1 = cos �1; : : : ; �q = cos �q¿ 0; (2a)

�q+1 = �q+2 = · · ·= �p = 0; (2b)

�p+1 =−cos �q; : : : ; �p+q =−cos �1: (2c)

The vectors Axi and Byi, for i= 1; : : : ; q where xi and
yi satisfy (1) with �= �i, are the principal directions
corresponding to the principal angle �i.
Note 1: When considering the principal angles be-

tween equidimensional subspaces (p = q), Eq. (2b)
does not come into play. The squared cosines of the
principal angles between the ranges of A and B are then
equal to the eigenvalues of (ATA)−1ATB(BTB)−1BTA,
or equivalently the largest p eigenvalues of �A�B =
(A(ATA)−1AT)(B(BTB)−1BT), where �A and �B are
the orthogonal projectors into the range of A, respec-
tively B.
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The above-mentioned method for the computation
of the principal angles and vectors based on the gen-
eralized eigenvalue decomposition, is given for theo-
retical purposes only (we will use the characterization
in the proof of Theorem 4). Numerically stable meth-
ods to compute the principal angles and vectors via a
singular value decomposition have been proposed in
[2,7] and can also be found in [6].

3. A metric for the set of single-input–single-output
ARMA models

In [11] Martin de2nes a new metric for the set
of single-input–single-output (SISO) ARMA models,
which is based on the cepstrum of the model. Further
on in the paper we will show that this metric is related
to the principal angles between speci2c subspaces de-
rived from the ARMA models. For the sake of com-
pleteness, we repeat in this section some results that
have been reported in [11].
We recall that the cepstrum c(k); k ∈Z of a linear

SISO model with transfer function H (z) is the inverse
z-transform of the logarithm of its spectrum:

logP(z) = logH (z)H (z−1) =
∑
k∈Z

c(k)z−k : (3)

Let M1 and M2 be stable and minimum phase
(i.e. all poles and zeros lie inside the unit circle)
ARMA models with cepstrum c1(k) and c2(k); k ∈Z,
respectively.

De�nition 2 (Martin [11]). The distance betweenM1

and M2 is de2ned as

d(M1; M2) =

√√√√ ∞∑
k=0

k|c1(k)− c2(k)|2:

Martin subsequently shows that for stable AR mod-
els M1 with order n1 and poles �i (i = 1; : : : ; n1) and
M2 with order n2 and poles �i (i = 1; : : : ; n2) the fol-
lowing equality holds:

d(M1; M2)2 = log

∏n1
i=1

∏n2
j=1 |1− L�i�j|2∏n1

i; j=1(1− L�i�j)
∏n2

i; j=1(1− L�i�j)
;

(4)

where Lx denotes the complex conjugate of x∈C.

This equality basically follows from the expression
that relates the cepstrum coeMcients of an AR model
to its poles (see e.g. [10; 12, p. 502]):

c1(k)=
1
k

n1∑
i=1

�ki and c2(k)=
1
k

n2∑
i=1

�ki for k¿0:

As an example, ifM1 andM2 are two 2rst order stable
AR models, their squared distance equals

d(M1; M2)2 = log
(1− ��)2

(1− �2)(1− �2)
= log

1
cos2 �

;

where � is the angle between the vectors

(1 � �2 · · ·)∈R∞

and

(1 � �2 · · ·)∈R∞:

It will become apparent in Section 4.2 that for higher
order models, the squared distance as de2ned by Mar-
tin [11] can be expressed as the logarithm of a product
of 1=cos2 �i (see Theorem 4). The angles �i will be
called the subspace angles between the models.

4. Subspace angles between AR models

In this section we start the discussion of our new
concept of angles between models, by considering AR
models. The de2nition of the subspace angles between
two AR models is given in Section 4.1. In Section
4.2 we show how the subspace angles between two
AR models are related to the cepstral distance of the
models as de2ned in [11] (see also De2nition 2).
For reasons of conciseness, we only consider AR

models that have the same model order. The de2ni-
tions can, however, be extended to models with dis-
tinct orders.

4.1. De7nition

Let two stable and observable nth order AR models
M1 and M2 be characterized in state space terms by
their system matrix A1 and A2 and output matrix C1

and C2, respectively.
Their in2nite observability matrix,

(CT
i AT

i C
T
i A2T

i C
T
i · · ·)T ∈R∞×n;

is denoted as O∞(Mi) for i = 1; 2.
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De�nition 3. We de2ne the subspace angles between
M1 and M2 as the principal angles between the ranges
of their in2nite observability matrices:

[M1 lM2] = [O∞(M1)lO∞(M2)]: (5)

The existence of the subspace angles is guaranteed
by the stability of the models. Indeed, the matrices
Qkl=O∞(Mk)TO∞(Ml) (k; l=1; 2), which are needed
in the generalized eigenvalue problem (1) for the com-
putation of the angles, can be obtained by solving the
Lyapunov equation(
Q11 Q12

Q21 Q22

)

=

(
AT
1 0

0 AT
2

)(
Q11 Q12

Q21 Q22

)(
A1 0

0 A2

)

+

(
CT
1

CT
2

)
(C1 C2);

the solution of which exists and is unique due to the
stability of M1 and M2.

4.2. Relation of Martin’s metric and the subspace
angles between two AR models

The subspace angles between two AR models are
related to the distance between AR models as de2ned
in [11] (see De2nition 2) in the following way.

Theorem 4. For the stable and observable AR mod-
els M1 and M2 of order n;

d(M1; M2)2 =−log
n∏
i=1

cos2 �i;

where (�1; �2; : : : ; �n) are the subspace angles between
M1 and M2.

Proof. Assume M1 has poles �1; : : : ; �n and M2 has
poles �1; : : : ; �n. One can show that the subspaces
range(O∞(M1)) and range(O∞(M2)) only depend
on the poles of the corresponding AR model. More
speci2cally; if the system matrices A1 and A2 are
diagonalizable; then

range(O∞(M1)) = range(�1);

range(O∞(M2)) = range(�2); (6)

where

�1 =




1 · · · 1

�1 · · · �n
�21 · · · �2n
...

...


∈C∞×n and

�2 =




1 · · · 1

�1 · · · �n
�21 · · · �2n
...

...


∈C∞×n: (7)

From De2nition 3 and Note 1 it follows that the
squared cosines of the subspace angles between
M1 and M2 are equal to the n eigenvalues of
R−1
11 R12R−1

22 R21; where Rkl = �H
k �l (k; l = 1; 2) (the

superscript ·H denotes the complex conjugate trans-
pose).
The product of the squared cosines of the subspace

angles between M1 and M2 is therefore equal to

n∏
i=1

cos2 �i = det(R−1
11 R12R−1

22 R21) =
det R12 det R21

det R11 det R22
:

(8)

The elements of the matrices Rkl (k; l = 1; 2) can be
computed from the poles of the models M1 and M2

by applying
∑∞

k=0 x
k =1=(1− x) for |x|¡ 1. For R12,

e.g. one obtains

R12(i; j) =
1

1− L�i�j
(i; j = 1; : : : ; n); (9)

where R12(i; j) is the element of the matrix R12 on the
ith row and the jth column.
Computing the determinants of the matrices

Rkl (k; l = 1; 2) in (8), e.g. via the formula for the
determinant of a Cauchy matrix (see Appendix A),
leads to

− log
n∏
i=1

cos2 �i = log

∏n
i; j=1 |1− L�i�j|2∏n

i; j=1(1− L�i�j)(1− L�i�j)
:

(10)

The right-hand side of (10) is equal to the squared
cepstral distance between M1 and M2 (see Eq. (4)).
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Consequently,

−log
n∏
i=1

cos2 �i = d(M1; M2)2:

5. Distance and angles between ARMA models

As mentioned in Section 3, Martin de2ned a met-
ric, not only for AR models, but more generally for
ARMA models [11]. On the basis of this de2nition
(De2nition 2) and a property of this metric that is
given in Section 5.1, we de2ne in Section 5.2 the sub-
space angles between two ARMA models.

5.1. A property of the metric

Since the cepstrum is the inverse z-transform of the
logarithm of the spectrum (see Eq. (3)), the following
property holds [11]:

d(H1H3; H2H3) = d(H1; H2);

where Hi is the transfer function of the ARMA model
Mi for i= 1; 2 and H3 is an arbitrary stable minimum
phase transfer function. This implies that in order to
compute the distance between ARMA models, it is
suMcient to consider AR models. Indeed, for H1(z)=
b1(z)=a1(z) andH2(z)=b2(z)=a2(z) of order n1 and n2,
respectively, take H3(z) = zn1+n2=b1(z)b2(z), so that

d
(
b1(z)
a1(z)

;
b2(z)
a2(z)

)
= d

(
zn1+n2

a1(z)b2(z)
;

zn1+n2

a2(z)b1(z)

)
:

(11)

Because M1 and M2 are stable and minimum phase,
the two resulting AR models in (11) are stable.
We now propose the following de2nition of the sub-

space angles between ARMA models.

5.2. Subspace angles between ARMA models

Let M1 of order n1 and M2 of order n2 be stable,
minimum phase ARMA models with transfer func-
tion H1(z) = b1(z)=a1(z) and H2(z) = b2(z)=a2(z), re-
spectively. Assume that the AR models with transfer
function zn1+n2=a1(z)b2(z) and zn1+n2=a2(z)b1(z) are
observable.

De�nition 5. We de2ne the subspace angles between
M1 and M2 as the subspace angles between the AR
models with transfer function zn1+n2=a1(z)b2(z) and
zn1+n2=a2(z)b1(z); respectively.

Consequently, the n1 + n2 subspace angles be-
tween M1 and M2 are equal to the principal angles
between the ranges of (O∞(M1) O∞(M−1

2 )) and
(O∞(M2) O∞(M−1

1 )). Analogous to (6) and (7),
the range of the observability matrix of the inverse
model M−1 is only dependent on the zeros of M .
From De2nition 5 and Eq. (11) it is clear that The-

orem 4, which was given for AR models, is also valid
for ARMA models.

Theorem 6. For the stable and minimum phase
ARMA models M1 of order n1 and M2 of order n2;

d(M1; M2)2 =−log
n1+n2∏
i=1

cos2 �i;

where (�1; �2; : : : ; �n1+n2 ) are the subspace angles be-
tween the ARMA models M1 and M2.

6. Conclusions

In this paper we have proposed a de2nition for the
subspace angles between two ARMA models and we
have shown a relation between these angles and a re-
cently de2ned distance measure for ARMA models
[11].
In the near future, these new notions of distance

and angles between models will be applied to several
engineering applications, such as signal classi2cation,
fault detection, calculation of the so-called stabiliza-
tion diagrams in vibrational analysis, etc.
Many questions remain to be tackled. Fu-

ture developments will comprise the extension to
multiple-input–multiple-output (MIMO) models and
to deterministic systems. Furthermore, the apparent
relation with the notion of mutual information will be
explored.
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Appendix A. Computing the determinant of the
matrices Rkl (k; l = 1; 2)

The matrices Rkl (k; l = 1; 2) have a structure (see
Eq. (9)) reminiscent to that of a Cauchy matrix, which
has the form

C(i; j) =
1

xi − yj
(i; j = 1; : : : ; n):

A formula for the determinant of a Cauchy matrix was
found by Cauchy and can be proven by induction:

detC =

∏n
i¿j(xi − xj)

∏n
i¡j(yi − yj)∏n

i; j=1(xi − yj)
: (A.1)

The matrices Rkl (k; l = 1; 2) can be written as the
product of a diagonal matrix Dk and a Cauchy matrix
Ckl:

Rkl = DkCkl: (A.2)

For R12, e.g. these matrices are equal to

D1 = diag
(
1
L�i

)
;

where diag(1= L�i) is the diagonal matrix with elements
1= L�1; : : : ; 1= L�n, and

C12(i; j) =
1

(1= L�i)− �j
(i; j = 1; : : : ; n):

Substituting (A.2) into (8) gives
n∏
i=1

cos2 �i =
detC12 detC21

detC11 detC22
;

which becomes after applying Cauchy’s formula (A.1)
n∏
i=1

cos2 �i =

∏n
i; j=1(1− L�i�j)(1− L�i�j)∏n

i; j=1 |1− L�i�j|2 :
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