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Abntract— We discuss €he use of multi resolution analysis (MRA) for
fast approximate solution of large linear sets of equations arising in least
squares support vector machine (LS-SVM) problems. When LS-SVMs are
used on i low dimensional input space, the matrix of the lnear set exhibits
siructure that leads to a sparse approximation in the wavelet domain. The
amonnt of stroctore decreases with increasing dimensionality. We will it-
lusirate this principle by means of a smalt example.
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I. INTRODUCTION

The research of this paper is situated in the field of nontin-
ear function estimation using support vector machines (SVMs)
[17](18]. Training of a SVM mvolves solving a quadratic pro-
gramming problem. It has been proposed to use least squares
support vector machines (LLS-SVMs) as a variant of standard
SVMSs [91[11]. In this method one replaces the e-insensiive
loss function proposed by Vapnik which leads to sparse SVM
models by a quadratic loss function. Changing the original in-
equality constraints to equality constrainis reduces the problem
to the solution of a linear set of equations. Compared to stan-
dard SVMs, sparsity of the support value spectrum is lost, It is
shown in [12}[13] that sparsity can be imposed based on pruning
the least significant support vectors, Large scale problems have
been treated in [10]. Excellent benchmark results for [.S-SVMs
are obtlained in [16].

In this paper we presenl a motivation for a method exploit-
ing smoothness of the matrix arising in large LS-SVM problems
when the data points are taken from a low dimensional grid, as
is usually the case in signal processing, The smooth structure
of the linear set is exploited by transforming it to the wavelet
domain where it can be approximated by a sparse matrix. This
wavelet sparseness is not to be confused with the (inherent) s-
parseness of a SVM model or the (imposed) sparseness of a L.S-
SVM model.

We base our work on a method presented in {3]. The method
uses smoolhness (in a local polynomial sense) of the matrix of a
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set of equations to construct a direct solver that works in G{N)
time. The trick is 1o replace LU factorization, a method that is
O(N3) for dense matrices, by a banded version in the wavelet
domain. The wavelet decomposition used is the non—standard
form (NS-form) of the wavelet transform, also used in image
compression. The NS-form is particularly efficient for smooth
diagonally dominant matrices such that their transform can be
approximated by a banded matrix.

The core operations of the methad are sparse LU factoriza-
tion, forward/backward substitution, sparse matrix/matrix and
matrix/vector operations and the application of 2D analysis and
1D analysis and synthesis two-scale wavelet transforms. In this
paper we will concentrate on the latter.

This paper ts organized as follows, Section Il is a review of
the LS-SVM model and the linear set to be solved. Section III
discusses the issue of structure in 1D LS-SVM problems. Sec-
tion IV describes the solution of the 1D uniform sampled LS-
SVM linear set in the wavelet domain. It deals with orthogonat
decompositions as used in [3]. Section V will comment on the
extension possible by using the lifting scheme. The first part
discusses the extension to biorthogonal wavelets on an interval,
The second part will comment on the extension to irregular grid-
s.

II. LEAST SQUARES SYM’s

The L5-SVM model for function estimation has the following
representation in feature space

y(z) = w'p(z) + b (1)

where © € R™, y € R (-) is a nonlinear map from the input s-
pace to a higher dimensional feature space, which can be infinite
dimensional.

Given a training set {zg,yx}5., one defines now the opti-
mization problem

N
min J(w,e) = g w + 75 gm] er. (2)

subject Lo equalily constraints
yr=wlolz) +bte, k=1,.., N {3)

The cost function with squared error and regularization corre-
sponds to a form of ridge regression [4). A similar problem has
been studied in [5] but without considering a bias term.
One constructs then the Lagrangian
.f\f
Llw, b e;a) = F(w,e) — Za’k {whe(a) + b+ ep — yi)

k=1
4)
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where oy are Lagrange multiphiers,

Frc?m the conditions for optimality 3—3 =0, % =0, gf; = ()
and 5‘1—& = 0 we find the solution
0 ir b 0
= | — i | = (5)
1 | Q4+~ fa} y

with y = {in; . ywl, = [1;..51], @ = [y ...; an]. Mercer’s
condition is applied as

Qe () Top(ar),

= I((:I:k, &‘;)

Il

(6

with kernel function J{, which can be chosen as a linear, poly-
nomnial, spline, RBE or MLP, The resulting LS-SVM model for
function estimation becomes

‘f\r
y(z) = Z arK{(z,2)+b N

k=1

where ay, b are the sohution to the linear system (5). In the se-
quel we focus on RBF kernels.

I, LOW DIMENSIONAL INPUT L.S-SVM PROBLEMS

Due to their structure, an obvious advaniage of SVMs in gen-
eral is to overcome high dimensionality without additional cost.
The amount of memory required is quadratic in the number of
training points and seemingly independent of the input dimen-
sion of the problem. Surely this ‘dimensional cost’ has to mani-
fest itself somewhere in the complexity of the problem, although
not at first sight.

¥ we take a closer look at the resulting set of equations, we
see a Jol of structure arising in problems with a low input di-
mension. This structure is present in the forin of a ‘smooth’ set
matrix, In the extreme case of 1D regular sampling, orthogonal
wavelels can be used to transform the set such that the trans-
formed set can be approximated by a sparse set.

This sparseness is not to be confused with the notion of sparse
L5-SVM modeling: it is merely a trick 1o solve a linear set in
another domain by using a non-parametric transform (wavelets).
We might even say that the LS-SVM sparseness is what we want
to obtain from the work we put into the method and the wavetet
sparseness is a ‘complexily refund’ we get by applying a non-
parametric transform on the set of equations arising from the
LS-SVM problem formulation. It could be said it pays back
the O{N'?) data-explosion in the LS-SVM formulation. This
‘refund’ only works in low dimensional case and is a (positive)
manifestation of the fenomenon usually referred to as ‘the curse
of dimensionality’.

Now we will adjust the formulation of (5) such that the
wavelet transform can be used more efficiently. In its present
form it contains a row and a column of ones that will intro-
duce a lot of significant detail coefficients in the wavelet domain
and thus decrease compression. For ease of notation we define
Z = Q-+ 11 As presented in [10], we can transform (5) to
the following form

"z7'T | o b 1rz-y
0 | Z a+bz!

|-

} {8)

The algorithm to obtain a and b is as follows.

Cap=1

ATERT
Ls=1TZ2"1 =17y
b=n"y/s
a=v--nb

R R

The core operation of this algorithm is the solution of two lin-
car sets defined by matrix Z € BRV*Y and the right hand sides
y and 1. The goal of this paper is to find a way to exploit the
smoothness (in a polynomial sense) of the matrix Z, which is a
sum of a smooth kernel matrix {2 and a scaled unit matrix v~ 1,
by solving these sets using the NS-form direct solver described
in {3}. The solution of this subproblem is the subject of the fol-
towing sections,

The advantage of converting (5} to (8) is twofold. The bulk
of the work is concentrated in solving a set that is symmetric
and positive definite, and does not have a row and a column
of ones like the original set. The former will allow for the use
of cholesky factorization to replace LU factorisation in [3] and
will halve the memory requirements. The latter will increase
the smoothness of the matrix to be transformed to the wavelet
domain. In [10] this was applied for large scale problems, in
order to make iterative methods such as the conjugate gradient
method applicable to (8).

IV. ORTHOGONAL WAVELETS

The most structure can be found when the input data to
the LS-SVM problem are taken from a regular sampled grid.
In this case we can proceed to transform the problem using
two kinds of wavelet transforms. Orthogonal wavelets as pro-
posed in [2] and used in the direct solver presented in [3] and
biorthogonal wavelets designed and implemented using the ift-
ing scheme [14} [15], which have several advantages over or-
thogonal wavelets,

We take the solution of the set Zv = y as an example. The
solution of Z7 = T is analogous and can use the same NS-form
triangular factors. The outline of the algorithm is as follows, for
details see [3]

t. Compute Cholesky decomposition of the NS-form of Z.
2. Compute the NS-form of the right hand side y.

3. Perform a foreward and backward substitution.

4. Compute » using the inverse wavelet transform.

By using bounds for off-diagonal decay of the kernel function
and its M -th partial derivatives, with A/ the number of vanishing
moments of the wavelet, we can perform the usually expensive
computations, like the two-scale wavelet transform and the C-
holesky factorization, on banded matrices, which is the reason
why we can get O(N) complexity.

We will now concentrate on one of the basic steps: the cal-
culation of the 2D two-scale wavelet transform. This is an al-
gorithmic building block that will be applied recursively in the
construction of the NS-forn cholesky decomposition of Z. We




t ne | ng/N error
le-02 | 1448 1 5.66 | 9.83e-03
le-03 | 2104 821 { 1.31e-03
le-04 | 2795 10.9 | 1.42e-04
le-05 | 3245 12,7 | 9.21e-06
le-06 | 3580 14.0 | 1.62¢-06
le-07 | 4042 158 | 1.31e-07
le-08 | 4338 ¢ 16,9 | 5.20e-09
le-09 | 4522 17.7 | 1.41e-09
le-10 | 5825 228 | 2.31e-10
le-11 | 7496 29.3 | 9.08e-12

TABLE1

EFFECT OF THRESHOLDING ON ERROR AND SPARSENESE OF NF-FORM
WAVELET DECOMPOSITION OF 2,

will use W = [G|H] to represent the two scale orthogonal trans-
form matrix of the wavelet transform. The size of W is deter-
mined by the size of the vector or matrix it acts upon. @ and

_H are banded matrices that can be interpreted as subsampling

high— and low-pass filters, With 1¥; we denote the transform
matrix acting on the scale coefficients of level j — 1 to produce
scale and detail coetficients for level j. Increasing j corresponds
(o coarser levels as in [3].

In our application the matrix Z = (Q++717 can be calculated
from the 2, v and the o ggr. There is no neced 1o store the N2
elements of Z. The wavelet transform of Z has the form

e T
=W Zw,. 9
{ C; ZL i 1 ( )
A\ can be interpreted as the detail part of Z, Z; as the coarse
version of Z. Cy and C{' can be seen to represent vertical and
horizontal features of Z.
The transformation of Z can also be written as

Wrzw = whQ+ 471 0W = wTaw + 4711, (10)

The advantage of this is that the effect of the regularization
diagonal v~ 'I added to the matrix can be excluded from the
computation of the transform. The diagonal is preserved on ev-
cry scale, which can be understood if we compare (9) with (10).
Ay =GTQG + vy 1 and Z), = HYQH + v~ 1. These are all
minor improvements 1o solve (5) using the method in {3] with-
out need for excessive storage.

‘Table 1 contains an illustration of the effect of the thresh-
old level on the relative error of the resulting vector and the
sparseness of the approximation of the NS-form Cholesky fac-
tors, Note that because our only purpose at this moment is to
illustrate the principle without proof, we used a full Cholesky
decomposition of thresholded NS-form decomposition, in stead
of the originat algorithm that uses banded matrices,

We solved Zv = y, which is one of the two large lincar sets
of the algorithm in section III, in an approximate way, by dis-
carding all wavelet coefficients with absolute value smaller than
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Fig. 1. These images visnalise the absolute value of the following matrices.

The upper left is the original matrix Z. The upper right is the two-scale
transform of Z. The lower matrices visualize the result of the second and
third iteration of the NS-form of the 2D wavelet transform,

t. The wavelet used is the orthogonal Daubechies wavelet with
10 vanishing moments. The number of data points is N = 256,
The vector y contains a regularly sampled version of the func-
tion sin(10z}/x on the interval {—1,1]. The kernel function
2

used is K (xp, ;) = exp{—gw*—';ﬁL] with ¢ = 0.4. The tun-
ing parameter v = 1. n. is the total number of non-zero wavelet
coefficients. n./N can be interpreted as the significant band-
width around the diagonal for the NS-form matrices of wavelet
coefficients. The error is the relative 2-norm of the difference
with the exact solution,

Figure 1 contains an example of the original matrix (top left)
and ifs (wo scale transform (top right). The parameters of the
decomposition are the ones associated with the t = 1e — 05 line
in table I. This image clearly shows the sparsity of the wavelet
represention of Z: most of the information in Z is captured by
the coarse level coefficients (bottom right sub matrix) and by a
few wavelet coefficients around the diagonal. When we apply
the two—scale transform recursively to the coarse scate part of
the previous level decomposition we can construct the NS-form
ilcr’ntively Note also that the boundary effects in this example
can’t be ignored. This is due to the fact that the length of the
filters (20) is comparable to the size of the problem on coarser
scales and thus decreases locality of the transform. This problem
can be addressed using wavelets constructed on the interval,

Next we will comment on some alternatives to the orthogonal
wavelet bases presented in {2} and used in {3].

V. BIORTHOGONAL WAVELETS AND THE LIFTING SCHEME

An extension to the approach in [3] could be the use of the
lifting scheme to construct biorthogonal wavelets with desired
propetrties on the interval [14]{15]. ¥ allows the construction of
wavelets on the interval, which eliminates the need for periodic
boundary conditions that introduce spurious detail coefﬁcwms
and thus increases compression.

Using biorthogonal wavelets, one has a primal and a dual




wavelet basis W and W with the property 1 TW = W' =
I. This amounts (o two possible transformation schemes of %,

L WTzw B
2 WIZW = WTQW + 11

The first alternative preserves the symmetry of the decompo-
sition. This means the cholesky version of {3] can still be used.
Another advantage is that only the dual (analysis) wavelets need
tr have a lot of vanishing moments. The vanishing moments of
the primal (synthesis) wavelets are not important but need to be
at least one for stability reasons. The disadvantage is that the
regularization diagonal v~ 1 doesn’t survive to coarser scales,
its dransform has to be included in the intermediate numerical
representation. That is the main trade—off for having a four times
faster decomposition, compared to the orthogonal case,

The second alternative preserves the survival of v~!J from
scale to scale but symmetry is lost, so memory requirements
are twice that of the orthogonal case. Both the primal and dual
wavelets need a suflicient amount of vanishing moments be-
cavse they are both involved in the compression of Z. This
approach isn’t very interesting for our application and will be
discarded.

To extend the applicability of a fast 1D LS-SVM we ought
to inclode the case when the data are taken from an irregular
grid. The lifting scheme doesn’t prohibit this extension, howev-
er, there seem to be stability issues when the lifting scheme is
applied without caution [7]. Our experiences with this method
are inconclusive up till now.

V1. CONCLUSIONS

In this paper we have motivated the use of a multi resolution
direct solver to exploit smoothness arising in one dimensional
LS-SVM problems using an RBF kernel.
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