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Abstract ctassification or defining special prior knowledge-based

Fusing domain knowledge and data aims to
exploit two kinds of information and com-
bine the advantages of knowledge engineer-
ing and inductive techniques. In this con-
text we tested and analyzed hybrid meth-
ods that use Bayesian networks {to incorpo-
rate efficiently the prior background knowl-
edge)}, multi-layer perceptrons {to efficiently
exploit the data from the domain) and a con-
nection between these two representations.
These techniques can be used to define an
"informative” prior or an "informative” cost
for black-box models. We compare various
hybrid combination methods and suggest a
novel solution for the application of the in-
formative prior for black-box models (multi-
layer perceptrons) that avoids the symmetry
problems in the weight space.

1 Introduction

The optimal integration of prior background knowl-
edge and data is a challenging practical and theoret-
ical task in classification problems. The possible ap-
proaches to this task can be divided in two related cat-
egories: (1)} adaptive knowledge-based methods and
(2) knowledge-based inductive methods. In the first
group the probabilistic domain models, particularly
the Bayesian networks, were suggested for the integra-
tion: these originally knowledge-based techniques are
applied in a more and more adaptive way. Inductive
techniques similarly try to utilize the prior knowledge,
for example by selecting an optimal function class for
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cost functions [6, 1, 11].

Because of its general nature, the Bayesian network
knowledge representation became prevalent to de-
scribe the background knowledge and for the incor-
poration of examples. However, the technique has
disadvantages in the function learning context w.r.t.
black-box methods such as the sample and computa-
tional complexity of learning and the computational
complexity of inference.

To combine optimally the strengths of a white-box
technique (e.g. Bayesian network (BN)) and a black-
box technique (e.g. multi-layer perceptrons (MLI},
support vector machines) we analyze the following gen-
eral hybrid strategy for building classifier systems:

1. Apply a fixed structure Bayesian network model
with a prior distribution over its parameters to de-
scribe the background knowledge with confidence.

2. Use various transformation methods to incorpo-
rate this knowledge into a black-box model.

3. Do standard optimization in the classical statis-
tical framework (CSF) using the real data D], or
Bayesian simulation in the black-box models in
the Bayesian statistical framework (BSF).

We focus on methods mainly in the Bayesian statisti-
cal framework, since the inherent subjectivity of prior
knowledge makes it more suitable for the integration.

The paper is organized as follows: Section 1 summa-
rizes the approaches to integrate prior domain knowl-
edge and data. Section 2 recapitulates a Bayesian net-
work representation to describe the prior background
knowledge in a Bayesian manner. In Section 3 and 4
5 we discuss hybrid methods to use this prior knowl-
edge and their theoretical properties. In Section 6 a
Bayesian method is analyzed in which the prior back-
ground knowledge represented by a Bayesian network
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is transformed to a prior distribution over the param-
eters of a multi-layer perceptron model. We analyze
problems related to symmetries in the weight space of
multi-layer perceptrons that have significant effects on
the applicability of multi-layer perceptron models in
the Bayesian statistical framework. Section 7 presents
results comparing the performance of these methods.

2 Formalization of prior background
information

A Bayesian network represents a joint probability dis-
tribution over a set of variables (see e.g. [5]). We
assume that these are discrete variables, partitioned
into three sets X, ¥ in {co, a1}, Z: set of input,
output, and intermediate variables respectively. The
model consists of a qualitative part (a divected graph)
and quantitative parts (dependency models). The ver-
tices of the graph represent the variables and the edges
define the qualitative dependency-independency rela-
tions among the variables. There is a dependency
model for every vertex {i.e., for the corresponding vari-
able) to describe its probabilistic dependency on the
parents (i.e., on the corresponding variables). Assum-
ing parameter independence we use Dirichlet distri-
butions as dependency models [5]. In this case the
prior background knowledge is formalized as a single
Bayesian network structure and a prior density over
the parameters is given by:
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where Vi can be interpreted as the number of previ-
ously seen examples in which the value of the ith vari-
able is & with parental configuration pa; = j (a one
based index for all possible parental configurations).

Under certain conditions {3] the prior background
knowledge formalized in the Bayesian network can be
interpreted as N prior seen complete cases to be used
to quantify the prior Bayesian network’s hyperparam-
eters. In practice the network cannot be characterized
by a single prier semple size N (e.g. because various
parts of the model are quantified by different experts
or studies).!

1For simplicity we assume that the prior P(©) is speci-
fied completely in a Bayesian way {e.g., by using Dirichlets
priors), but in general point value specifications {or even

3 Pure or hybrid representations

After constructing a prior domain medel, it seems nat-
ural to apply the observations on this model (i.e., to
fit a Bayesian network model to the observations (in
CSF) or to simulate the Bayesian inference with the
Bayesian network (in BSF). This method is hindered
in general by high sample and computational complex-
ity for learning, the practically discrete nature of the
related prior knowledge and its focusedness on a single
restrictive structure, as well as the high computational
complexity of the inference in Bayesian networks.

Beside the knowledge-based approaches, another
methodology to the classification and prediction task is
the inductive one. Assume that the black-box model’s
inputs and output are the same as for the Bayesian
network: X and Y. The black-box techniques in CSF
tries to select a function f{x) from a function class
C using the data D] that approximates the poste-
rior probability that observation & belongs to class ¢
(P(e1]x)). In the BSF the aim is to faithfully incor-
porate the prior domain knowledge in a model that is
powerful enough to model the data and do an efficient
Bayesian inference.

In our context the main deficiency of black-box mod-
els is the inability to incorporate prior knowledge (e.g.
the lack of an informative prior distribution or cost).
Consequently the performance characteristics of the
model types sharply differ as shown in Figure 4 in See-
tion 7 (for details about the speed of convergence, see
e.g. [8] for MLP, [2] for the learning of Bayesian net-
work parameters, [9] for Bayesian network structure).
This means that the efficiency of the incorporation
of prior domain knowledge and the learning charac-
teristics should be evaluated together for each model
type. The following two-step hybrid algorithm aims
to combine the pro's of the two methods: use the un-
derstandable white-box models to derive and describe
efficiently the prior domain knowledge and use black-
box technigues to exploit the samples efficiently.

4 Incorporation of prior knowledge

For some problems, the prior knowledge formalized as
a Bayesian network can be characterized by a prior
virtual sample size N, the number of previously seen
examples. The following method generalizes this and
provides an universal tool to use the prior knowledge
formalized as a Bayesian network in black-box meth-
ods.

Omitting the technical details, it is possible to define
a mapping T : ® — £ that transforms a prior dis-

hybrid specifications) can be allowed and most of our re-
sults and methods can be modified to cover this case.



tribution P{@®) over the Bayesian network parameter
space to a prior probability distribution Q(£2) over the
black-box model parameter space . The outline of this
mapping is the following: the black-box model f,(x)
is used for approximating the conditional distribution
of the output class P{e;]x) conditioned on the input
x, which is defined by the Bayesian network. Thus
we can define a mapping from every Bayesian network
parametrization 8 € & to the "best” approximating
black-box function parametrization w € £2 (see 6 for
practical issues). This link between the two model
types makes the suggested hybrid two-step method
possible,

5 Methods and their relations

The previous method can be regarded as an optimal
solution for the hybrid approach in BSF. Other meth-
ods that can be used to implement the hybrid approach
are the following:

e Probabilistic combination of the prediction of the
prior Bayesian network and the adapted black-box
model,

¢ Generation of prior sample,

¢ Defining an informative cost function (in CS¥)
or defining an informative prior distribution (in
BSF).

We focus only on the last two methods.

5.1 Using prior sample

After selecting a well-balanced N that characterizes
the confidence w.r.t. the input-cutput relation, the
prior probabilistic domain model can be used to gener-
ate random examples, In the CSF the optimal solution
for prior sample generation is to use a Bayesian net-
work with point value specification given by the mean
of the Dirichlet distributions. Since the generalization
error between a target f* and the selected function f
w.r.t. the data can be written as ||f* — fli = O(1/n)
[8] then, if the mean is the "true” conditional distri-
bution P(¢;{x) and input distribution (D), these prior
virtual samples can be used as real samples, result-
ing ||f* — fll = O(1/(n + N)). Related results about
the general case when the mean of the prior only ap-
proximates the "true” distribution can be found in [4].
According to the real and prior sample we can decom-
pose the cost function in two terms:

1 n+N
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Where Br(y|¢) = ¢¥(1 — {)'~¥ denote the Bernoulli
distribution. We analyze the "prior” penalty term
‘v {w) based on the prior sample in Section 5.2.

To analyze the effect of prior samples in the BSF where
the mean is used for sample generation, we can write:
P(w|D}, D) o< P(D}w)P(w|DR)
= P(Dpw)P'(w). (2)

The noninformative prior distribution P{w) is trans-
formed into an informative prior P'(w) = P(w|D},)
using the prior sample D%,. Similarly, if the prior
mean defines the same conditional and input distri-
bution, then the effect of this Bayesian update by the
generated prior sample is the same as by real data. In
Section 6 we suggest a method that approximates the
ideal prior transformation as described in Section 4.
It uses a Bayesian data generation method in which
randomly choosen Bayesian network parametrizations
are used to generated blocks of prior samples.

In short, the effect of prior samples in CSF is the same
as an informative prior penalty term. In the BSF the
prior sample transforms the noninformative prior to
an informative prior.

5.2 Informative prior and cost

Using the classical data generation method (i.e. us-
ing the means of the Dirichlet distributions for prior
sample generation) in the BSF, the noninformative
prior distribution converges to a Gaussian distribution
Ne(wlpn, Zn) ([7), p-291, for conditions see Section
6.1). Continuing Equation 2 we can write

P|D, D) o« P(Dpjw)P'(w)
= P(Dylw)Ni(wlpn, En). (3)

Equation 3 can be used to interpret the penalty
term in the CSF, setting the cost function C(w) to
—In(P{w)|D%). Continuing with the Gaussian ap-
proximation we can write

—In(P{D} Jw)Ny(wlpw, Zn)) = ~In(P(D}|w))
constant

—InL{w) + A% (w).

1 -
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So the convergence to a Gaussian in the BSF shows
that with increasing N it is reasonable to assume that
the informative penalty term A% (w) in the CSF is more
and more quadratic (N is fixed by the confidence in
the prior domain model, it cannot be set arbitrarely
large).




Another property of Ay {w) makes it possible to define
an exact informative cost function

N(@) = Jim y(w) = Epl- In Br(yi|fu(x:))

and the cost function Ay {w) based on N prior sample
is an estimator of it. Finally, it is possible to derive
an ideal prior distribution over the black-box parame-
ter space in BSF (see Section 4). Taking the negative
logarithm, we get an exact cost function A’(w) in CSF.
Figure 1 summarizes the main relations between meth-
ods.
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Figure 1: Main relations between methods.

6 Practical issues on the prior
transformation to multi-layer
perceptrons

I Section 3 we suggested a prior transformation from
Bayesian networks to black-box methods.

The main steps for the application of this technique in
the case of multi-layer perceptron are shown in Figure
2 and the list below.

Input &ansfovmation and class
probability computation

Generation G 3Dy o DYy 2wy
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Generation Traiving
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Figure 2: Main steps in transforming the prior

la. Generate Bayesian network parametrizations
{61,...,61}

ib. Generate block of prior samples from each
parametrization {D¥, ..., DI'}

2. Train a multi-layer preceptron for each block
of samples resulting in a block of perceptron
parametrizations {wy,...,w}

3. Estimate the transformed distribution Q(w) from
the generated perceptron parametrization with a
mixture of Gaussians.

The Bayesian network parametrizations are generated
from the Dirichlet distribution by standard methods.
The sample blocks are generated according to the
drawn Bayesian network parametrizations. Next a
simple preprocessing is necessary on the input vari-
ables in the generated samples for theoretical (iden-
tifibility) and practical reasons (one-out-of-c coding
scheme for nominal variables and resampling in the
discretization intervals for discretized continuous vari-
ables). It is advantegous to use the prior probabilis-
tic domain model to compute P(e;|x) for each sam-
ple instead of random generated class labels. These
class probabilities eliminate a stochastic element (the
class labels), consequently the same performance can
be achieved with smaller block size (i.e., with less com-
putational complexity). For training the perceptron
model on a block of samples we used the scaled conju-
gate gradient algorithm [12]. Finally, to estimate the
transformed prior distribution Q(€2) over the black-
box model parameter space §2 by the trained percep-
trons, we used a mixture of Gaussians.
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6.1 Symmetries in the parameter space

The total number of symmetries (due to possible per-
mutations and sign symmetries) in a multi-layer per-
ceptron with & hidden layers and L; neurons in layer
1 is given by H?:x 254 1,1, Based on these symmetries
it is possible to define a canonical transformation C(.)
by making all biases positive and ordering the nodes in
each layer increasingly w.r.t. the biases, We call the
range of this transformation the canonical subspace,
and C(w} is the canonical (unique) parametrization for

Jes ().

An important consequence is that a consistent
distribution’ Q(w) has identical regions and an op-

*If fu, () and fu,() are equal w.rt. the L, fune-




timal density estimation method should exploit that
fact.

6.2 Definition and comparison of methods
for estimation

A possible solution for exploiting the regularities in
the distribution Q*(w) is the elimination of the sym-
metries by transforming the generated perceptron
parametrizations to a small number of compact clus-
ters, i.e. transforming @*(w) to an better estimatable
base distribution®:

The naive method uses the original data set to es-
timate the base distributon @*. Because of its
symmetries w.r.t. origin, the estimated mean will
tend to zero as the number of generated networks
increases.

The canonical method estimates the base distribu-
tion C{Q*(w)). It transforms the data set to the
canonical subspace by applying C{.). Since this
transformation is not continuous, it causes scat-
tering which deteriorates the estimatibility.

The exhaustive method transforms the
parametrizations to clusters with minimal within-
cluster variance, though this problem is NP hard
in Li-

Heuristic methods can be found easily which con-
struct sub-optimally contracted clusters in a
tractable way.

7 Results

For the multi-layer perceptrons, the existence and
the quality of an informative prior is crucial for any
Bayesian method. Therefore we present the perfor-
mance of various algorithms for density estimation
over the multi-layer perceptron weight space. The ef-
fect of the incorporation of prior domain knowledge is
demonstrated using the "prior transformation” tech-
nique in BSF on a real world classification task [10].

7.1 Handling symmetries in prior
transformation

The following artificial example illustrates the prop-
erties of the methods deseribed in the previous sec-
tion. Figure 3 shows the Bayesian network struc-
ture with its hyperparametrization and the perceptron

tion norm, then Q(w) should be equal to Qfws) almost
everywhere.

3A base distribution is a distribution so that the super-
position of all invariant transformations gives the consis-
tent Q°.

model for the approximation of the conditional distri-
bution. The pictures shows the input-output map-
pings f., () of the means wy 5 of the estimated
Gaussian distributions @, _s{w) and the average vari-
ances Epeqy[Var(fu, (X))} in parenthesis.
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Figure 3: Effect of various symmetry dealing methods
on density estimation

As can be seen the naive and canonical methods per-
form poorly (with also large average variances), while
the ezhaustive and its heuristic approximations per-
form much better (additionally with small average
variances). Since the same arguments can be extended
to multi-mode densities, we can state in general that
the symmetries in the perceptron weigth space has
enormous impact on the application of such neural
models in the Bayesian statistical framework.

7.2 Effect of priors on the performance

We compared the performance of four classifiers. A
Bayesian network with a noninformative prior and up-
dated hypers from data. A Bayesian network with in-
formative prior and updated hypers from data A MLP
with a noninformative prior and data. A MLP with
the transformed informative prior desecribed in 6 and
data. For the MLPs, the hybrid MCMC method was
used to perform the Bayesian inference [14, 13].

As Figure 4 shows, the effect of the prior depends on
the real sample size: it has a large advantageous effect
in the small sample region ([0 —0.4]} and the prior has
no restrictive effect in the large sample range.
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Figure 4: Missclassification rate of various pure and
hybrid methods discriminating malignant and benign
ovarian masses {10].

8 Conclusions

In the paper a general methodology was suggested to
transform the prior domain knowledge formalized as a
Bayesian network into black-box models, offering vari-
ous methods to use black-box models with prior back-
ground knowledge. A novel approach to derive infor-
mative prior distribution for MLPs was presented that
avoids the problems caused by the symmetries in the
MLP weight space. Results about the applicability of
the suggested methods are presented in an artificial
and in a real-world example,
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