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Abstract

The preoperative discrimination between malignant and benign masses is a crucial issue
in gynecology. Next to the large amount of background knowledge there is a growing
number of collected patiemt data that can be used in inductive technigues. These two
sources of information result in two different modeling strategies. Based on the background
knowledge various discrimination models are constructed by leading experts in the field,
tuned and tested by observations. Based on the observations various statistical models are
developed such as logistic regression models and artificial neural network models. For the
efficient combination of prior background knowledge and observations, Bayesian network
models were suggested. We summarize the applicability of this technique, report the
performance of such models in ovarian cancer diagnosis and outline a possible hybrid
usage of this technique.

1. Introduction

A reliable test for preoperative discrimination between benign and malignant ovarian
tumors would be of considerable help to clinicians. It would assist them to discriminate
patients for whom treatment with minimally invasive surgery or conservative management
suffices versus those for whom referral to a gynecologic oncologist for more agressive
treatment is needed.

One of the main goals from a medical point of view is the development of various
mathematical models to predict the correct class: benign or malignant, There are two
different sources of information which can be used to develop such predictive models: the
biological and medical information available about the nature of the disease and the growing
number of patient data. These different information sources commonly result in different
types of models: medical models coming from leading experts of the field and statistical
models coming from non-medical researchers. The first type of models is in general not able
to exploit effectively the observations, while the second type of models is not able to exploit
effectively the prior background knowledge. The Bayesian network models were suggested
as a possible solution to integrate efficiently the background knowledge and observations
[14]. Bayesian networks have been successfully applied in a very broad spectrum of
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applications in which the proportion of the amount of the prior background knowledge and
the amount of patient data varied widely. We similarly obtained good performance
comparable to the human experts and to other statistical models, however we detected
certain limits of the pure application of Bayesian networks.

The paper is organized as follows. In Section 2 we give a short description of the ovarian
cancer problem, the available background knowledge, the available patient data and
previously suggested models. Section 3 introduces the Bayesian network models and we
summarize our experiences with Bayesian network models in the ovarian cancer project.
Section 4 presents the results comparing the performance of Bayesian network models to
medical models based on clinical practice such as risk indices, to logistic regression models
and to artificial neural network models. We conclude the paper with a summary about the
advantages and limits of this technique in this project and we give a short overview of a
system that tries to enhance the performance by optimally combining background
knowledge and patient data,

2, The ovarian cancer problem

Ovarian malignancies represent the greatest challenge among the gynecologic cancers,
and early detection is of primary importance, since currently more than two-thirds of the
patients present with advanced disease.

The available abundant background knowledge is very diverse. The most common
ovarian malignancies are the epithelial cancers, which arise from the cover of the ovary.
Various theories hypothesize that the malignant transformation is related to the number of
ovulations, to the level of gonadotropins, carcinogens and genetic deficiencies. The risk is
affected by the parity (pregnancy), sterility, drug treatment for infertility, duration of
lactation, oral contraceptives, foreign body (carcinogens), family history of breast and
ovarian cancer, genetic deficiencies, age, age at menarche, age at menopause, hysterectomy
and bilateralness. Additional measurements and observations are the following: pelvic pain,
morphologic descriptors of the mass (e.g. locularility, papillation, solidness), descriptors of
the vascularisation of the mass (e.g. resistance index), serum tumor markers (e.g. CA 125),
echogenic descriptors of the mass, amount of ascites and the day of the cycle. While the
effect of some of these variables can be reliably quantified (such as the effect of the family
history and genetic deficiencies), other effects are only qualitatively known and highly
subjective (such as the usage of resistance index).

In addition to the prior background information, data were collected prospectively from
300 consecutive patients who were referred to a single institution (University Hospitals
Leuven, Belgium) from August 1994 till June 1997. The data collection protocol ensures
that the patients have an apparent persistent extrauterine pelvic mass and excludes other
causes that may have similar symptoms such as infection or pregnancy, so the primary aim
is differentiation between benign and malignant masses (for a detailed description, see [16]).

Standard statistical studies indicate that a multi-modal approach, - the combination of
various types of variables - is necessary for a reliable discrimination test. To assess the
performance of a classifier, the Receiver Operator Characteristics (ROC) curve is used as a
general measure advocated in the medical literature {17). Previously suggested tests are
based on single variables (such as CA 125, resistance index), risk indices (Lerner’s scoring
system, risk of malignancy index, {(RMI) see e.g. [16}). Logistic regression models and
artificial neural networks were similarly applied [15].

3. Bayesian network models applied to ovarian cancer diagnosis

Uncertainty is an inherent issue in nearly all medical problems. The prevailing method to
manage various forms of uncertainty today is formalized within a probabilistic framework.
The corresponding Bayesian statistics provides a compeliing theoretical foundation that



coherent subjective beliefs of human experts should be expressible in a probabilistic
framework [18]. Bayesian network models provide a practical tool to create and maintain
such probabilistic knowledge bases. A Bayesian network is a knowledge model that can be
used as the kernel in expert systems (for a general introduction see e.g. [12]). Furthermore
the Bayesian theory describes the integration of new observations to the probabilistic model
(see e.g. [13]). Consequently, the Bayesian network technique seems a natural solution to
integrate prior background knowledge and data [14].

One of the main distinctive features of the discrimination task between benign and
malignant masses is the centrality of the type of the mass since the data collection protocol
is designed to exclude all other diseases and it ensures the presence of either a benign or a
malignant mass, so every probability specification should be conditioned on the protocol.
We use a single binary variable for discrimination. Taking advantage of the causality
interpretation for Bayesian networks this variable can “separate” the rest of the variables
into two groups: causes (such as risk factors) and effects (such as symptoms).

In the models we used the variables summarized in Section 2. The continuous and integer
valued variables were discretized in accordance to the medical literature and expert
knowledge. Since there are only a very restricted number of alternatives (e.g. cut-off values)
we selected the prevalent discretization as shown in Table 1.

Table 1. Applied discretization schemes.

Variable Discrete values

Age (. ,40), {40-50), [50-60), [60-70), [70, )
Resistance index <0.5, 0.5<=

CA 125 serum test <35, [35-065), 65<=

Parity 0,1,23,4<=

Our model building process can be separated in three different phases. In the first phase
we experimented with “biological” moedels in which various causal models of the disease
are incorporated. The specification of the structure was relatively easy, but the
quantification was not possible from the literature, nor from the expert and we had a too
small data set to quantify additionally introduced hidden variables. In the second phase we
built “expert” models that reflect the expert’s experience. The qualitative dependency-
independency structure specification was again relatively easy. However the results were
too biased because the medical expert participating in the project previously worked with
the same collected data, so his estimates were largely based on the data set. In the third
phase we built “heterogeneous” models containing biological models of the underlying
mechanism quantifiable by the literature (e.g. the genetic part), parts quantified by a medical
expert (e.g. age, parity distribution of the patients) and parts quantified by previously
published studies (such as the effect of locularity or bloed flow).

The final model, called “standard” is shown in Figure 1. For comparison we used a small
and large naive model ("small-naive " and "large-naive " respectively) assuming complete
conditional independence between the observations conditioned on the type of the mass (i.e.
two "idiot" Bayes models).

Figure 1, The “small-naive”, “large-naive” and “standard” Bayesian networks.




The naive models have no prior quantification (i.e. a priori specified dependency models
for each variable). The sources of quantification of dependency models in the standard
model are described by Table 2.

Table 2. Sources of quantification for the “standard” model.

Variable Source of quantification
Family members with ovarian cancer Expert

Family members with breast cancer Expert

Genetic risk Expert

Genetic deficiency Literature [1,2,3,4,5], expert
Pregnancy Expert

Age Expert

Pathology Literature [1,2,3,4,5,6,7], expert
Menopausal status Expert,

Locularility Literature [8]

Color score Literature [9]

Resistance index Literature [10]

Bilaterality Literature [6]

Ascites Expert

Papillation Literature [8]

CA 125 Literature [11]

Because of the extensive and complex usage of the prior knowledge we used a strict
documentation method to track the route of the prior information from studies into the
model. Conversion formulas were constructed to compile the raw prior knowledge to be
compatible with the conditions of the task and the format of the Bayesian network. The
following list contains the high-level steps of this process:

1. Make a list of all prior knowledge about variables, discretizations, existing
dependency models, etc.

2. Classify different types of priors that exist (from exactly specified prior sub-
models to high level guesses about qualitative dependencies).

3. Select a “coverable variable set” what seems to be quantifiable from the prior
background knowledge and the available data.

4. Specify a complete domain model by following the standard construction
mechanism for Bayesian networks and considering the existing prior sub-models.

5. Construct secondary conversion modeis and formulas to quantify the final model
(incorporating hyperparameters about confidence, conditioning on the conditions
of the discrimination task, etc.).

6. Quantify, documenting the sources of the information for interpretation,
modification and maintenance.

4. Results

Five Bayesian network models are investigated: the two naive models and the standard
model in three contexts: prior quantification without hyperparameter update (i.c.
learning), update from the data without prior quantification and prior quantification with
hyperparameter update. The performance is assessed w.r.1. the area under the ROC curve
computed by exact trapezoidal integration (the standard error (SE) was computed
following [17]). Additionally, Table 3 contains the sensitivity, specificity, positive
predictive and negative predictive values (in percentage).

The hyperparameters in the Bayesian networks are updated using 75% of the data set,




the rest is used as a test set for estimating the area under the ROC curve (averaged over
1000 cross-validation sessions).

The risk of malignancy model is based on the menopausal status, CA 125 serum test
and on a morphologic score. The logistic regression model, the artificial neural network
model [16] and the “small-naive” Bayesian network mode!l have the same four inputs:
menopausal status, CA 125 serum test, color score and papillarities.

Table 3. Performance of models

Model ROC (%) | SE(%) | Sens. | Spec. | PPV NPV
Serum CA 125 (U/ml) {16] 374 3.4 79.6 81.5 62.9 91.0
Risk of malignancy index [16] | 89.1 3.2 87.8 74.2 57.3 93.9
Logistic regression [16] 90.4 6.0 85.7 81.1 63.2 93.8
Artificial neural network [16] | 95.1 3.9 87.5 92.7 82.4 95.0
Small-Naive (BN) 03.} 3.9 04.7 74.1 84.2 90.0
Large-Naive (BN) 93.8 3.7 96.6 79.9 90.1 92.6
Standard-prior-no-update (BN) | 90.4 2.3 93.6 72.3 81.1 89.8
Standard-no-prior-update (BN) | 95.0 3.4 94.2 83.5 84.8 93.8
Standard —updated-prior (BN) | 95.2 34 94.7 834 86.1 93.7

The previously reported results were achieved on a smaller data set under different
testing conditions [16]. Comparison of the results in Table 3 considering this difference
shows that the Bayesian network models have a similar performance as the best performing
artificial neural network model. The performance of the Bayesian network models are
significantly better than the RMI and CA 125 (for significance testing [17] was used).
Although the “standard” prior Bayesian network without update has a slighily better
performance than the RMI, the difference is not significant.

5. Conclusion and future work

Our experience confirms that Bayesian networks provide a practical solution for
representing medical knowledge, performing inferences, and learning. They are particularly
effective in integrating various prior sub-models together. For example, the “standard”
Bayesian network model (quantified from previous studies about various sub-parts of this
model) has the same performance as the RMI score, which is the accepted reference method.
The negative effect of the crude discretization scheme is compensated by the multi-modal
approach in an appropriate dependency structure. Additionally, the prior quantification is
dominated by a sample containing 50 to 100 random patient cases, which means that in our
case (300 patients) the prior has no effect on the final performance. An important advantage
of such “white-box” models is that they can be used for explanation or a semantic sensitivity
analysis. Furthermore, because of their decomposed nature, they can be extended to perform
finer sub-classification, which is the next phase of our project.

However for an efficient integration, the management of heterogenecous types of prior
information needs better support (such as the enumeration, conversion and documentation of
various types of not-formalized prior information). Another bottleneck is the discretization:
Indeed, it is usually fixed by expert knowledge (e.g., choice of various cut-off values) and
the conversion of these frequently incompatible schemes to a better discretization scheme or
to a continuous scale often wastes a lot of prior knowledge. The same problem arises with
respect to the structure, since the prior knowledge frequently consists of muitiple structures.

These and other theoretical constraints force us to combine the advantages of the
Bayesian network models (understandable knowledge representation) and black-box models
(efficiently learnable representation) instead of pitting them against each other. We are
currently testing such a hybrid methodology and will report about it in a later publication.
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