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Variational characterizations of separability and entanglement of formation
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In this paper we develop a mathematical framework for the characterization of separability and entanglement
of formation {EOF} of general bipartite states. These characterizations are variational in nature, meaning that
separability and EOF are given in terms of a function that is to be minimized over the manifold of unitary
matrices. A major benefit of such a characterization is that it directly leads to a numerical procedure for
calculating EOF. We present an efficient minimization algorithm and apply it to the bound entangled 3 X3
Horodecki states; we show that their EOF is very low and that their distance to the set of separable states is also
very small. Within the same variational framework we rephrase the results by Wootters [W. Wootters, Phys.
Rev. Lett. 80, 2245 (1998)} on EOF for 2 X 2 states and also present some progress in generalizing these results

to higher-dimensional systems.
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I. INFRODUCTION

The problem of finding necessary and sufficient condi-
tions under which a quantum state of a composite system is
separable has received considerable attention in the last few
years. The prototype example of a nonseparable state is a
pair of two-level particles in a singlet state, a so-called EPR
pair, named after Einstein, Podolsky, and Rosen, who used
this sort of a state to show that quantum mechanics exhibits
strong nonlocal correlations, which seem to violate the rela-
tivity principle.

A pure state of a composite system is separable iff it can
be written as the direct product of the subsysten states:
W, =|¥)®|¥e). A nonseparable pure state or en-
tangled state cannot be decomposed in this way, e.g., the
singlet state (1T} —|1)|TY3/v2 consists of a superposition
of separable states but is itself not separable.

Nowadays, the importance of entangled states goes be-
yond a mere fundamental interest, since EPR pairs are the
basic resources of quantum techniques such as quantum
cryptography, quantum teleportation, and quantum error cor-
rection. A mixed state is separable iff its density matrix can
be written as a convex linear combination of pure product
states; for a bipartite system this reads

, gy

K
p= 3 wilut)(utl @Rt

where w are positive weights summing to 1. The separabil-
ity problem consists of finding a criterion for checking
whether such s decomposition is possible for a given state.
Despite the simple fornwulation of this problem, a com-
plete solution to this date has not been found. An important
achievement was the discovery by Peres of a necessary con-
dition for separability [1]. He noted that the partial transpo-
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sition of a separable state still has non-negative cigenvalues,
just as the original state. Thus, if the partial transposition of
state p is not a state (i.e., does not have non-negative eigen-
values summing to 1), then p is not separable {i.e., it is an
entangled state). The importance of this criterion was soon
realized when Horodecki er al. proved [2] that it is also a
sufficient criterion for 2 X2 and 2 X3 systems. For an intro-
duction to recent results on this subject, see, e.g., [3]and [4].

If a state is entangled, one could ask for a measure of the
amount of entanglement. For pure states, a measure gener-
ally agreed upon is the von Neumann subsystem entropy: the
entropy of the partial trace of the state projector. For mixed
states, the situation is much more difficult. Not only is there
no single measure of entanglement that is suited for every
purpose, but calculating the values of the different proposed
measures and proving statements about them is exceedingly
difficult. Among the proposed measutes are the entanglement
of formation [3], the emtanglement of distiltation [5], and
relative entropy of entanglement [6].

In this paper, we focus on sepatability, on entanglement of
formation (EOF), and on the related concept of concurrence.
All these subjects are related, because states are separable if
and only if their EOF is zero. A closed-form expression ex-
ists for the BEOF of 2 X2 systems in terms of their concur-
rence [ 7]. A closed-form expression also exists for isotropic
states of general systems [8].

The purpose of this paper is to give variational character-
izations of separability and EOF for general (i.e., any dimen-
sions) bipartite states. Such a characterization is of the form
O(p)=minf(p,T), that ig, the state property under study can
be found as the minimal value of some specific function over
the manifold of unitary matrices 7. In Sec. Il it will be shown
how this can be done. The language of Sec. II is matrix
analysis, not only because this allows to staie the results in a
most succinct way but also because it gives clues towards
generalizations.

The greatest benefit of a variational characterization is
that it directly yields a method for actually calculating the
state property {3, albeit in a numerical fashion, using a mini-
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mization procedure. In Sec. III we describe the precedure
that we have used, and some interesting results we have ob-
tained with it.

II. VARTATIONAL CHARACTERIZATIONS

It is well known that mixed states can be realized by an
ensemble of pure states in an infinite number of ways. The
determination of the separability of a state and the determi-
nation of its entanglement of formation have in common that
a particular realization of a state has to be found such that
some property holds for all pure states in that realization. In
order to find this optimal realization, it is of considerable
interest to have a mathematically elegant way of “generat-
ing” all possible realizations of a state. In Sec. IIA we wilt
recollect a result by Hughston, Jozsa, and Wootters that any
realization of a state is related to the eigenvalue decomposi-
tion of the state via some right-unitary matrix.

The required property for separability is that all pure
gtates in the realization must be product states. In Sec. IB
we give a number of useful mathematical expressions for this
property. This then leads to a variational characterization of
separability, the topic of Sec. I C. For calculating the EOF of
the state, the property of the optimal realization is that the
so-called average entanglement of the realization is minimal.
This property and an ensuing variational characterization of
EOF will be discussed in Sec. T D.

In this way, searching all possible realizations for some
property amounts to passing through all right-unitary matri-
ces and test the property in question. However, this would be
a very impractical way to determine separability or EOF if
there would not be some bound on the dimension of these
matrices, or, which is the same thing, on the number of pure
states in the optimal realization. Luckily, such a bound exists.
In the case of separability, Horodecki proved [11] that
{NN,)? pure states {or less) suffice, where N, and N, are
the dimensions of the subsystem Hilbert spaces. Uhlmann
[12] proved that a similar bound holds for the determination
of EOF: the number of pure states in the optimal realization
need not be larger than the square of the rank of the state.

In Sec. IIE we discuss the so-called concurrence of a
state, a quantity that is closely related to the EOF. We give an
alternative proof of an important result on the concurrence of
2X2 states by Wootters [7]. One of the virtues of this alter-
native proof is that it yields an additional result on the exact
amount of pure states In the optimal realization. We then
report some progress in generalizing the concurrence concept
to higher-dimensional bipartiite states.

In Appendix A, finally, a method is described for reducing
the set of unitary matrices that has to be examined in the case
of separability testing. Under some circumstances, this
method directly yields an optimal realization without any
nead for searching. We have not yet investigated whether this
method is applicable to the EOF case.

A, Relation between different realizations of a state

Consider a rank-R state p in an (N X N,)-dimensional
Hilbert space, realized by an ensemble {w,|¢)}F_, , where
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the w, are the mixing weights of the K pure state vectors
|4}, The number X is called the cardinality of the ensemble.
Necessarily, K cannot be smaller than the rank R. Since there
generally are an infinite number of ensembles realizing a
particular mixed state, we are free to choose K larger than R
if this suits our purposes. It will turn out that in the general
case, we will even be forced to take X>R._ Specifically,
Lockhart proved in [13] that, except in the bipartite case
where one of the particles is a qubit or the Hilbert-space
dimension is 9, the set of separable states for which K=R is
a set of measure zero. Moreover, for N XN systems, the set
of separable states for which the cardinality X is greater than
(R1%)/4 is an open dense set.

Now, p=S5  w [¥* (| or p=CWTT, where Wis a
KX K diagonal matrix with W, =w, and the columns of ¥
are the K vectors . This decomposition of p is reminiscent
of the eigenvalue decomposition of p:p=®M &, where M
is an RX R diagonal matrix whose diagonal elements are the
eigenvalues of p and the columns of @ are the R eigenvec-
tors. Since p is Hermitian, & is a unitary matrix.

It can now easily be proven that these two decompositions
must be related by an RX K right-unitary atrix 7 this has
been proven first by Hughston, Jozsa, and Wootters [9].

Lemma 1. For a general state p, with eigenvalue decom-
position p=®M T, there is a matrix ¥ and a non-negative
diagonal matrix W such that p=¥ W¥T iff there is an R
X K matrix T such that

P WL’2= q)M]n’ZT
with
TT'T=-1R . (2)

Right-unitarity of the matrix T means that the R row vectors
of T form an orthonormal set in CX. Stated in matrix-
algebraic terms, the proof becomes very simple.

Proof. First of all, it is obvious that ®MOT=T Wi
follows directly from Eq. (2). Conversely, denote X
=UW"? and consider the singular-value decomposition of
X:X=UZV, where [/ is a unitary R X R matrix, V a right-
unitary RX K matrix, and 2 a diagonal RXR matrix with
non-negative diagonal elements. From ®MP'=W W' we
get ®MPT=UZ2UT. Since both M and X are positive
semidefinite, it follows that 3 =UTOM 2D so that X
=®dM"?@TUV. This is precisely Eq. (2), with T=®7UV.

O

Remark. It is noteworthy that the elements of W and M are

related to each other independently of ®@ and W,

wi=(T M T)y.

This follows from the observations that & is unitary and that
the colurnns of ¥ have norm 1.

B. Characterization of product states

A state of an N XN, system is separable iff there exists a
realizing ensemble consisting solely of product vectors i
=yl®y? with ' eH, and ¥’ e H, (in this paper we use
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superscripts for enumerating vectors and subscripts for de-
noting vector components}. Product vectors can be character-
ized easily by rearranging their components in matrix form.
For an NN, vector x, let ¥ be an N XN, matrix such that
x=3, %;e'®e’. For product vectors this gives

Yr=a‘@pt—PF=a' (Y.

Obviously, product vectors are characterized by the conditicn
that the rank of i is 1. A necessary and sufficient condition
for this is that all 2 X2 minors of  must be zero, or, more
succinctly, that the second compound matrix of § must be
zero: Co(#)=0 ({10}, 0.8.1). The second compound matrix

of an Ny X N, matrix is an [N (N, — 1R2]X[Na(No— 1)/2]
matrix with elements
CZ(A)(EE’},(_U’)=Aiin’j’_‘ !A,: s I:<]:’., j<_]’

The elements of C, are all possible 2X2 minors of A. The
second compound matrix has a lot of useful properties such
as  CHAB)=Cx(A)Cy(B), Cyl)=l,u-1)p, and
C(A™H=[Co(4)]7" {[10], 0.8.1}.

For practical applications it is sometimes better to con-
sider a (N;—1)X(N5,—1) submatrix of C,, the one con-
taining the elements Cx(A)g v1),j,;+1) Only. It is easily
seen that the vanishing of this submatrix is already sufficient
for A being of rank 1.

‘From the expression for the second compound matrix,
which is quadratic in A, it will prove nseful to construct a
bilinear function of two N X N, matrices, denoted C(A,B),

AyByy—AyiBuj,

A, B)(u’)(u') i<if,  j<j.
Obviously, C{A,A)=C,(A), so that C(A,A)=0 if and only
if A has rank 1. More specifically, we can apply this to the
state vectors ¥%: ¢ is a product vector if C(&*, ) =0.

In the following, we will only use a symmetrized version

of C, which we will denote by

CO 'y =) + ().

Since this is a bilinear function in the elements of ¥, we can
express this in matrix notation

CUFE ) =TT,

where the notation («) is a shorthand for the index tuple
(i,i".j,j"). The matrices $§'), which we call indicator ma-
trices, are defined as

S(ﬂ) __8(“)

G i~ S gy =L

S( (I) ) S( o)

G~ SupanT b

all other elements being zero. Note that afl § have rank equal
to 4. For the case of 2 X2 systems, there is only one indica-
tor matrix and it is equal to
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0 1
-1 0

S=o,00,= 0o -1 0 ol
1 0 O 0

{Ref. [7]).

C. Condition for separability

We can now formulate a general necessary and sufficient
condition for the separability of a mixed state. As mentioned
before, the state p=®M®T is separable iff there exists a
decomposition p=¥ W with ¥ W2=@ 1T, such that
all ¢ are product states, or C(F " )y=0, for all k=1,

Now

cw,w=cm¢,\w)/m

ql — p
~§1 WC(\/m,,an,\/anqw), (3)

where we have exploited the bilinearity of the form C. Given
the eigenvalue decomposition of p, the entity
C( \[r—r;;qbp,\/m_qqﬁq) can be calculated in a straightforward
way. Let us organize its components into a set of matrices
AP eMy,

Aéc;)___ C(\/@qbp,\/;;g(ﬁq)az VMOTSODM; (@)

this means that the pg entry of the (a)th A matrix equals the
e entry of the matrix C( \/m_p @, fmqu‘?). Using this nota-
tion, Fq. (3) can be written concisely as

C )

The state is therefore separable iff we can find an RXK
matrix 7, with K=R, such that

=(TTAT) I wow,.

TTT:_].R N

Cy(f)a=(TTAOT) =0 ¥ a.k. &)

Here, k ranges from 1 to X and o enumerates all tuples of
indices (i,i",/,j’) with 1=i<U'==N; and 1=5j<(j'=iN,.
As noted before, it is also sufficient to consider only the
tuples (i,i+1,7,j+1).

Testing separability requires that the system (5) be solved
for T. Another approach, however, is to consider
(TTAYT),, as entries of a matrix indexed by « and & and to
try to minimize a matrix norm of this matrix as a function of
T. The state is then separable iff this minimum is zero. Ob-
viously, one can use whatever matrix norm one prefers, e.g.,
the Hilberi-Schmidt norm (also called the Frobenius norm or
the I, norm) ||A[3=32; |A; [>=TrAAT. Thus p is separable
iff

min 2 |(TTA'T) = ©6)
T.K ak
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where the minimum has to be taken over all K=R and all
RXK matrices T for which T77=1;. The minimal X is
called the cardinaiity of the state.

One can also use the /; norm (sum of absolute values) and
minimize X, [(TTA T}, ]. For 2X2 systems, the /; norm
is the average concurrence of the ensemble, as introduced by
Wootters in [7], and the minimum is the concurrence of the
state p. Note that in the context of separability testing it does
not matter whether one uses (TTA®T),, or
(TTAP@TY Iy

To end this paragraph, we derive an alternative expression
for the I, norm [(Co(#*))ll. Define B*= g* (g%, with
eigenvalue decomposition B*=U*SAUH  [with 3
= Diag( crf)]. Using the properties of €5 we find

Fl[Cz(Jf")]Eqi!%:; TT[Cz(ak)Cz(%Zk)T]zg Tr C»(B%)
=; TrCz(Ek):; z O'f-‘crf
=<y

=32 [EJ oloj =2 (o})?

3ot -3 o

=32 (T2~ T SH?]

k
ég [(TrB*)?—Tr(BH?].

This result can be interpreted easily: a positive definite Her-
mitian matrix is of rank 1 iff the square of its trace equals the
trace of its square.

D. Entanglement of formation

Within the same framework, we can also give a varia-
tional characterization of the EOFE(p) of a mixed state p.
This quantity is defined as the average entanglement of the
pure siates in a realizing ensemble, minimized over all pos-
sible realizing ensembles [5]. The von Neumann entropy H
of a state p is —Trplog; p. Introducing the function A(x)
= —x log, x, we can express H as a function of the eigenval-
ues Ay of p:H{p)Y=2Zh(N;). The entanglement of a pure
state i of a bipartite system (A, B) is the entropy of the
partial trace of the projector of |#):E(¢)=H(p,) with p,
=Trg(| ¥ ]). The average entanglement of an ensemble
{wy, "} is S E(#F); the BOT is then found as the mini-
mal value over all ensembles realizing p.

In this paragraph, we will derive an expression for E(p)
that is better suited for calculation than the defining equation.
Let {w,,#*} be the realizing ensemble with least average
entanglement and {m,,¢} the realizing ensemble corre-
sponding to the eigenvalue decomposition of p. We first ex-
press the partial trace of the projector of #* in terms of

@k:glnk=2,-,}-%ei®ef', hence
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Pl WIZUEPZQ P ('@l (ePRe),

and the partial trace equals
pg:ng(w><¢kl>=§ (; af,fq(%q)*)(ef)w)*
="

This is precisely the matrix B¥ from the previous paragraph

Remark: The entropy of this partial trace matrix p 'y can be
expressed in terms of the singular values of #*. Let ¢
= U*3*V* be the singular value decomposition of ##* (that is,
the Schmidt decomposition of %), with U* unitary and V*
right-unitary (supposing that N;<N,) and 2* a positive
semidefinite diagonal matrix, then p%=U*SHHUHT and
H(pE)=H((ZH? = —23(0%)? logy(a}).

In the present framework only the eigenvectors ¢7 are
known, and the vectors ¢ are to be sought by looking for an
appropriate 7-matrix. We therefore want to express pi in
terms of T and the ¢F. We get

R
wiph= v@%@(%")‘iq};l T TEm,m, & (397

Let us use the symbol A (T) as a shorthand for the right-
hand side of the previous expression

g
AYT)= 421 T o T Nmpm @7 (1),
et
= Ak(T)/‘rVk N

‘rVk=TI'Ak(T) = (TTMT)kk .
The last equation follows from the fact that p is normalized.
The EOF is thus:

K e

E(p)= mmZ wiH(p}) = m?Z GLAUT)], (D)
T

with
G(A)= —Tr{A loga[A/Tr(A)} = H{A) — A[Tr{A}]. (8)

The minimum has to be taken over all K=R and all RXK
matrices T for which TT7=1,. Note that, since a state is
separable iff its entropy of formation is zero, Eq. (7) gives an
alternative for Eq. (6) for testing separability.

Equation (7) can be brought to a more suitable form if we
enlarge the set of matrices ¢ with K— R zero matrices for
p>R. Then we can always use square and, therefore, unitary
7 matrices. Following a tesult by Uhlmann [12], the cardi-
nality K must lic between the rank R and the square of the
rank, This guarantees that the EOF can be found by restrict-
ing oneself to finite-sized 7 matrices.
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E. Concurrence

The first analytic formula for calculating EQF has been
found by Wootters [7] and is valid for 2 X2 systems. A basic
property used in deriving the formula is the so-called con-
currence of a state. The concurrence is also useful for testing
separability, because a 2 X2 state is separable iff its concur-
rence equals zero. In this section we do two things: first we
rederive Wootters’s results in a shorter way, based on the
concepts we have introduced above and using an interesting
theorem from matrix analysis. This rederivation gives hints
toward the generalization of the concurrence concept to
higher-dimensional systems, which is the second topic of this
section.

1. The 2X2 case

In this paragraph we give a shorter proof of Wootters’s
results on the EOF of 2X2 systems [7]. For the case of 2
X 2 systems, formula (5) becomes particularly simple, since
there is only one 2 X2 minor to consider, so that there is just
a single symmetric matrix A,

The concurrence of a pure siate  equals C(¥)
= |78 |. For the pure states ¢ in a decomposition of p, we
get CH =|(TTSW) | = (W V2TTATW Yy
= [(TTAT) 4wy,

The average concurrence of a realization of p is thus
given by =./(T7AT),,| and the concurrence of p is the mini-
mal average concurrence over all possible realizations, ic.,

- over all possible right-umitary matrices 7.-8ince A is symmet-— .

ric, its singular-value decomposition assumes a special form,
known as the Takagi eigenvalue decomposition ([10], 4.4.4):
A=UTZU (again, U is unitary and ¥, is positive semidefinite
diagonal). Since we consider all possible T, the matrix U/ can
be absorbed in 7, so that the expression for the concurrence
becomes miny SH(TTEl. So, 7737 runs through all pos-
sible complex symmetric KX K matrices with R prescribed
singular values % (if K>R then K— R zero singular values
have to be added to 2) and the average concurrence equals
the sum of the moduli of the diagonal elements.

The following theorem by Thompson gives a precise re-
lationship between the moduli of the diagonal elements of a
complex square-symmetric mairix and its singular values
f141.

Theorem I (Thompson). Let d,,...,d,; be complex num-
bers and 5 ,...,5, nonnegative real numbers, enumerated so
that [d|=---=|d,| and s,=---=s,. A complex symmetric
matrix exists with d,;,...,d, as its diagonal elements and
$1,...,8, a8 its singular values, if and only if

k
2 <2 $;, l=k=n,

i=1
k=1 n n

E Id:‘|_2 |di|“<‘( > sil-sp, 1sk=n,
=1 i=k Vi=1li#k

n—3 -2

3 11yl = ldyr =My} 5, 50150
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The last inequality does not apply when n<3.
The second inequality gives, for k=1,

n n
; ldiIESl(z’z Si)-

Applied to the problem at hand, we find that the minimal
average concurrence must be o —(Zfiza,-), or zero if this
quantity is negative. Here we have put K=4. Letting X be
larger than 4 can give no improverment, since this amounts to
just adding K—4 zero singular values, and this does not
influence the inequalities of the theorem.

It R<<4, we could try to decrease K to 3, but then the third
inequality comes into play,

3
2 AEE

so that

Clp)g=3=|o1— 02— 03]

Therefore, if R=3 and o — 0y — 05<0, putting K'=4 gives
zero concurrence, while K= 3 gives nonzero concurrence. In
other words, these states are separable in {at Ieast) four prod-
uct states { K =4). Furthermore, a rank-3 state is separable in
three product states (K=3) iff o ~op—03=0.

If R=2, we can safely put K=2, since then the third
inequality-does-not-apply. - - :

We have thus proven the fo]lowmg theorem

Theorem 2. The concurrence of a 2X 2 state with eigen-
value decomposition p=®MET equals

R
C(,o)—max(O,(}'l—(z_zz2 U;)),

where o, are the singular values of the matrix
A= W®T0y® o,® \I’H,

sorted in descending order. The optimal cardinality X equals
the rank R, except in the case when R=3 and o<<o;
+ o4, where the optimal X is 4.

Because of the staternent about the optimal cardinality, this
theorem is an improvement over Wootters’s theorem.

2. Relation between concurrence and entanglement of formation

For the sake of completeness, we rephrase the rest of

Wootters™s results of {7] in the present setting.

The entanglement of a pure state is a convex, monotonic
function £ of the concurrence of the state: E(#y=&E(C{#)).
Hence, the EOF, which is the average pure-state entangle-
ment, equals

E(p)=min 2, wyE((TTAT el w).
T

Because of the convexity of &, this gives E(p)
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quantities |(TTAT) | /w, are equal. Using Thompson’s theo-
rem again and the monotonicity of £, this minimum is equal
10 &(01 251 0) =E(C(p)).

We therefore look for an optimal T matrix, yielding mini-
mal average concurrence [thus equal to C(p)], and for
which, additionally, all the quantities |(7TAT)l/w;—the
ensemble member concurrences—are equal [and thus also
equal to C(p)]. There exists a T' for which 2 (T'TAT"),, is
equal to C(p); indeed, with A=UTSU, set UT’
=Diag(1,.i,...,i), then  T'7AT'=Diag(1,—1,—1,...,
- 1)Z, and the trace of this matrix is oy ~{(on+ ...+ o). If
this quantity is positive, it is egual to C{p); if not, p is
separable and we immediately have that a matrix 7" exists
such that all |(T"TAT") ! /wy. are equal (zero).

Concerning the nonseparable states, for any orthogonal
matrix O, Tr(T' OYTA(T'O)=Tr T'TAT’. As shown in [7],
using a suitable O we can make all (7" Q)TAT' O),; equal
to a constant « times w, (exploiting the fact that 7/TAT" is
a real diagonal matrix here). Summing over k then yields
Cp)=|2,(T" O)TAT O)| =|aZw|=]a|, so that
(T'O)TAT O)y=Cp)w,. Then, 3,[(T"0)TAT O)y
={(p), so that T=T"0 is the mairix we were looking for.

If one is interested in obtaining the optimal ensemble ex-
hibiting a member concurrence of C{p), one is forced to
actually calculate the required orthogonal matrix 0. In [7]
the existence of such an O is proven. Here, we show that O
can be found as a product of three rotation natrices
012,013,014, corresponding to rotations in the 12 plane, 13
plane, and 14 plane, respectively. For example,

cosp; sing, 0 O
—sindy, cosehp, O O

o=l o 10
0 0 0 1

After applying these rotations (with rotation angles ¢y; as
yet to be determined), we get four different 7 matrices in
succession: T1=T', T,=T10, T,=1:03, and T'=T,
=T304. The corresponding rotation angles are chosen so
that after every step at least one member concutrence be-
comes equat to C{p), ie., (TfAT}-)J,-j:C(p)(T}MTJ—)ﬁ for
J=2, 3, 4, respectively. Here we have used the formula w,
=(T'MT)y. Denoting A;=(TAT}) and B;=(TIMT)),
this leads to the condition that the vector (sin ¢y; coS ¢y))
must be in the null space of the 2X2 submairix of 4;,
—C(p)B; ., consisting of iis first and jth rows and columns.
A short calculation then yields the optimal rotation angle at
each step. Note that in the last step (j=4) not cnly the fourth
memnmber concurrence should become equal to C(p), but also
the first one.

3. Towards ¢ generalized concurrence

According to Eq. {5}, a state is separable iff a right-
unitary matrix 7" can be found such that the diagonal ele-
ments of every TTA™T are zero. In analogy with defining
the average concurrence of a realization of a 2 X2 state as
the /; norm of the diagonal elements of TTAT, in the general

PHYSICAL REVIEW A 64 (52304

case we could define a corcurrence vecior as the vector of {;
norms of the diagonal elements of T7A®T,

c(a)m:g [(TTANIT) . (9)

A state is therefore separable if a T exists such that the con-
currence vector is zero. From the previous paragraph, a nec-
gssary condition then follows immediately:

R
AP<> 59 Via), (10)
i=2

where the aﬁ“} are the singular values of At orted in
descending order.

Unfortunately, this condition is not a sufficient one for
separability. Numerical experiments showed that criterion
{10} is weaker than the Peres criterion, which is a nonsuffi-
cient criterion itself, The main reason for this failure is that
all the components of the vector concurrence (9) must be
made zero by one and the same 7. Typically, however, the
matrices A () all have different singular vectors (the rows of
the U matrix), so that the I/**) matrices in the decomposition
A= @75 @ (@ cannot all be absorbed in T at the same
time.

It is easy, however, to find a stronger criterion than crite-
rion (10): as Eq. (9) is linear in the matrices A‘®, the con-
dition (10} must also hold for every linear combination of the
matrices A Denoting the jth singular value {sorted in de-
scending order) of the linear combination 4% A by
o{x), it follows that another, and potentially sironger, nec-
essary condition for separability is given by

R
n"saxovl(x)*z0 o (x)=0, (11)

relM 1==

where M is the number of tuples (e). Again, one could
choose to consider all possible A or just the minimal sub-
set with {a)=(i,i+1,j,j+1).

Numerical experiments now showed that criterion {11) is
actually stronger than the Peres criterion, provided aff A
are used. In the section on numerical results we will give an
example where condition (11) even seems to be sufficient for
determining separability. It would be very interesting if one
could prove this to be true for every state, but we have not
yet been able to do this.

In the remainder of this paragraph, we will present an-
other possible generalization of the concurrence. This gener-
alization has the benefit that we can prove that a state is
separable iff its generalized concurrence is zero, but it also
hag the drawback that it is as hard to calculate as the en-
tanglement of formation. Some properties of this generalized
concurrence are presented and a number of open questions
are formulated.

Consider first the pure states. A pure state ¢ is a product
state iff & is a rank-1 matrix. This means that all 2X2 mi-

nors of ¢ must be zero. Denote the generalization of the
matrix § = ,® o, 10 the nyXn, case as
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S=(O'y690ng_2)®(0'y®0,,2,2). (12)

The matrix 7S¢ then picks out one specific 2 X2 minor of

#. In order to consider all minors, we can apply local unitary
operations to the state i and put the result again under the
action of §. Specifically, we define the generalized concur-
rence of a pure state as follows.

Definition 1. The generalized concurrence of a pure state

l4) is

C()=max| g (USVITS(US V)Y, (13)

v

where the maximum is taken over all special unitary matrices
UeSU(n,) and Ve SU(r,).

Theorem 3. The generalized concurrence of a pure state ¢
with  $=U,ZV] and 3I=diag(o,.09.....0,) [n
=nxn(n;.z;)] equals

Cy)=200, (14)
independent of the dimensions of the system. A pure state is
a product state if its generalized concurrence is zego.

Proof Rewriting =02 V{ in vector form, we have i
=U,@VveeX=U,@V,2,;0;¢'®¢, with ¢’ being a basis
vector of the standard vector basis. Let also e/ =¢e'(e/}  be a
basis vector of the standard matrix basis. Then

C(4)=max
o,V

2, o0 Tt {eYee ) USV)IS(US V)]
29

2, oI UT (o, @0) U]
L]

=Imax
v

XTr[eijVT(O'y@ 0) V]f

=max
Uy

»

2 G0 Wij
I

with

w=wo=[U(o,80)U[UT(c,@)U]. (15
Here, ¢ denotes the Hadamard product {componentwise,
product).

Denoting by |w} the matrix obtained from w by taking the
absolute values of all mairix entries, we can easily prove that
every row sum and every column sum of |w| is not larger
than 1, and the sum of all entries of ] is not larger than 2.

Now, as » and v are antisymmetric, w is Symmetric and
has a zero diagonal. Therefore, w and fw| lie in the span of
the generalized Pauli matrices o, ;= ¢”+e/". Moreover, by
the above sum statements, and noting that the sum of all
entries of every o, is equal to 2, we have that |w} must lie in
the convex closure of the set S={0}U{o, ;;;i<j}. Hence,
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C{yf)=max
uv

E U0 W
.7

[Z )

Smaxz O'iO"jIng!:maXE U-jc’-j(o'x,kl).ij
wes &f k<l B

=2 max o 0;=26107.
k<l

Here we have used the well-known fact that the constrained
maximum of a linear function over a convex set is reached
on an extreine point of the set. We, therefore, find an upper
bound on C{y)<20,0,. Moreover, this bound can be
reached by setting U/=V=1, which gives w=0,®0 and
|w|=0, 12. This proves the theorem.

We now turn our attention to mixed states.

Definition 2. The generalized concurrence of a mixed state
p is the minimal generalized concurrence of all ensembles
that realize p,

C(p)= min Y, p;max| T V'@ VY S(U'@ V).
IR S A
(16)

Again, U’ and V¥ are special unitary matrices.

Theorem 4. The generalized concurrence function is con-
vex, ie., Clxpy+[1—x]p)<sxC(pg) +(1—x)C(py).

Proof. Actually, any function f defined in this way is con-
vex: starting from an f defined on pure states, first extend the
definition to ensembles of pure states as the ensemble aver-
age of the 5 of the pure states; then to mixed states as the
minimal value of f of all possible realizing ensembles. Let
{pi:;- ¥} (j=1,2) be an optimal realizing ensemble of p; .
Then {xpg1, 0" JU{(1=x)pa,#"*} is a realizing en-
semble of xp;+(1—x)p, with ensemble f equal to xf{p;)
+{1—x)f(py). As this combined ensemble need not be op-
timal, f(xp;+[1—x]p,) could be smaller than this ensemble
£, but, in any case, it is not larger.

The first important question, concerning the relevance of
this definition of generalized concurrence, is: is it true that p
is separable if and only if C(p) =07 Itis easy to see that this
18 indeed the case.

Theorem 5. A mixed state p is separable if and only if
Cp)=0.

Proof. A state p is separable iff it is contained in the
convex closure of the set of pure product states. A pure state
is a product state iff it has zere concurrence. By the previous
theorem it then follows that if a state p is separable, then its
concurrence cannot exceed the value of zero. From the defi-
nition of concurrence we see that negative values cannot oc-
cur, so the concurrence of p must equal zero. On the other
hand, if a state p has zero concurrence, then, by the definition
of concurrence, there must exist an ensemble realizing p in
which every pure state has zero concurrence. Hence, these
pure states are product states and p is separable.

Consider the pure state sets $-={¢:C(¢)=C}. By the
convexity of C, every mixed state in the convex closure of
e has C(p)=C. Letting € run from its minimal to its
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maximal value, we get a one-parameter family of convex
subsets conv(yf-) of the total state space. A given state p
with concurrence C{p) can only belong to those convex sub-
sets with C=C(p).

By its very definition, the generalized concurrence is a
locally invariant measure: any local unitary rotation can be
absorbed in the U and V’. In the 2X2 case this definition
reduces to the conventional one for concurrence due to the
special property of matrices U/ e SU(2) that U/ TcryUz ay-

While this generalization of concurrence has a number of
desirable properties, it also has a number of undesirable
ones: first of all, the generalized concurrence is not generally
an entanglement monotone (EM). According to a theorem
concerning entanglement monotones in Ref. [15} (Theorem
3), the restriction of any EM to pure states should yield a
unitarily invariant concave function of the partial trace of the
pure state. In this case, this function equals f=2vyA A,
where A , are the two largest eigenvalues of the partial trace
[this follows from the fact that Try(ye’) = T = US2UT,
where = UXV]. However, this function is not concave as
can be readily checked numerically, unless this parfial trace
is a 2X 2 matrix, i.e., we are dealing with a 2 XN system.

Secondly, the entanglement of formation will in general
not be related to this generalized concuitence even for pure
states: while the former depends on all Schmidt coefiicients
o;, the latter depends only on the two largest ones. So only
for 2 X N systerns is there an unambiguous relation between
generalized concwitence and EOF (the same relation as in the
2% 2 case). Furthermore, it remains to be proven that in the
mixed-state case, an optimal ensemble can be found for
which every member has a generalized concurrence equat to
the generalized concurrence of the mixed state.

I3, NUMERICAL RESULTS

In this section we present an application of the variational
characterizations of separability and EOF. Since these char-
acterizations involve looking for the minimum of a function
over a finite-dimensional manifold, it must be possible to
find a numerical algorithm that actually calculates that mini-
mum. As a result, it must be possible to calculate the EQOF
for any bipartite state and, moreover, to give the optimal
realization of the state (from the optimal T matrix).

Actually, such an approach has alieady been taken by
Zyczkowski [16], who used the method of simulated anneal-
ing in order to find the global minimum. Unfortunately,
while this method is generally known for its good local-
minima-avoidance properties, it reguires an Inordinate
amount of iteration steps if high accuracy is required. If one
is interested in calculating and comparing the EOF of a fam-
ily of parametrized states, a large number of significant digits
is required. In our experience, this is only possible in a rea-
sonable amount of time when the stmost attention is given to
the gradieni-following properties of the method, especially
when considering larger system dimensions.

In the following paragraphs, we present a minimization
algorithm that is based on a conjugate-gradient method. To
avoid local minima, the algorithm is executed a number of
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times starting from different initial values. It achieves very
high accuracy (up to 10 significant digits) in a relatively
short time {on a 300-MHz PC it takes typically 1 min for a
33 state). We then apply the algorithm to the calculation of
EOF for certain families of 3 X3 states.

A. Algorithm for minimization

Our algorithm for calculating the entanglement of forma-
tion is based on a modified conjugate-gradient minimization
procedure. Starting from an initial point T=T}, conjugate-
gradient algorithms iteratively seek a direction along which
progress in minimizing the objective funcilon g(7) is maxi-
mal and then perform a so-called line search to actually find
the minimum along that direction. Recall from Sec. I D that

K

E(py=min 2, GQA(TY,
T.E +=1

“s0 that, in the present case

K
g(T):g_l GAD)).

We see here that minimization is to be done over the unitary
manifold. This manifold is not Euclidean, so that the stan-
dard line search has to be replaced by a geodesic search [17].
A geodesic on the unitary manifold is a one-parameter sub-
group of the unitary group: T(r)=T,exp(zX), where X is a
skew-Hermitian matrix giving the direction (tangent vector)
of the geodesic. Through a geodesic search one looks for the
optimal ¢ for which g[ 7;; exp(¢X)] is minimal.

In steepest-descent minimization, the direction for the line
search is taken to be minus the gradient of the objective
function in the current point. Conjugate-gradient methods
improve on this by taking the direction of the previous step
also in account; if not, the progress made in the previous step
could be partly undone by the new iteration. We have used &
modification of the Polak-Ribiére formula for calculating the
search direction [18]; the search direction for iteration i is
based on the gradient at the current point and on the search
direction for the previous iterafion i— I,

Xi==(Vg)i+vXi-y,

_ ((Vg)f“ T(Vg)f—l (Vg
4 {(Vg)i-1(Vg)ioy ~

where {,) is the inner product of the embedding space, being
in this case the standard Hilbert-Schmidt inner product
{x,y)=Trxy’. The symbol 7 denotes parallel transport of
the gradient vector at the (i— [)th point to the ith point
along the geodesic [17],

(V)i =exp(X; 14 1/2)(V ) exp( —X;—14;-1/2).

For the line search, we have used the method described in
[18], again modified to take into account that the search is
performed along the geodesic g(T; exp(sX)).
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Any minimization algorithm actually finds local minima.
To find the global minimum, we select a number of starting
points at random and let the minimization algorithm work
from these points. The minimwn is then taken over all the
results. While this procedure does not guarantee that the glo-
bal minimum is actually found, we found that trying about
ten starting points gives satisfactory results.

B. Calculation of the gradient

In this paragraph we give an analytic expression for the
gradient of the target function g(7). Conjugate-gradient
methods perform better if an explicit expression is given; in
the absence of such an expression, the gradient has to be
approximated numerically.

To calculate the gradient, we have to select an arbitrary
direction or tangent vector X, which for the unitary manifold
is a skew-Hermitian matrix. The geodesic on the unitary
manifold along this direction and passing through T is given
by T,=T,exp(eX) or Ty(l+ €X), for small e The gradient
of a scalar function on the manifold can be calculated from
the variation of the function along the geodesic using

af(T,)
de

=(V/.X),

where {,) is the Hilbert-Schmidt inner product.

The gradient of the target function g(7) is given as fol-
Tows,

Lemma 2.

(Vg(T))iplr1= (075, 0,,,) — G070,

where
OF4=\mm,d(H4)T

and

G(B,Ay=—TrB logzm.

The details of the calculation are given in Appendix B.

C. Results

As a preliminary test, we have calculated the entangle-
ment of formation of several states of a 2 X2 system, and
compared the numerical values with those obtainable from
Wootters’s formula. Furthermore, we considered a one-
pararneter family of 3 X3 states called isotropic states, and
compared the numerical valves with the EOF calcolated
from Terhal and Vollbrecht’s formula [8]. In all cases, agree-
ment was complete within numerical-machine precision, ex-
cept for some isotropic states where there was a very small
deviation from the formula for parameter values close to §.
This can be explained by the fact that for these parameter
values, there are two local minima of the target function that
are extremely close in value, and that the minimum with
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FIG. 1. Entanglement of formation for Horodecki states as a
function of 4 and ¢; linear scale.

lowest value has a very small “basin of attraction.” Situa-
tions like this are tongh nuts for any numerical routine to
crack.

The first interesting results were obtained on the Horo-
decki 3 X3 states [11]. These states were introduced to show
that the Peres criterion is not sufficient for determining sepa-
rability. These states exhibit bound entanglement: their en-
tanglement of formation is nonzero, while their entanglement
of distillation 1s zero {they have positive partial transposi-
tien). The density matrix of a Horodecki 3 X3 state is

fa 0 0 0 a 0 0 0 4
0 a 0000000
0 0 a 00000 O
0 0 0 a 00000
'O(a):H—Sa a 0 0 0 ¢ 0 0 0 af,
0 6006 0 a 000
0 00 0 0 0 b 0 ¢
000G O GO0 e O
La 0 0 0 a 0 ¢ 0O b

where a is a parameter between 0 and 1, inclusively, and b
={1+a)}2 and c=+1—a*/2. Note that, since these states
are not full rank (their rank is 7) and neither is their partial
transpose, these states lie on the boundary of the set of states
and also on the boundary of the set of bound entangled
states.

The result of the calculation is shown in Fig. 1. Here the
entanglement of formation has been calculated for a mixture
of the Horodecki states with the maximally mixed state
ep(a)+{1—e)1/9 In Fig. 1, the scale is linear, while in Fig.
2 the scale is logarithmic, so that the borderline of the set of
separable states is clearly visible. The “floor™ in the loga-
rithmic picture at —10 is an artifact; the algorithm stops
when the entanglement gets below 1019,

Note from these results that the Horodecki states have a
rather low entanglement of formation {about 0.0109 for a
=(.225) and that their distance to the manifold of separable
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FIG. 2. Entanglement of formation for Horodecki states as a
function of a and ¢; logarithmic scale.

states is also small (¢ =0.93 for ¢=0.225, that is, mixing the
state with just 7% of the identity destroys all entanglement).
At first sight, the fact that the appearance of the set of sepa-
rable states is not convex might seem confusing. However,
the parameter ¢ appears in a nonlinear way in the density
matrix so that the matrices lie on a nonrectilinear curve in the
Euclidean state space. The figure, on the other hand, has a as
parameter and therefore gives a distorted image.

Figure 3 shows the entanglement of formation for the par-
ticular value of ¢=0.225 and for ¢ going to 1. From this
figure, we are led to conjecture that the derivative to e be-
comes infinite at e= 1.

The above-mentioned calculations have been performed
with the cardinality K set to 14. Figure 4 shows the effect of
using different K in the calculations; here e=1 and 4
=(.225. It is seen that the value K= 14 is optimal for calcu-
lating the entanglement of formation in this case.

For these same Horodecki states, we have also tested the
conjectured condition for separability [Eq. (11)] based on the
generalized concurrence. It turned out, guite surprisingly,
that the condition correctly pinpointed all separable states,
which was verified by comparing the results to Fig. 2. This
leads us to hope that Eq. (11) might be an important step

E

0.996 " 0.998

0.992

0.5%94

0.009

c.oo8f

0.007r

0.00e

FIG. 3. Entanglement of formation for Horodecki state «
={(),225 as a function of e; linear scale.
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FIG. 4. Effect of cardinality on calculation of entanglement of
formation.

towards finding a simple and efficient operational criterion
for testing separability. |

IV. CONCLUSIONS

We have presented a matrix analytical framework within
which the questions of separability of mixed states and cal-
culating their entanglement of formation can be formulated
in an elegant and practical way. A main result is that, at least
in principle, it is now possible to calculate the EOF of any
state, or determining whether it is a separable state or not. Of
course, for larger dimensions the subproblem of minimizing
the respective target function becomes increasingly more
time consuming, Not only the EOF itself, but also an optimal
ensemble realizing the state can be calculated.

We have extended resulis on the concurrence and EOF of
22 systems by also including the cardinality of the optimal
ensembles. More importantly, we have tried to generalize the
concept of concurrence to general systems and have shown
that this generalized concurrence has potential to supply a
fast test for separability of general bipartite states.

In the future, we will use the presented methods to gen-
erate more numerical results about EOF of higher-
dimensional states, for example, to chart the “unknown ter-
ritory” of bound-entangled states, or just as a means for
testing various conjectures. Another interesting topic for fu-
ture work is trying to prove the conjectured sufficiency of the
generalized concurrence test for separability.
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APPENDIX A: PRESELECTION OF T MATRIX

The topic of this appendix is a method for reducing the set
of T matrices over which the minimum {5) has to be taken in
a separability test. In some cases the method already yields
the optimal 7 matrix without need for performing a minimi-
zation procedure. This method is based on a method used in
blind identification for array processing [19].

Consider the expression

()
> B, AL,
7.q

where A[(,‘ﬁ? is as defined in Eq. (4) and B;; is a symmetric
matrix. When we substitute Eq. (2) in it, we get, using bilin-
earity of C,

EBMAM E BMC(@&’ N
R K
= 2 Bpo 2, ThpTigVww COA )

R
2’ BPG

=1

._
—
=
S

T.,q) Vwew C(3F, )

(TTBT*)wiw C (g5, g,

Note that, just like B, (TTBT*) is also symmetric.

Suppose that the state p is indeed a separable one, then
there exist matrices 7 leading to a product-state decomposi-
tion, Le., to C(&F, :,b’) being identically zero for k=/. Con-
sider one such matrix 7. There exist symmetric matrices B
for which (T7TBT*) is diagonal, say equal to some A. Indeed,
by right unitarity of T one just has to take

B=TAT". (Al)
Using such a B in the above expression, we find
() —
2 Brghy) (A2)

for all a.

We can now reverse the reasoning and say that any 7
leading to a product-state decomposition must be found from
some symmeiric B that satisfies Eq. (A2). That is, instead of
searching for a T in the complete set of unitary matrices, we
only have to consider T that follow, using Egs. (Al) and
(A2), from such B. If T is square (that is, K=R), T is unitary,
and since B=TAT,
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BB*=TATTT*A*7TT
=T|A]*TT.

Hence, the column vectors of T must be the eigenvectors of
BB*. Given then, all the syminetiic matrices B that satisfy
Eq. (A2), we only have to consider matrices T whose column
vectors are the eigenvectors of one such BB*.

We have thus found a general method for reducing the
search space. We will now show that under some conditions
this reduced search space contains nothing but the optimal 7,
so that no search has to be done at all. In that case, one just
has to take one B satisfying Eq. (A2), and construct a T from
its eigenvectors. The first requirement for this is that the
cardinality K must equal the rank R, so that T is then unitary;
the reason is that otherwise Eq. (A1) has no unique solution.
Let us suppose that the first P(P=<K) state vectors in the
ensemble realizing p are product vectors: |¢*)y=|a¥)
®|85,1=<k=<P. Therefore, C(¢*,¢*) will be zero for k
< P. Now, the matrices C(¢*, /) for k<l and k=1>P are
in general {that is, for all states except for a subset of mea-
sure zero) linearly independent as long as the number of
matrices does not exceed the number of matrix elements. If
the tatter requirement is not fulfilled, then of course a depen-
dence must exist between the matrices. If the requirement is
fulfilled then the matrices can still be dependent provided the
K vectors ¢ (being m = KN, N, complex variables) satisfy a
system of N ({N|— DINo(N.—1)4-K(K—1)2—K+P+1
polynomial equations of degree d=K(K-1)+2(K-P)
leach equation corresponds to a2 minor of rank K(K—1)/2
+K—P of a matrix containing (¥7S“W),, as elements].
Using the Schwarz-Zippel theorem [20], we find that the set
of vectors obeying just one of those polynomial equations
has measure zero with respect to the set of all possible sets of
K vectors. A fortiori, this also holds for the set of vectors
obeying all polynomial equations. We thus get a second re-
quirement for the automatic optimality of T, namely, that the
cardinality K must satisfy the inequality

K(K—1) N{(N{—1) Np(N,—1}
K P - (a3

It then follows that 3, B,.A,. can only be zero if
(TTBT*)y=0 for all k%1 and k=I>P. In other words,
{TTBT*) is necessarily a diagonal matrix for any B satisfy-
ing Eq. (A2), and any T obeying Eq. (Al) for such a B is
optimal.

We have not investigated whether this technique for re-
ducing the search space is also applicable for calculating the
EOQF, that is, whether some 7 that is optimal with respect to
Eq. (7) can be found in the reduced search space.

APPENDIX B: CALCULATION OF THE GRADIENT
OF THE AVERAGE ENTANGLEMENT

The geodesic on the unitary manifold along a direction X
(skew-Hermitian matrix) and passing through T is given by
T =Ty exp(eX) or Ty{1+ eX), for small e The gradient of a
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scalar function on the manifeld can be calcnlated from the
variation of the function along the geodesic using

af(T,)
——o = (Vf.X).

To avoid notational clutter, we have set T equal to 1 in the

rest of the appendix.
Let us recollect that the function of T that is to be mini-

mized is g(TY=2,G{ALD)), where G(A)=—Tr(A log,[A/

ATH(A)]) and AT =35\ T T Nmym, @7(391.
Lemma 3. For Hermitian A and B,

a
3 CATeB)|  =G(BA),
where
G(B,A)=—Tr{Blog; A)+ Tr(B)log, Tr(A).

Proof We use the following formuia from [21] {formula
6.6.31), which applies for a Hermifian matrix A(#) function
of a parameter ¢ with eigendecomposition A(r)
=U(OAHU(HT, and for analytic functions f,

d

Ef(A(f)): ULAF (N A )0 UA'UIUT.
Here, o is the Hadamard product and Af(A;(£),A (7))} are the
“divided differences”™

FOLN=FOLD)
YORYE)
£

For A(r)=A+¢RB, it follows that

for i#j
A (1))= .
for i=j

d
ZTAT)] =2 AT MDY UTBU),

=0
=Trf (A UTBU=Trf'(A)B.
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Setting f(x)=h(x)=—xlogy(x) so that f(A)=H(A), we
have f (x)=—(1+Inx)/1n2 and

d .
—TrH{A+tB) =—Tr(l+nA)B/In2.
dt =0
Furthermore,
d
Eh(A—HB) =—({1+InTrA)TrB/In2,
=0

so that the lemma follows.
Proceeding in a similar fashion, we can expand A, (T ) up

to first order in e Putting QF9= maﬁp (30,
A(T)= qu T T50,
- ng [ 8yt €(X i Syt 8, X5 10PY
=%+ e}pj (X, 07— X, 0%,

where we have used the fact that X is skew Hermitian. In-
serting this expression in (/8€)2;G(AUT)) =9 we see
that O** serves the role of “A” and X (X ,,0P*—X,,0%)
that of “B.”” Exploiting linearity of G with respect to its first
argument, we arrive at the expression

ag(Te)
de

= g X, (G(0%*,0%) — G(07*,0P7))

{in the last term we have interchanged the indices k and p).
Therefore,

(Va(T)iplr=1=G(Q%*,0%%) = G(O7*. 0.
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