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Abstract

The concept of frequency weighted balancing, as proposed by
Enns, is a generalization of internally balanced model trunca-
tion. Intemally balanced truncation is simple to apply and ad-
ditionally attractive because of the existence of an upper H
error bound that is a function of the neglected Hankel singular
values. A conjecture on the generalization of this upper error
bound for the case of frequency weighted balanced truncation
was formulated by Enns, but the proof has not been found, In
this paper, Enns’ conjecture is refuted and it is shown that there
does not exist a frequency weighted upper error bound that de-
pends only on neglected frequency weighted Hankel singular
values. It is explained that this is due to cross terms which ap-
pear in the frequency weighted error bound. However, these
cross terms are inherent in the frequency weighted balancing
technique proposed by Enns.

1 Introduction

Popular methods for model reduction are internally balanced
truncation and optimal Hankel norm approximation [5]. Their
main advantage apart from simplicity of application is that
there exists an a priori lower and upper error bound based on
the Hankel singular values of the full-order system. However,
these model reduction techniques use a uniform weighting on
the whole frequency range. In system identification it may be
interesting to frequency weight the error in order to reduce the
mode] truncation error in certain frequency ranges of interest
[9, 141, Frequency weighting has also been applied in order to
enhance the robustness of the controiler {2, 3, 16, 17}. There-
fore, Enns introduced the concept of frequency weighted bal-
ancing [3, 4] as a generalization of frequency weighted balanc-
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ing s0 as to take these frequency dependencies of the admissi-
ble truncation error into account.

However, the generalization of the a priori balanced modet
reduction upper error bound in terms of the so-called fre-
quency weighted Hankel singular values, has not been found
yet {1, 3, 7, 14, 15, 17]. In this paper we explain that cer-
tain types of generalizations of the upper bound, which we will
call Enns’ Conjecture [3] in Section 2, cannot serve as an up-
per error bound. It can be shown that this is due to a cross
term that can become unbounded in terms of the frequency
weighted Hanke! singular values. This cross term is inherent in
frequency weighted balancing, We give numerical counterex-
amples to Enns’ conjecture using a constructive algorithm that
generates counterexamples.

This paper is organized as follows, Frequency weighted bal-
ancing and Enns’ conjecture are reviewed in Section 2. The
conjecture is refuted in Section 3. This paper is a companion
paper of {13},

2 Internally Balanced Model Reduction

Consider a stable, continuous time linear system of order
n with transfer matrix G(s} = C{sI A) 'B + D and
with realization (4, B, C, D). The system is assumed.to be
minimal which means that the controllability Gramian P =
im0 fﬂt exp(AT)BBT exp(ATT) dr and the observability
Gramian Q@ = liny_e fg exp(ATT)CT Cexp(AT) dr are
positive definite, These Gramians can be computed by solv-
ing lincar matrix equations. A similarity transformation T' on
(A4,B,C,D) 5 (TAT ', TB,CT ', D) can be found that
diagonalizes the Gramians in the corresponding contragredient
transformation (P, Q) = (TPTT, T TQT 1) = (5, En),
while preserving the eigenvalues of P - @ == 2. The system
G(s) with realization (TAT 1,7B,CT !,D) is then called
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Figure 1: Series connection Wo(s) - G(s) - Wi(s) of the input
weighting W;(s), the system G(s) and the output weighting
W,(s) in order to perform frequency, weighted balancing.

internally balanced with P = @ = Xy = diag{oy, ... L On)
[5, 6, 10] The diagonal elements &y,...,0n are called the
Hankel singular values and are ordered in a non-increasing
order. Provided that o.51 < 0, the reduced order model
Gr(s) = Cy(sI Ay) 'Bi+ D withorderr is then obtained
by truncating the partitioned balanced system

A A
TAT ' = 11 12],
[A21 Agg
Bl 1'
TB:[MBT], cri=[C|C: ],

with Ay, € R"*7, The reduced order system is stable [11] and
there exists an a priori upper bound on the H, error {3, 3):

Foo = || B(iw)lleo = {IG(w)  Gr(jw)lleo

<2 i ok

k=r+1

)

The concept of frequency weighted balanced truncation is a
generalization of internally balanced truncation and was intro-
duced by Enns [3, 4] in order to tune the approximation error in
certain frequency ranges. Given both an input weighting filter
Wi(s) = Ce(sI  A;) 1B;-+ D and an ontput weighting filter
Wo(s) = Co(sI Ao} 'B,+ D,, the frequency weighting is
obtained by making the series connection W, (s)- G{s}- Wi(s)
of the input filter W;(s), the original system G(s) and the out-
put filter W, (s), as is depicted in Figure 1. By constructing the
state space realizations of the augmented systems G(s} - W, (s)
and W,(s) - G(s), respectively:

- A BC; | 5 BD; | ~
AF[O M]&:[iﬁ i=[C 0],
- A 0 - B -
Aa:[BOO Aa]’ a:[ol;co:[DoG Co]a
the extended Gramians
= | P P
b= [ PT Py ]
and
Oy = [ QG2 ]
¢ Qs Qu

arc obtained as the solutions to the following Lyapunov equa-
tions:

A{Pi + R;‘i? + B;B;F
ALQo + Qoo + C5 Co

@
€)

respectively. The system G(s) with realization (4, B, C, D)is
called frequency weighted balanced in the sense of Enns (with
respect to the input and output weighting transfer functions
Wi(s) and W,(s)) iff the input and output frequency weighted
Gramians, P and @, are diagonal and equal: P = Q=x,=
diag(o1,...,0n). The values g1,...,0q are now called the
frequency weighted Hankel singular values and are ordered in
a non-increasing order, For a given realization, there exists
a similarity fransformation 1" that balances the system in the
frequency weighted sense [3]. Motivated by the upper eror
bound (1) for the internally balanced model truncation error,
Enns formulated the following conjecture about an upper error
bound for the frequency weighted balanced model truncation
error [3] {p. 105):

Conjecture 1 (Enns® Conjecture) When truncating a Jre-
quency weighted balanced system, the infinity norm E. of
the weighted difference between the original system G(s) =
C(sI A) ‘B of order n and the reduced system Go(s) =
Ci(si  An) "By of order v can be upper bounded by
21 + &) times the sum of the neglected weighted si ngular val-
Hes:

Fo

IWo(fwl (Gliw)  Grljw)) Wiljw)leo
2(1+0’) Z Ok,

k=r+1

A

)

witho < 1 when By < 1.

Observe that the condition o < 1 in the conjecture can be omit-
ted. Indeed, by scaling G(s) with a factor A € R, the model
reduction algorithm returns AG () and do; (i = 1,..., ), in-
stead of G(s) and o;. The error Ey is also scaled by a factor
A and accordingly there will be a value of X for which the error
will be less than one. Since & is independent of the scaling pro-
cess, one can always find a scaling such that o < 1. Werea to
be zero, the bound would be equal to the bound for internally
balanced truncation. In other words, « is introduced to extend
the result of (1) to the frequency weighted case.

However, the conjecture has not been proven and no vatue for o
has been reported [1, 3,7, 14, 17]. In [7] a (conservative) upper
bound was derived. This bound is not an a priori error bound
and depends on the Hanke! singular values, Pyz, the weighting
and the systeim.

Also note that stability is not guaranteed when non-constant
inpuf and output weightings are both present [12]. This is
due to the cross terms BC; Pio + PLCT BT and Q12 B,C +
CT BTQT, in the Lyapunov equations (2) and (3), which when
one truncates the equation may result in Ay; ¥, + 3.An O
Of itself, this does not imply that A;; is unstable, but sim-
ply that, in contrast to the unweighted case, stability does not
follow from a truncated Lyapunov equation. In {8}, Lin and
Chiu propose an alternative method of frequency weighted bal-
ancing, with guaranteed stability of the reduced order model.
Stability is obtained by removing the cross terms by block di-
agonalizing the extended Gramians P; and Q,. The Gramian
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p L TPTT;
P‘ Pis 2\ I XtT P Py I ¢
FP{y, Px 0o I P?2 Pyo X; T
P PuP,'PL 0
= [ 1?) 22 112 sz :| , (5)

with X; =
comes

Py' PL. The upper left block of (2) then be-

PA" + AP, + BD;DT BT + BD; BT X;
+X{ BT BT + XT B BT X; = 0, (6)

with P, = P PioP,,' PL. A similar transformation can be
applied to block diagonalize the extended output Gramian of
the output weighted frequency Lyapunov equation (3), result-
ingin@ — @ Q12Q221QT2 = Go.

The system is now called frequency weighted balanced in the
sense of Lin and Chiv if P; = @, = X, with &, =
diag({oy,09,...,0,) diagonaland oy > o3 > ... > 6,,. Since
we have [8, 12]

BDDY B + BD:BY X, + XTB,DT B” + X7 B, BT X,
= (BD; + X} B))(BD; + XTB)T > 0,

stability can be proven foliowing {11].

3 Enns’ Conjecture refuted

Enns’ Conjecture is refuted by means of a constructive coun-
terexample. Numerical counterexamples are given in Example
1. Tt is explained that the conjecture does not hold because
of the cross terms that appear in the extended Lyapunov equa-
tions. These cross terms are inherent in frequency weighted
balancing in the sense of Enns. Removing these cross terms
like in frequency weighted balanced truncation in the sense of
Lin and Chiu does not yield an upper error bound of the same
type of (4).

A constructive counterexample to Enns® Conjecture

In the next Theorem, Enns’ Conjecture is disproved; moreover,
it is shown that there does not exists an « such that {4) holds
for all possible systems and weightings.

Theorem 1 (Enns’ Conjecture disproved) Ler Wi(s) =
Ci(sl  A) 'Bi+D;and Wo(s) = Co(sl  A,) ‘By+D,
be stable, minimum phase transfer functions for the input
and oulput weighting.  Let the asymptotically stable sys-
tem G(s) = C{sI A) 'B + D be frequency weighted
balanced with respect fo the inpwi and ouiput weight-
ings Wi(s) and W,(s) and let the Gramians be given by
P=Q =%, =diag(oy,...,00,0r41,...,0,). There exists
no finite o such that a frequency error bound

IIWo(s) C(sI A) 'B Cy(sI An) *Bi) Wi(s)loo

n
<21+a) Y op

k=r41

)

holds for all possible weightings and all possible transfer fine-
fions.

In order to disproving Enns’ Conjecture, it suffices to produce
& counterexample for each & € R*, A counterexample is con-
structed for the case of a truncating a first order system g(s) =
e(s @) 'b, input weighted withw;(s) = ¢;(s  a;) b;+d;,
while no output weigting is applied, i.e., w,(s) = 1. The modet
9(s) =c{s @) 'bisa strictly proper, stable first order SISO
system', while the input weighting w;(s) = ¢;(s a;) ‘b;-+d;
is a stable, minimum phase first order SISO system. The re-
duced order model is g.(s) = 0, since we do not introduce a
feed-through term d, following the approach of [3]. The proof
requires quite some algebra and we refer to {13] for the details,
The outline of the proof is as follows. The Lyapunov equa-
tions (2) and (3) become:

2a0 + 2beipiy + (bd)* =0 8
(e + ai)pr2 + begpas + bdib; = 0 %
2aipp2 + b =0 (10
2ac +¢* = 0. (1)
Following the appreach of [3, 7], the H, error
Eoo (lgw)  0) - wi(jw)|eo
1
= sup (g(iw)wi(jw)w:( jwg( jw))?
can be rewritten as follows [13]
Boo = sup(Bnorw (jw) +0mw(Gw))?,  (12)
where
bnorw (jw) = * (L + ¢ )1 +9%¢ 1), (13)
. be;pra a?a?  giaw?
’ —_ 2 i ) t E
9}3‘“ (Jw) 40 ( O'a[ )((w2+a12)(w2 '§-&-2) !( 4)
with ¢ = (jw @) 'and ¢; = (jw ;) 1. The term

Brorw (jw) is equal to the expression for the error bound (1)
obtained in [3]. In the case of frequency weighting an addi-
tional term #,0mw (jw) appears in the expression for the error
due to the cross terms in the Lyaponov equation (2). Evaluating
both terms at w = 0, we will show that for each given « € R+,
there exists a stable g(s) and a stable minimum phase input
weighting filter w;(s) such that the error Eo, > 2(1 + a)o or

B, = sup(@norw (jw) + Opw(jw))
(7%
> 4 142 +a%) o (15)
Evaluated at w = 0, this corresponds fo [13]
4(9‘?1-‘-’1—2) > 8a + 4a. (16)
ae;

Hn the remainder of this paper, we will assume I = 0, because D does
net influence the balanced truncation error.
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« a; b ¢ di Eo | 201+ oo
0.1 086 1311 019 127 221 2.2
i 006 0510 019 127 4.08 4
10 | -1.5¢03 0.116 019 127 226 22
100 | -1.7e-05 0.013 019 127 207 202

Table 1: Counterexamples to Enns’ conjecture for different
values of a. For different values of o, an input weighting
wils) = als a) by + di is designed for the system
g(s) = /(@)(s 1) ! using the constructive aigorithm de-
rived in the proof of Theorem 1. The corresponding F is re-
ported in the 6th column, while the 2(1 + a)e error bound (4)
from Enns’ conjecture is reported in the last column, refuting
the conjecture. See Example 1 for details.

Given o, we now choose a < 0, b and o and we calculate ¢
from (11). By choosing

Qa0

i< a7
a stable a; can be found from {13]
2
1 (Qﬁ + a) > 20+ o’ (18)
a; 20

Choosing p12 = 1 we obtain ¢; from (8). Substifuting paz > 0
in (9) gives a quadratic equation in b; with real solutions

bd; L/ (bdi)? + ZbCip1za§:1+a51

bey
ag

by 4 \f 2 ((bdi)? +20(a+ax))

bei

Qi

(19)

The zero zo of w;{s) is given by:

C,'bi

20 _d‘
i

[

PR PR L L CCREDA)
dgb a;

Hence, there exists always & minimum phase filter w;(s), by an
appropriate choice of the sign in (19). We refer to {13] for all
further details.

A practical algorithm to generate counterexamples consists of
the following steps:

. Select a given value for & for which one wants to
refute the conjecture.

. Choose a < 0, b and ¢ > 0. Determine ¢ from (1 b,
i.e.,

c=+v 2ao0.

. Calculate

d;i = 0.9y 20afb?

and

at (B2di?)/(20)

a; = 0.95—5 ——5

. Calculate

p2dit  2ac0
2b )

Cy =

. Evaluate the error E{jw) atw = 0

cb Cibi

|E(0)| = |‘£; o + dg)).

The values 0.9 and 0.95 for the calculation of d; and a; are
chosen smatler than 1 such that (17) and (18) hold. Also ob-
serve that the constructive algorithm is designed to generate
counterexamples such that Eo, is only a little bit larger than
the upper error bound 2(1 + a)o from (4). One can generate
“stronger” counterexamples by choosing other values instead
of 0.9 and 0.95. An alternative way to obtain such a “stronger”
counterexample for given « is to choose, e.g., a* = 2 and
generate the counterexample for «* following the constructive
algorithm,

One might well imagine that a refaxation or reformutation of
the conjecture would be true. For a fairly broad relaxation, as
the next theorem shows, this is not the case.

Theorem 2 Under the same conditions for Wi{(s}, Wo(s) and
G(s) as in Theorem 1, there exists nto upper ervor bound of the
bipe

[[Wo(s) C(sI A) 1B Co(sI Ay 'Br) Wi(s)loo

n
S f(O’r+1, vy Oy C': A! B) Z Tis (21)
r+1

with f(x) depending only on x.

Indeed, the outline of the proof of Theorem 1 shows that when
#, a, b and ¢ are fixed, there is still enough freedom in the
choice of the other parameters making up the weight to make
E.. > 2(1 + a)o for an arbitrary choice of a. The proof of
this theorem then follows by choosing « = f(o,a,b,¢)/2 L.
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Figure 2: Evolution of the amplitude of the different transfer
functions as a function of w. The amplitudes of g(s)[, lw;(s)|
and |g(s)w;(s)| are denoted in dashed, dotted and full line,
respectively. The upper error bound 2(1 + a)e from Enns’
Conjecture is denoted by the dashed-dotted line for & = 1,
while the example was generated using the constructive algo-
rithin choosing o = 2,

Example 1 Consider the system g{s) with frequency
weighted balanced realisation ( 1,1, v/2,-) and Hankel sin-
gular value ¢ 1. In Table 1, some counterexamples to
Enns’ Conjecture are given for different values of ¢, ie.,
a = 0.1, 1, 10 and 100, respectively. These counterexamples
are constructed following the constructive algorithm derived in
the proof of Theorem 1 [13].

Also note that the error E., for the third input weighting
Wi(s) with realisation { 0.0015, 0.1163,0.1900, 1.2728) in
Table 1, for G(s) with realisation (1/100000, 1,+/2/100000, -)
is B, = 22,5669, which is nearly 20, with ¢ = 11.2763.
This illustrates that for a given W;{s}, Enns’ Conjecture is not
violated for all choices of G(s) as one would expect.

In Figure 2, a counterexample was generated for o* = 2 (yield-
ing a; 0.0226, b; = 0.3643,¢; = 0.1900 and d; = 1.2728)
in order to refute the conjecture for a given o« = 1. The
amplitude of the transfer functions g(s),w¢s) and the error
w;(s}g(s) arc depicted as a function of w by the dashed, dot-
ted and full line, respectively, The corresponding upper error
bound (4) from Enns’ conjecture is depicted by the dashed-
dotted line. For low frequencies, this example illustrates that
the conjecture does not hold,

Remark 1 (Infiuence of the cross term) The “problem” in
the frequency weighted error is the cross term pyy due to a
non-zero Pio in (2). The upper bound [7] is also based on
the error bound for the cross term. Stability of the reduced
order model cannot be guaranteed in the case of both input and
output weighting, due to a non-zero Py and Q19 in (2) and (3),

respectively.

However, it can be shown {13] that the condition P53 == 0in(2)
corresponds to

BWi(syW'( s)BT = BD:DT BT,

meaning  that Wi(s) Wii(s) + Wia(s), where
Wia(s)WI( s) = D:DT and BWy(s) = 0. In other
words, the input weighting W;(s) is composed of a first part
which is constant on the frequency axis and a second part
that is perpendicular to B. Since the second part does not
contribute to the frequency weighting, it is equivalent to having
zero weight, Unsurprisingly, the error bound (1) remains valid
under input (and output) weighting with a constant matrix2.
The input weighting with a constant matrix corresponds to
taking linear combinations of the columns of the B matrix.
Similar conditions can be derived for the output weighting
filter.

(22)

Remark 2 (Error bounds after stability repair) In the pre-
vious Sections, if is explained that because of the cross terms
that appear in Lyapunov equations (2) and (3), Enns’ Conjec-
ture does not hold and the reduced order model may become
unstable, In contrast, whereas the stability problem is solved by
frequency weighted balanced truncation in the sense of Lin and
Chiu [8], the ervor formula [[Wo(s)- (G(s) Gr(8))- Wi{s)||eo
is not simplified by applying the transform (5), see e.g. [12].
Since Mi(P-Q) > M((P PP, 'PR)- (@ QTLQI0Q1w)
(Lemma 3.1, [12]), the frequency weighted singular values
in the sense of Lin and Chiu are not greater than the fre-
quency weighted Hankel singular values in the sense of Enns.
Hence, Enns’ Conjecture does not hold when applying fre-
quency weighted balanced truncation in the sense of Lin and
Chiu, In the proof of Theorem 1, it is shown that 2(1 + a)o
cannot serve as an upper ¢rror bound for the truncation error,
with ¢ = ,/pg and the scalars p and ¢ given by (2) and (3).
Because of the stability repair, p is reduced by piyp, * > 0.
In other words, ¢ now equals ¢ = /(p pip )g < /Pa.
Since the model truncation error ||g(s)w;{s)]|oc of not changed
by the alternative, Enns® conjecture does not hold for the fre-
quency weighted balanced model truncation error in the sense
of Lin and Chiu.

4 Conclusions

Frequency weighted balanced model truncation is a generaliza-
tion of intemally balanced model truncation, where an a priori
H, upper error bound on the frequency response exists. This
upper error bound is two times the sum of the neglected Hankel
singular values {3, 5]. Although a conjecture was formulated
by Enns about an error bound for the frequency weighted case,
no a priori error bound based on the frequency weighted Han-
kel singular values has been found yet, as mentioned frequently

2For the sake of completeness, it is mentioned that the matrix may be mul-
tiplied with an all pass transfer function Z(s) : DyZ(s)ZT{( s)DlT
DiIpf = oyDY.
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in the literature {1, 3, 7, 14, 17]. In this paper, Enns’ conjecture
is refuted and it is shown, by means of a constructive algorithm
generating numerical counterexamples, that there does not ex-
ists an error bound depending only on the sum of the neglected
frequency weighted Hankel singular values. This is due to a
cross term, which is inherent to the frequency weighted balanc-
ing [13]. By removing the cross terms in the Lyapunov equa-
tions [8], stability of the reduced order maodel is guaranteed,
but an upper error bound that only depends on the frequency
weighted Hankel singular values cannot be derived.
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