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Abstract In this contribution we explain how the rank deficiency of a given data
matrix, its linear matrix structure and its interpretation in terms of
discrete-time dynamical systems, are intimately connected. This rela-
tion permits to formulate least squares dynamical system identification
problems, the solution of which leads to structured total least squares
(STLS). We also consider the insertion of given weights in the least
squares objective function, leading to weighted TLS problems (WTLS).
The Riemannian SVD, which is a ‘nonlinear’ generalized SVD, provides
an elegant framework for these structured and/or weighted TLS prob-
lems.
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1. Rank deficiency and linear matrix structures

There is a trivial, yet important connection between the rank deficiency
of a given matrix A and the existence of linear relations between its
columns. Indeed, let A € R?*9, with p > ¢. When rank(4) = r4 <
g, there exist ¢ — 74 linearly independent linear relations between the
columns of A, but in this paper we will confine ourselves to one single
linear relation, in which case r4 = ¢ — 1. In a certain sense, the rank
deficiency of a matrix is & non-generic’ property (a notion that can be
made very precise as e.g. in [17]). This explains the fact that, in most
applications, the observed data matrix A € RPX4,p > g is of full column
rank ¢. The central idea then of total linear least squares (TLLS) is to
approximate the given data matrix A, by a matrix B of rank ¢ — 1, s0
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that at least one linear relation exists between the columns of B:

B.v 0
. _ 2 . ]
Bemn"l:?oell! ||A — Bl|F subject to { T.o = 1. 1)

A complete treatment of the TLS problem (1) and its solution via the sin-
gular value decomposition, including many references and comparisons
with other fitting techniques, generic and non-generic cases, geometri-
cal, statistical and algorithmic issues, may be found in the books [15]
[16]. In this paper, we discuss so-called structured and/or weighted total
least squares (S/W-TLS) problems, which are an extension of the TLS
problem (1), in which the matrix A and its rank deficient approximant
B are required to have a certain linear matrix structure, and/or the least
squares objective function is modified by introducing weights. We call a
matrix A € RP*? linearly structured, when it can be written as a linear
combination of given, known basis matrices A;i=1,2,...,N € RP?
as A= Aoy + ...+ ANvan, with a; € R. N is the number of different
coefficients a;, needed to generate the matrix A. It is assumed through-
out that the matrices A; are linearly independent. Examples of such
linear structures are symmetric, centro-symmetric, per-symmetric, row-
rhomboidal, negacyclic matrices, Toeplitz, Hankel and circulant Brown-
ian matrices and their block versions. These linear structures are ubiq-
uitous in signal processing, systems and control theory, image processing
and statistics, numerical linear algebra, mechanical and electrical engi-
neering, physics, etc... Observe that linear matrix structures are closed
under addition and intersection: Examples are ’symmetric Toeplitz’ ma-
trices (intersection of symmetric and Toeplitz) or "Hankel + Toeplitz’
matrices, which are the sum of a Hankel and a Toeplitz matrix. While
rank deficiency of the data matrix hints at an underlying linear model
that ’explains’ the data, the fact that in addition the data matrix is also
linearly structured, implies that these data are generated by a dynamical
system, described by linear difference or differential equations. Let us
give some examples.

Example 1: Rank deficient Hankel matrices

Let Z € RP*? be a Hankel matrix with p > ¢ and denote its N =
p+ g — 1 different elements by zk, k =0,1,...,N. It is well known that
rank(Z) = n if and only if the elements 2, are generated by the output
of a linear time-invariant discrete time system of the form

1 = Fow,
Zr = sz: (2)
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with F € R™X™ the system matrix, H € R!*" the output matrix, j the
state and z; the output at time instant k. In the case that g =n +1,
the vector v € R™+! that satisfies Zv =0 contains the coefficients (up
to within a scalar) of the characteristic polynomial det(F — Al) (We
assume here that the characteristic and minimal polynomial of F' co-
incide). The problem of finding the model matrices F and H and the
order n is called ’the realization problem’ and is, by now, a *classical’
problem in system theory. The model (2) is used in many applications,
ranging from biomedical signal processing (e.g. analysis of NMR spec-
tra), vibrational analysis of dynamical structures (e.g. characterization
of flutter of wings of air planes), industrial process system identification,
stochastic identification and telecommunications, etc. ... We refer to [1]
[4] [5] [8] for examples and details.

Example 2: Rank deficient *double’ Hankel matrices
Next we extend the model (2) with scalar inputs wi € R:

Zep1 = Fzr+Gur,
2 = Hzp+ Jwk . (3)

Here, G € R™! is the input matrix and J € R!X! is the so-called
direct-feedthrough term. Let Z be a p X ¢ Hankel matrix with the
outputs (p > ¢) and W beapXxgq Hankel matrix with the inputs. Then,
under fairly general conditions on the input sequence (’persistancy of
excitation’, i.e. rank(W) = g¢) and the system (3) (equal number of
poles and zeros, observability and controllobality) we have

rank(Z W)=gqg+n.
In particular, with ¢ =n+1, rank( Z W)=2n+1and |

zwy( 5) =0, @)

where @ and b contain (up to within a scalar) the coeffients of the so-
called transfer function T'(z) of the linear system (3), which is rational in
2 T(z) = J+H(@zIL,—F)7'G= %&%. Here a(z) and b(z) are n-th degree
polynomials in 2z with the coefficients of the vectors a and b. Equation
(4) is nothing else then a difference equation of the form

ZkOn + 21001t « -+ ZhinO0 = WiBn+Wkr1Bn-1+- -+ Wktnbo (5)

fork=0,1,2,....
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Example 3: Rank deficient *bilinear’ Hankel matrices

Yet another extension of the linear model (3) is the bilinear model, in
which products between inputs and states are included in the state equa-
tion by introducing an additional matrix L € R"*™:

21 = Fzet+ Gui + Leewe
Zr = Hzy + Jwi (6)

The Volterra kernels of this system are of the form: O-th order: Ko =
HG; 1-st order: K = (K1 Ki2) = (HFG; HLG); 2nd order K2 =
(K215 Ka2; K233 Kz4) = (HF?G; HFLG; HLFG; HL?*G), etc.... It can
be shown (see e.g. [13]) that the following linearly structured, ’general-
ized’ Hankel matrix

[ Koo | K11 K1z | Kn Ky, K33 Kaa ... \

Kii | K21 K2z | Ks1 K32 Kas K
Kiz | Kos Kza | Kss Kse Kar Kss
Ky K31 K32 ces cee .o cae | aen
K3 Kas Kag | --- cee o oo |aes
Kag | Kszs Ksa| «ev  eee oee een|ees
LK24 Ka; Ksg| -.- cen “ee cee |one
is rank deficient of rank n, if its elements are Volterra kernels of a bilinear
system of order n of the form (6). Again, we see how the combination
of a linear matrix structure and rank deficiency has a very precise dy-
namical system theoretic interpretation.

Observe that in all these examples, the rank of the structured matri-
ces reveals the order (= number of states) of the ‘underlying’ dynamical
system! .

2. A commuting Lemma for linear structures

Let 4 € RP*4 be a linearly structured matrix with N different elements
collected in the vector @ € RY. For example, a p x ¢ Hankel matrix has
N = p+ ¢ — 1 different elements and a p X p symmetric Toeplitz matrix
has N = p. Let v € R? be a vector. The matrix-vector product Av is
bilinear in the elements of A and the elements of v, and because of this
bilinearity we can reverse the order:

Av=Tya, (7)

where T, € RP*¥ is linearly structured in the elements of v. Observe
that the linear structure of A and the ordering of the different elements of
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A in the vector a, uniquely determine the structure of T,. As an example,
consider a (p = 4) x (g = 3) Hankel matrix AwithN=p+q—1=6
different elements. Then 7T, follows from (7) as

ag
ag a1 a2 - Vo V1 V2 1] 0 0 ai
a; az as 0 0 vo v1 v2 0 0 as
v =
a; az G4 0 0 v v1 712 0 as
v2
ys G4 Gs 0 0 0 v vi v2 aa
asg

Similarly we can define a linearly structured matrix T, € RV%¢ from
ATy = TTa. These commuting results lead to simpler formula manipula-

tion, in multilinear expressions of the form £ = ...+ ul Av+. .. in which
they allow one to calculate expressions of the form %ﬁ- =+ TTu+....

The Commuting Lemma also allows to exchange the role of v € R? and
u € R? in Tffu:va.

3. Data and noise models

In practical engineering applications, data are never ‘exact’, but they are
always corrupted by so-called 'measurement noise’. More specifically, let
a € R be the vector of observed data. We will assume that the noise
model is additive and Gaussian, i.e. a =&+ @, in which @ contains the
unknown exact (noisefree) data and & the unobserved noise samples. As
for the noise model, we assume that @ = M @, where M € RN*M with
Ni < N is a given known matrix of full column rank N;. The random
vector & is zero mean, normally distributed with covariance matrix equal
to the identity matrix: & ~ A/(0, In,). Hence, the noise random variable
@ is zero mean normally distributed with covariance matrix Q = MMT.
Note that Q itself is singular whenever Ny < N.

4. The Riemannian SVD

Let us now formulate structured and weighted TLS problems, the ingre-
dients of which are a data vector a € RV, a noise model & = M & with
a given specified matrix M € RN*N: with rank(M) = N, the spec-
ification of a linear matrix structure (Hankel, double Hankel, bilinear
Hankel, Toeplitz, etc ...) (with corresponding linearly structured ma-
trices T, and T, as defined above) and the specification of the number
q of columns of the structured matrix.

Having specified these elements, every structured/weighted TLS prob-
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lem can be phrased as

1 b=a— Me,
min ~eTe subject to Bv=0, (8)
BERN ,vERY , ecRM 2 oTy =

In these equations, B € RP*4 is the linearly structured matrix, gener-
ated from the elements of the vector b c¢ RY, that collects the different
elements of B. This structured matrix B is required to be rank defi-
cient, a condition that is enforced via the vector v in its null space. The
vector b contains the estimates of the ‘exact’ data 4. The noise model
is Tepresented by the given matrix M. The least squares criterion (in
which we introduce the factor 1/2 just for convenience) derives from the
principle of maximum likelihood. It is easy to verify how the ‘ordinary’
TLS problem (1) is just a special instance of this general formulation.
To solve the constrained optimization problem (8), we consider the Lan-
grangean function £(m, e,v,1, A, b) = LeTe+ITBu+A(l —vTv)+mT (b—
a-+ Me). Setting all derivatives to zero (and repeatedly using the Com-
muting Lemma) results in

—a—£=0=>b=a—Me, a—L--=0=ﬁe-{—MTfn-'z(),
m de

aL T, ac _
av_0=>Bl—2‘vA, al—OﬁB”— y

aL T . oL T
ab—0=>T,l+m——0, a)‘—0———=>v v=1.

From these equations, one can easily show that A = 0, eliminate m =
_TT1, eliminate e = —M™m = MTTT1 and introduce Q = MMT to
find that b = a — QTTl, BTl = TFb=0and Bv =Tyb=0. Using these
last two equations, we can eliminate the vector b and the matrix B, to
find T a = (TFQTy)v and Toa = (T.,QTT)l. Next we define the matrices
Dy, and Dy as Doy = (T,,QT,';" ) and Dy = (T,TQﬂ), we normalize [ as
| = uo in which o is such that uT D o,u = 1. Since now Dy = D0, we
then find (once again using the Commuting Lemma) that

Av=Dyuoc, U Dmu=1,
ATu = Dyyvo, vTo=1. (9)

In these equations, which we have called the Riemannian SVD, the ma-
trix A has the same affine structure as the matrix B we started from in
(8). The value of o that we need follows from the objective function as
efe=mTMMTm = TT,QTI = T D,yuc? = o?. Obviously, we need
the minimal value of o and corresponding vectors u and v that satisfy
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the equations (9).

Observe that the matrices Dyu and D,, are defined from the given re-
quired linear matrix structure (as ’represented’ by the matrices T, and
T, from the Commuting Lemma), and from the noise model represented
by the covariance matrix @Q = MM T, By construction, the matrices
Dy, and D, are symmetric, nonnegative definite matrix functions of
the elements of u, resp. v. If they would be fixed matrices (i.e. inde-
pendent of u and v}, the Riemannian SVD would reduce to the so-called
Restricted Singular Value Decomposition (see e.g. [3]). By analogy, we
call u and v left resp. right singular vectors and o the corresponding
singular value of the Riemannian SVD. In the case of the ordinary TLS
problem (1), we have Dyy = I, and Dy, = Ig. One can easily show
that uT Dy,u = vT D, v always, as from the Commuting Lemma it fol-
lows that v Dyou = uTT.,QTf u= 'uTTf QTyv = vT Dy, v. The *filtered’
data (i.e. the least squares estimates of the unknown ’exact’ data) can
be estimated from b = a — QT uo. The linearly structured matrix B
generated from the elements of the vector b is rank deficient because
Bv = Tyb = Ty(a — QTT1) = Av — Dyyuo = 0; The left singular vector
« is the normalized vector I of Lagrange multipliers corresponding to
the rank deficiency constraint. From the Riemannian SVD (9) we easily
find, assuming that Doy i8 invertible:

ot =vITATD;l Av. (10)

This equation can be interpreted as the weighted norm of the so-called
equation error. Assume that, in the noiseless case Ab = 0. From the
noise model specified above, we find that A¢ = (A+A)b = Ab =Tea =
T,Mé. For obvious reasons, Ad is called the equation error. Its covari-
ance matrix is given by E(A99TA) = TeQTY = Dss. Therefore, the
objective function in (10) is the weighted norm of the equation error, in
which the weight is the inverse covariance matrix of the equation error.
Finally, it can be shown that the vector of residuals (b — a) is Q-
orthogonal’ to the vector with filtered data b as one can show that
bT.Qt.(b—a)=0.

For more details and additional properties, we refer to [4] [5]

5. Elementwise weighted TLS

So far, we have obtained the general formulas for solving a structured
and/or weighted TLS problem, leading to the Riemannian SVD (9)- In
this section, we derive the weighting matrices Dyu and D,, for an ele-
mentwise weighted TLS problem. Let AcRP%bea given data matrix;
Assume that the noise is additive, A = A+ A, and that the elements
of A are zero mean, Gaussian, independently distributed scalar random
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2 for element (4,7). When approximating

variables with noise variance o}
in a least squares sense, this given data matrix A, by a rank deficient
matrix B, the principle of maximum likelihood leads to the following

constrained optimization problem:

. 1¢ 2 . B.v=0
b,--elllmnem EZZ(G‘J — b;j)?/o?; subject to { oT v 1’ (11)
Il i=1 j=1 ’ ’

Let £ be the p X ¢ matrix that has % as its (i,j)-th element. Let
diag(.) be the operator that turns a vector into a diagonal matrix. By
specializing the general derivation of Section 4 to this case, one ob-
tains the Riemannian SVD for the weighted TLS problem with Dy =
diag(XTdiag(u)u) , Dew = diag(Ediag(v)v). The rank deficient matrix
B can be reconstructed from B = A — diag(u)Ediag(v)o, where o is the
smallest singular value of (9) and u and v are the corresponding left and
right singular vectors. There are several ’extreme’ cases that one can

consider:

- Choosing 0;; —+ 0 implies that there is no noise on the corresponding
element in A, hence that element is considered to be exact, and
will not be modified, i.e. aj; = bij; As an example, consider the
matrix A '

1 [2] 3
A= 5] ¢ [7]
0 2 -1
[3] 4 1

where elements in a box can not be modified, when trying to least
squares approximate A by a rank deficient matrix. The matrices
D, and D,, for this example are

2 4 52

vf+v

uf 4 u} lvz 3
Dy, =diag| vi+ud+u} |, Dw=diag} .2, 2 2 2(=1
o+ ud +uf o=y

v; +vs

- By taking o;; — 00, we take the noise variance on element (i, j) in A
to be extremely large; In this way, one can tackle missing observa-
tions, i.e. b;; will be filled in ’automatically’, without taking into
account the corresponding element a;; in A (Said in other words,
because g;; — 0, the corresponding term does not contribute any-
thing in the weighted objective function (11), leaving the choice
for b;; independent of a;; (but constrained to make the matrix B
rank deficient)).
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- By taking 0i; = aij, we get an objective function that minimizes the
sum-of-relative-errors-squared, instead of ’absolute’ errors.

. One can also consider the case in which every noise element &;; is
correlated with every other noise element @, as expressed in a
correlation matrix @ € RP¥<?4, For details we refer to 4]

. When I is a rank one matrix, i.e. 0i; = ¢; . n;, for positive scalars
&, n; € R, the solution to the weighted TLS problem (11) can
be derived from the SVD of the diagonally scaled matrix with
elements ai;/ (& - 7;)-

6. Double Hankel structured TLS

The ’errors-in-variables’ formulation of the linear dynamic system iden-
tification problem, for models of the form (3) is the following: Given
noise corrupted scalar observations (uk, yi) of the input, resp. output,
of a single-input single-output system. A least squares estimate w; of
ui, and z; of y. will be determined as follows. Let w, z,u,y be vectors
with the scalar wg, 2k, Yk, Uk The structured TLS problem is then

a
min |y — 2|3 +|lu— w||? subject to (ZW)\ ) =0, (12)
ke afTa+bTb=1.

Here, the vectors a and b contain the coefficients of the difference equa-
tion that relates the *filtered’ inputs wy to the *filtered’ outputs 2 as in
(5). From a similar derivation as the general one in Section 4, one can
show that one has to find the minimal singular triplet of the Riemannian
SVD

(Y U)(_‘;)z(Daa"I"Dbb)ua, aTa+bTb=1,

T D
(7)o (B £)(3)er omrmacr

Here Dy, = Tan , Db = TbTbT and Dy, = TuTE , in which the matrices
T,, Ty and T, are banded Toeplitz. More details, such as expressions for
the filtered input and output sequences, the proof that the residuals and
Gltered data are orthogonal, and the fact that the residuals themselves
can be described by a linear difference equation, can be found in [6] [7].
As an extension to these results, one might also include weights in the
objective function (12). In this way, one can treat missing observations,
time-varying observation noise variances, etc.... A general framework
for doing so, including the incorporation of ‘unobserved latent’ inputs,
has been formulated in [12].
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7. Rank 2 reduction

What if we want to reduce the rank of a linearly structured matrix A by
2, instead of by 1 ? Obviously, we now have to extend the constrained
optimization problem (8) with some additional constraints:

b=a— Me,

. 14 . BT. (v1v2)=0,
min ~¢" e subject to v .u1=1,
bERN,vx,WER.‘I,eGRNI 2 vg'.vz =1,
ol .v,=0.

We leave it to the reader to derive that the solution follows from the sin-
gular triplet corresponding to the smallest singular value of the ’double

gsized’ Riemannian SVD
A0 v D v D vy V2 U1 o
0 A vy DI, Do, uy !
AT 0 Uy — Du1u1 Du1 Uz ” o
0 AT U2 D Z‘l ugz D uU2 112 !

with obvious definitions for the matrix Dy,o; and Dyu; (€8 Duiva =
T,,,QTsz), and with the normalization constraints

D D u ol 10
T,T v1v1 viv2 1 — 1 —
) (B Do) () =r ()= (3 1)

8. Conclusions and some research challenges

i

In this contribution, we have presented a short survey of recent results
on the formulation of $/W-TLS problems via the so-called Riemannian
SVD, which is a ‘nonlinear’ generalized’ SVD. A lot of work remains to
be done in constructing efficient algorithms to find the *smallest’ singular
triplet (u, o, v) of (9), from which the optimal solution to the S/ W-TLS
can be calculated. These algorithms also will have to cope with the fact
that the optimization problem (8) is non-convex, hence will typically
have several local minima. In [4] [5] we have described an algorithm, the
basic inspiration of which is the classical power method:

1. Initislize v/, o ;

2. At iteration step k :
2.1. Calculate D, s Dolil lel
2.9. Solve sets of linear equations for ulet1] | gl
9.3. Normalize ul**1 | v+l properly;

3.  Test for convergence .
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When convergent, the convergence rate is linear, just like the power
method. For sure, a lot of progress could be made here. For instance,
the power method can be interpreted as an alternating weighted least
squares optimization method, with ’variable metrics’ Dy, and Dyy in
each iteration step. Maybe this interpretation helps in analysing al-
gorithms and their convergence behavior. IQML-like algorithms have
been analysed in [11]. One could also try to gain insight by analysing
the so-called gradient flows that can be derived from the optimization
formulation (8) (see e.g. [2]), in which ideas from differential geometry
could play a role (the matrices Duu and Dy, define positive definite met-
rics in the tangent spaces of certain manifolds). For large problems, one
can also exploit the structure of the matrices Dy, and Dy and of the
data matrix A (e.g. by using displacement rank notions), in order to
speeden up the calculations. Ideas in this direction and in this context
have been proposed in [14]. Also algorithms to solve the rank-2 or higher
reduction still need to be developed.

As for the statistical properties of the S/W-TLS estimates, we have
to distinguish between the so-called %incidental parameters’ (the ele-
ments of the structured least squares rank deficient matrix B) and
the ’model parameters’, the elements of the vector v. We conjecture
that, under the assumptions put forward in Section 3, the error ¥ on
the estimate v, for fixed ¢ and p — 00, asymptotically behaves like
& ~ N(0,(ATD}A — Duuo?)t). Some inspiration may be collected
from [10]. Asp — oo, it could also be interesting to investigate recursive
algorithms to update the solutions of (9).

Finally, while in this paper, we have presented the ‘scalar’ versions of
the identification problems (i.e. for systems with scalar inputs and/or
outputs), the derivation and analysis of the 8/W-TLS problems cor-
responding to systems with vector inputs and outputs, remains to be
done. There is a close relation with so-called global total least squares
problems in the ‘behavioral’ framework (see e.g. [9]).
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