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Abstract

In Support Vector Machines (SVMs), Least Squares
Support Vector Machines (LS-SVMs) and other kernel
based techniques for regression and classification the
solution follows from a convex optimization problem for
a fixed choice of the hyperparameters. However, these
methods involve the caleulation, storage and typically
also inversion of the kernel matrix with size equal to
the number of data points. Therefore, large scale tech-
niques like sequential minimal optimization (SMO) and
conjugate gradient algorithms have been developed in
order to solve the SVM and LS-SVM, respectively. In
Bayesian inference for SVMs and LS-SVMs one also
needs to compute the inverse and eigenvalue decom-
position of the kernel matrix, which is again computa-
tionally intensive. In this paper, we discuss large scale
approximations for Bayesian inference for LS-SVMs. A
practical implementation using the Nystrém method is
implemented which allows to obtain approximate ex-
pressions at the different levels of inference within the
evidence framework. The method is then evaluated on
a number of benchinark problems.

1 Introduction

Recently, kernel based methods have become pow-
erful models for regression and classification tasks
(4, 8, 9, 16]. In Support Vector Machines (SVMs)
[4, 15] and Least Squares Support Vector Machines
{LS-SVMs) {9, 10] the solutions are obtained from
a convex quadratic programming problem and a lin-
ear Karush-Kuhn-Tucker system, respectively. As the
Least Squares Support Vector Machines involve the use
of a least squares cost function, the sparseness prop-
erty of SVMs is lost. On the other hand the LS-SVMs
have been related to regularization networks, Gaus-
sian Processes and kernel Fisher Discriminant Anal-
ysis [3, 5, 8, 13, 16]. Sparseness in the LS-SVM

can be obtained by sequentially pruning the support
value spectrum, while robustness is obtained by us-
ing a weighted least squares cost function [11]. Com-
pared to multilayer perceptrons (MLPs) [1], the SVMs
have the advantage of solving a convex optimization
problem, while the cost function of MLPs typically
has multiple local minima. On the other hand the
SVM formulations involve the use of a square kernel
matrix with size equal to the number of data points.
This makes a straightforward implementation of ker-
nel methods computationally less attractive for large
data sets. Therefor, large scale implementations like
sequential miminimal optimization and conjugate gra-
dient implementations have been developed [4, 10] to
solve the convex optimisation problem on the first level
of inference.

A powerful tool to estimate the uncertainties on the
prediction and classification of MLPs is the evidence
framework [7]. Bayesian inference can also he used to
select the regularization hyperparameters within the
statistical framework and to perform model compari-
son. In Bayesian methods for SVMs and LS-5VMs the
kernel matrix also appears in expressions for Bayesian
hyperparameter inference [6, 12, 13] and in improved
upper error bounds on the generalization behavior.
The inverse kernel matrix is also needed when calcu-
lating error bars or class uncertainties on the output of
the regressor or classifier, respectively. In this paper,
we will discuss and compare large scale methods that
allow to apply also the Bayesian evidence framework
to large data sets.

This paper is organized as follows. The basic formulas
in the dual space of LS-SVMs of the Bayesian frame-
work are given in Section 2. The large scale formula-
tions are derived in Section 3. An empirical evaluation
is reported in Section 4.




2 Bayesian Framework for LS-SVMs

The LS-SVM regressor y = w”¢(x) + b and classi-
fier y = signfw” p(z) + b (with binary targets y €
{~1,+1}) are inferred from the data D = {(zi,y)}05
by minimizing the cost function 9]

min i (w,b) = B +CBp = fuTwi T2 ef ()
subject to the constraints

e =i~ (WT‘P(’JH) +b), i=1,...,np (2)
The regularization and error term are defined as Ew =
%'wTw and Ep = 33,15 e?, respectively. The trade-
off between regularization and training error is deter-
mined by the ratio v = (/.

This cost function is obtained in [9, 10] by modify-
ing Vapnik's SVM formulation [15] so as to obtain a
linear system in the dual space. Constructing the La-
grangian by introducing the Lagrange multipliers o for
the equality constraints (2), a linear system is obtained
in the dual space
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with v = C/Juv y = [yl;-";ynp]) 1= [1;!1]} o =
[a15. . -3 @npl, and where Mercer’s condition is applied
within the € matrix §;; = ele)Te(x;) = K@i, xi).
For large scale data sets the linear system (3) can be
represented by two linear systems with positive defi-
nite system matrices. These linear systems can then
be solved using the Hestenes-Stiefel conjugate gradient
algorithm {10].

Possible kernel functions are, e.g., 8 linear kernel
K(z1,®2) = ] @z and an RBF-kernel K(z1,®2) =
exp(—||a; —®2|i3/0?), where Mercer’s condition holds
for all possible choices of the kernel parameter o € R.
The LS-SVM regressor is then constructed as follows

y(m) = wT(p(a;) +b= Z?:Dl a;K(m, "Bi) + b, (4)

while the classifier y = sign(z) is obtained by taking the
sign of the latent variable z = Sop oK (e, i) + b

2.1 Inference of model parameters (Level 1)

A Bayesian framework has been related to the LS-SVM
regressor and classifier formulation (1) by taking the
Gaussian prior

nf
p(w, bl log i, H) o< (£) 7 exp(~wTw)  (5)

and the likelihood (assuming i.i.d. data}

p(Dlwv b,log, H) x H?:?]_ P(yi|$i= w, b log ¢, H)
T2 () exp(—§(ui - (wToli) +5)°)

ﬂg‘
= (%) ew(-§ XL

Observe that the prior depends on the hyperparameter
1, while the likelihood depends on the hyperparameter
(. The kernel function K and the possible kernel pa-
rameters are represented by means of H. Applying now
Bayes’ formula, one obtains the posterior probability as

p(’w,le, log ,u,logC,H)
_ p(D|w,b,log 1, log ¢, mH)p(w, b log u, log {, H)
- p(Dflog ,log ¢, H)
o p(D|w, b, log u, log ¢, mH)p(w, b log i1, log ¢, H),
(6)

where the last step is obtained since the evi-
dence p(D|logp,log(,H) is a normalizing constant
that does not depend upon w and b Taking
the negative logarithim of the posterior probability
plw, blD,log i, log(,H) and neglecting all constants

~ one obtains the least squares cost function (1) with

ridge regresston.

This probabilistic framework also allows to infer the
uncertainty on the model parameters around their
most probable value obtained from (3) in the dual
space. Calculating the Hessian and using matrix al-
gebra, one obtains expressions in the dual space that
vield confidence bounds for prediction problems ang
posterior class probabilities for classification problems.
In [12, 13] these expressions are evaluated using the
eigenvalue decomposition of the centered kernel ma-
trix M LM, with M, the idempotent centering ma-
trix M, = Inp — ;151171. For large scale data sets
this eigenvalue decomposition is computationally ex-
pensive. Therefore, there is a need for approximations
for large scale data sets.

2.9 Inference of hyperparameters (Level 2)
The performance of the 1,S-SVM also depends upon
the choice of the regularization parameters 4 and ¢
and the kerne! parameter o of the RBF kernel. Within
the Bayesian framework the regularization parameter
~ = (/pt is obtained by minimizing {12, 13]

min, Jo(7) = 2 loglAa,i +771)
+ (np — 1) log{Ew (warp) + ~vEp(warp,bare))s (7

{



with gradient
a, y - —
400 L5 g
€ ('nD _ 1) Ep{warp,brrp) (8)

Ew(wpap)+vEp(warp.barp)!

where Aq 1, ..., An,np—1 are the largest np — 1 eigen-
values of the centered kernel matrix M QAf,.. The
level T cost function By (wasp)+vEp {warp, bMp) can
be expressed as

Ew(warp) +vEp(warp, basp)
= %yTIVIC(MCQMC oy, VM.

This expressions avoids the explicit solution of the lin-
ear system (3) for all possible v values. As these ex-
pressions need to be evaluated for different values of
one can compute first an eigenvalue decomposition of
M M. This allows then to compute By, Ep and
Ew + vEp Irom matrix vector multiplications only,
avoiding the {computationally intensive) calculation of
the inverse (M QM+ 11,071 [13, 14}

Given the optimal v from (7) one finds the effec-
tive number of parameters Yers from ver; = (np +
YEp/Ew)/(1 + vEp/Ew). The optimal p and ¢
are obtained from p = (verr — 1)/(2Ew (wjpp) and
¢ = (nD = Yes )/ (2Ep(warp, bas ).

2.3 Tuning of the parameters of the RBF-kernel
(Level 3)

At the third level of inference one also takes the un-
certainty on the inferred hyperparameters p and ¢ into
account in order to infer p(H|D). These error bars
are approximately equal to o, | = 2/(7efs — 1) and
Tingc = 2/(nD — Yesys), respectively. Using this addi-
tional uncertainty into the Occam factor on level 3, one
obtains p(H|D) [12, 13].

A practical approach is to define a grid o = [0y ... ;o)
of kernel parameters and to evaluate the level 3 proba-
bility p(D}H) for each o; value. For this evaluation one
needs to solve {7} with respect to v and then estimate
g and ¢. For this evaluation one needs to compute
the eigenvalue decomposition of M QM , € R*DXRD,
As the memory and computational requirements are
O{np?) and O(np?), respectively, this becomes nfea-
sible for large data sets. In the next Section approxi-
mations for the eigenvalues and eigenvectors are made.

2.4 Automatic Relevance Determination

Antomatic Relevance Determination (ARD) allows to
infer the relevance from the different inputs from the
given data. For LS-SVMs ARD is performed by us-
ing a diagonal weighting matrix [8] U = diag(u) =

diag(fuy;...; up]). Each weight u; € BT weights the cor-
responding input 2y, { = 1, ...,n in the kernel function
K. Inputs corresponding to low {almost zero) weights
have a small relevance, while input with relatively high
weights have a large relevance. For an RBF-kernel, the
kernel function becomes

K(ml,mg) = exp(—{ml — mz)TU(:cl - 11’12)/0'2)
= exp(—(21 — ) U (21 — ),
where the positive scale parameter & is taken into ac-

count by defining U = U /o = diag{i). The weights @
are inferred by maximizing the model evidence [14].

3 Large scale approximation

For large data sets the kernel matrix £2 becomes too
large to compute the eigenvalues Ag ;. Therefor, one
has to use an approximation to calculate the eigenval-
ues (2, 17]. Given the kernel function K(z,v) with
eigenfunction ¢; such that

/ K(z,v)(@)p(@)dz = M, (v), (9

one approximates the eigenfunction by sampling from
the input probability p(x) using

ﬁ 2?31 K(v,z) ¢ (@) ~ X (v). {10}

Using the eigenvalue decomposition 2 = UAU7 the
Nystrém approximation [17] to the eigenvalues A; =
A;i and the eigenfunction ¢;(u) is obtained as

¢i(w) = 22 300 K(v,2)Us. (11)
For instances from the training set, the above approx-
imation simplifies to ¢,;(x;) =2 /npU ;.

We now use two sets of data points to approximate ¢,
and ;. The first set is the full training data set D =
{z:, yi } 12, while the second data set Ds = {&;, 4 }?’:’]
is obtained by taking a subsample of D. Typically we
use fiy; <€ np in order to reduce the computational
requirements significantly. Both data sets can now be
used to approximate the eigenvalues A; and the corre-
sponding eigenvalues ¢;. Putting both approximations
equal to each other, we find that

)\Q,!’ ~ rgfg‘iﬁ-‘
Qe KQ KT, (12)

where §2 ¢ R'*%5 and K € R"™*%5 have el
ements K;; = K(azi,féj) and Oy = I((fﬁf,fﬁj),




respectively.  Defining the feature space matrices
& = [pl@),...,p(@ny)) € BRYX"? and $ =
[@(@1)s-. . p@np)] € R™ %75 it is seen that the
approximation (12) corresponds to the approximation
Q ~ oT [@(&)T&’)“E@T]@. This approximation is ex-
act when rank((® ®]) = rank(®). When ny < fip
{e.g., in the case of a linear kernel} this assumption
typically holds, while it is asswmed that still a good
approximation is obtained in other cases.

Given the approximation (12) we can now apply it in
order to calculate

(o + ) (i + KO KTY
e qlny - PE@+KTE)TET. (13)

As this function needs to be evaluated many times
for different value of the parameter 7 it is useful to
consider a simulaneous diagonalization of both { and
K"TK. First one computes the symmetric eigenvalue
decomposition £} = UﬁAﬁUE and then computes the
eigenvalue decomposition Agll/ 2UEK TK UﬁA;/ ? =

UgAgUg. Then one can write

1+ yKTE) !

When (13) needs to be evaluated for many values of -y,
it becomes computationally more interesting to com-
pute the two eigenvalue decompositions. The inverse
can then be easily calculated using only matrix-vector
multiplications.

One can also approximate the first term in (7) as follows

?jl—l log{Aq,: + ’Y—l)

~ 35 Hog(2 Mg s +771) — (rp — ) log (7).
(14)

As at most fip — 1 eigenvalues are non-zero, the re-
maining np — #j; eigenvalues are put equal to zero.
The computational advantage of the Nystrém method
2, 17] becomes now clear as one only needs to compute
eigenvalue decompositions and inverses of matrices of
size fip instead of size np. Compared to other ap-
proaches from numerical linear algebra that only com-
pute the largest eigenvalues and corresponding eigen-
vectors, the Nystrom method has still a considerable
advantage.

The above expressions are typically used for Gaussian
Processes [17] where one also uses these approxima-
tions to estimate the parameters of the point predic-
tion (4). As the SVM and LS-SVM involve a center-

— (UFALPUL) M 477 M) U A U

ing in the feature space, we will use these approxima-
tions on the centered kernel matrices M 2M, and
M0 M, with M, = In, — 1/iipli’ € Ra7%o
and 1 = [1;...;1] € R?5. An important difference
with [17] is that we use the approximations only at
level 2 and 3, while we use the Hestenes-Stiefel conju-
gate gradient algorithm here in order to solve the level
1 problem (3) for large scale systems {10].

4 Simulation results

We will validate the results first on relatively small data
sets which allows us to assess the performance of the
approximations. Then the method is further analyzed
on the adult data set. In the first example the LS-(
SVM is used to approximate the sinc function. The
Nystrém method is evaluated on benchmark data sets
in the second example,

4.1 Approximation of the sinc function

We illustrate the ARD algorithm for an RBF-kernel us-
ing the Nystrém method on a synthetic data sel con-
structed in the same way as in {14]. The data set con-
sists of a training set and test set of np = 200 and
Tyese = 1000 data points, respectively. The 3 inputs
were generated as follows. The first input 2(1) is gen-
erated by sampling uniformiy in the interval {—0.5,0.5}.
The second input 2(2) is constructed from the first in-
put by adding zero mean Gaussian distributed noise
with variance 0.052. The third input 2(3) is zero mean
random noise with variance 0.5, The output data y
are gencrated from the first input by adding Gaussian
noise as follows:

y; = sine(2ma (1)) + ey, (15

with sinc(z) = sin{mz)/(rx) and e; zero mean Gaus-
sian noise with variance var(e;} = 0.1%. Hence, the first
input is the most relevant, the second input is some-
what relevant and the third input is not relevant. The
test data points are visualized in Figure 1.

ginc | 100 x MSEwa logo log -y
100% | 1.007 -0.223 4.084
75% 7 1.007 {0.00) -0.273 (0.00)  4.087 (0.02)
50% | 1.007 (0.00) -0.270 (0.15) 3.931 (0.54)
25% | 1.008 (0.00) -0.317 (0.72)  3.784 (0.72)
10% | 1.012 (0.00) -0.552 (0.23)  3.225 (0.69)

Table 1: Average test set MSE and value of the hyper-
parameters y and ¢ for a different number of
sampling data points fip = 10%. .. 100%np.

All inputs were normalized to zero mean and unit vari-
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TFigure 1: Test set data points {(z:{1), )} and pre-
dicted outputs ¥; = f{@:{[1 : 3])){dashed line)
for a RBE-kernel function with constant o and
3 inputs. The simulated output is a non-
smooth function of the first (relevant) input
because there are two hrrelevant noise inputs
with equal importance in the RBF-kernel. The
true sinc function is depicted by the full line,
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Pigure 2: Test set data points {(z:{1),7:)}1°% and pre-
dicted outputs i = f{2(1)) {dashed line) for a
RBF-kernel function with one input 2(1). The
true sinc function is depicted by the full line.

ance on the training set. The Nystrom method was
applied with a5 = 50, which corresponds to 25% of
the original training set. We first estimated o on level
3 assuming a constant ¢ for the three inputs. This
vielded o = 1.12, pprp = 2.78 and (arp = 54.93 (with
w = [1;1;1]). The test set MSE was 0.0479. With-
out the Nystrom approximation we obtained o = (.88,
piarp = 5.24 and {3y p = 106.87 and a test set MSE of
0.0169 {14]. We then optimized & on level 3 for all in-
puts 2(1 : 3). This yielded & = [2.9692;0.1332;0.4012],
iarp = 5.23, Carp = 106.87, with a test set MSE of

0.0121. (Without the Nystrém: method we obtained
U = [2.3908; (.0020, O.UUOT], uarp = 4.206, (up =
113.77, and a test set MSE of 0.0102). The test set
performance is much smaller than the previous model
by reducing the relevance of the noise inputs and is now
almost equal to the variance of the additive noise. Ob-
serve also that due to the approximation we now first
remove the second input. Stepwise removing all irrel-
evant inputs we retain the first input 2(1) as relevant
and obtain 7 = 2.9893, (arp = 109.7, parp = 6.2 and
a test set MSE of 0.0103. (Without approximation we
obtained @ = 1.9855, uasp = 2.99, {prp = 109.05 and
a test MSE of 0.0102). The approximations on the test
set is depicted in Figure 2.

We then further evaluated the performance of the
Nystrom method for different sample sizes i ;5. Averag-
ing over ten random samples, we obtained the average
test set MSE and hyperparameter values reported in
Table 1. The standard deviations on these values are
denoted between parantheses. From this Table it is
observed that the Nystrom method is a useful tool for
hyperparameter selection.

4.2 Performance on benchmark classification
data sets

We evaluated the performance of Bayesian hyperpa-
rameter selection with the Nystrém approximation on
benchmark classification data sets. A description of
these data sets can be found in [13]. For each random-
ization we first inferred v and o on level 2 and 3, then
we used solved the linear system (3) for the given set
of hyperparameters. The average test set classification
results are reported in Table 2. From this Table it is
seen that the Nystrom approximation typically yields
good performances on all obtained data sets, even when
a small sampling size is chosen.

We also applied the Nystrdom method on the adult data
set which lhas 45222 instances data points. We used
33000 training data points and 12222 for testing. Ap-
plying the Nystrom method with fi 5 = 100 we obtained
the kernel parameter o of the RBF-kernel from a grid
o = [2;4;6;8;10;12] of candidate kernel parameters.
This yielded ¢ = 6 and y = 2.440. We then estimate
the LS-SVM using the large scale method [10] in order
to solve the linear system (3). Basically this meth-
ods involves the solution of two linear systems of the
size np X np with positive-definite system matrix us-
ing the Hestenes-Stiefel conjugate gradient algorithm.
Evaluating the performance of the resulting LS-SVM
on the test set this yields a test set performance of
84.5%. This performance is in line with a 10-fold cross-
validation hyperparameter selection procedure which



cra Ace.(TS) logo logy
100% | 95.5 1.25 5.79
75% | 95.6 (0.47) 115 (0.10) 5.65 (0.28)
50% | 956 (0.63) 1.26 (0.09) 6.05 (0.22)
95% | 95.5 (0.00) 1.60 (0.03) 4.99 (0.50)
10% | 955 (0.00) 157 (0.11) 477 (0.32)
T8y Acc.(TS) togo log~y
100% | 90.6 0.26 047
75% | 90.6 (0.04) 0.26 (0.00) 0.50 (0.03)
50% | 90.4 (0.04) 0.69 (0.00) 0.49 (0.03)
25% | 90.5 (0.06) 0.19 (0.05) 0.5 (0.03)
10% | 90.6 (0.08) 0.20 (0.07) 0.89 (0.17)
hea Ace.(T8) logo log
100% | 856 0.61 2.28
75% | 85.6 (0.00) 2.23 (0.03) 0.50 (0.02)
50% | 85.6 (0.00) 2.26 (0.07) 0.60 (0.02)
25% | 85.6 (0.00) 2.25 (0.07) 0.62 (0.01)
10% | 85.6 (0.00) 2.22 (0.06) 0.64 (0.02)

Table 2: Empirical results on 5 classification data sets.

yielded ¥ = 10 and o = 10 and a test set performance
of 84.4%.

5 Conclusion

_ Bayesian inference is a powerful design method for
MILPs and kernel based techniques like SVMs and LS-
gVMs. While the SVM and LS-SVM involve con-
vex optimization problems, the memory and compu-
tational complexity grow with the number of training
data points. This is basically because one needs to solve
linear systems and the eigenvalue decomposition of the
Hessian. In this paper, we used the sampling idea of
the Nystrom method in order to compute approximate
expressions on the second and third level of inference.
Empirical results on the input selection problem and on
benchmark data sets indicate that the Nystrom method
is a useful tool for expanding the Bayesian L8-S5VM
framework to large data sets.
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