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Abstract

This paper describes the development of a new model predictive control technology INCA

® that enables a high performance

demand driven operation in the chemical process industry. The technology sustains optimal grade changes, maintains tight quality
control and leads to low application development and implementation costs. An application on a polyethylene gasphase reactor is

discussed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The chemical process industry is facing a huge
problem to increase their capital productivity. A
solution to this problem is demand driven process
operation. This implies that exactly these products can
be produced that have market demand and take price
advantage of a scarce market. A flexible production
operation is therefore required.

A new process control technology is needed for this
purpose. A very important requirement for this technol-
ogy is to enable optimal control of grade transitions
such that these transitions become feasible and econom-
ically attractive. Also tight quality control is needed,
requiring large bandwidth controllers and inferential
sensors. Finally the application cost and the implemen-
tation cost must be reduced to make these projects
economically attractive. This is done by using as much
a-priori knowledge as possible.
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INCA®™ has been developed for these purposes
(Ludlage & Backx, 1999). An application on a
polyethylene gasphase reactor is discussed.

The idea of optimization of grade transitions has been
introduced by McAuley (McAuley & MacGregor,
1992). Based on rigorous dynamic models optimal
open-loop paths are calculated. The cost function
has been improved into a more straightforward eco-
nomical framework (Van der Schot, Tousain, Backx, &
Bosgra, 1999). The introduction of an economic
objective function introduces strong non-linearities
resulting in a strong increase in model evaluations.
Special effort is paid to reduce the number of model
evaluations to make the optimization feasible within a
realistic timeframe.

Control of grade transitions has been studied by
several authors. Lines (Lines et al., 1993) addresses the
problem by formulating a NLMPC problem. The
original non-linear problem is replaced by a time variant
linear problem where models are subject to gain
scheduling.

Wang (Wang et al., 2000) integrates the controller
with an off-line optimized trajectory. A NLMPC
problem is stated using a non-linear model with its
linearized version.
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In this paper a new method is presented to integrate
off-line trajectory optimization with feedback control.
The so-called delta-mode controller compensates for
deviations from a given input—output trajectory on both
the process inputs and outputs.

The paper is organized along the following three
Sections:

® In Section 2 the economic background showing the
needs for a new process operation is explained. This
process operation requires high performance process
control technology.

® Subsequently, in Section 3 the requirements for the
new process control technology are discussed. An
answer to all these technological challenges, INCA®,
is presented. )

® Finally, Section 4 describes the application of INCA®™
on a fluidized bed gas phase high density polyethylene
(HDPE) reactor.

2. Economic background

Nowadays chemical processing industries are facing a
tremendous pressure to improve their capital productiv-
ity. Some possible explanations for this evolution are the
global competition, the worldwide saturation of markets
and the tightening of legislation on ecosphere loads and
resource consumption.

The answer by most of the chemical industries to
these problems is predominantly moving towards supply
driven process operation that focuses on minimization of
operation cost. This is realized by an increase of scale
and by minimization of the number of product types per
production site.

As a direct consequence, plants only operate a limited
number of product types. Typically, a largely fixed
product slate is followed with recipe driven product
changeovers.

However, a constrained market situation asks for a
demand driven mode of process operation, requiring
flexible processing of different feedstocks to produce a
flexible set of end-products (Backx, Bosgra, & Mar-
quardt, 1998). This implies that exactly these products
can be produced that have market demand and that take
advantage of scarceness in the market of specific
products at each moment.

Since the right product can be produced at the right
time in a demand driven process operation, capital
blocked in stored products and intermediates is mini-
mized. A shortened production-to-product delivery
cycle also increases capital turnaround. Each of the
mentioned effects directly contributes to an increase of
capital productivity.

However, a demand driven operation of production
processes requires a new technology that enables:

® Flexible operation of plants over broad operating
ranges at minimum costs. In fact, a technology is
needed that supports transitions between grades, such
that these transitions become feasible and are
economically justified. Dynamic optimization is
needed to realize overall optimization of economic
performance, leading to optimal grade changes.

® Tight production at pre-specified C,, (capability)
values (Eq. 2), requiring high performance model
based control systems that enable significant reduc-
tion of variance of critical process/product variables.

® Extensive use of available a-priori knowledge, such as
models used for design purposes, to minimize total
application costs and to enable economic feasibility.

Each of these key requirements will be treated in more
detail in Section 3.

3. INCA®: a new technology

A new technology INCA® is developed that makes
flexible operation combined with tight production at a
reasonable application cost feasible.

INCA™ is a complete family of on-line and off-line
components specifically designed to support the indus-
trial application and implementation of control. The
engine of INCA® is a generally applicable supervisory
model predictive controller that meets current operating
requirements for a broad variety of different process
industries, e.g. glass industry, chemical and polymer
industry.

It therefore incorporates the basic functionality that
can be found in industrial model predictive controllers.
The control problem is solved basically in three steps:

® Prediction of the future behavior of the process based
on assumed future behavior of the process inputs.

® Minimization of the difference between predicted
future steady state process behavior and the desired
behavior of the process. The minimization problem is
formulated as a ranked constrained quadratic opti-
mization problem: ranked classes are used to give a
class of requirements absolute priority above lower
ranked classes and at the same time the solution for
current class by the solution of the higher ranked
classes. Requirements can be both setpoints and
constraints. In one class violation of constraint limits
and deviation from setpoints are traded-off based on
a constrained weighted quadratic optimization. The
solution for this class is then added to the set of
constraints used to solve the lower ranked classes.
The ranked specification approach enables the con-
trol engineer to specify a control strategy that closely
resembles the actual operational hierarchy of the
plant or unit.
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® In the last step a constrained quadratic optimization
problem is solved that brings the process from the
current process conditions to the calculated steady
state conditions. As in (Muske & Rawlings, 1993)
this problem is formulated as a regulator problem.

Besides the functionality described before, extra
functionality is added to improve the model predictive
controller in order to improve production flexibility, to
achieve tight quality control and to reduce total
application costs.

The production flexibility is enhanced by the use of a
rigorous non-linear dynamic model. Models are typi-
cally widely available in chemical industry since they are
used for design purposes. Specific extensions to these
models make them suited for dynamic optimization
purposes oriented towards optimal trajectory calcula-
tion. These optimal trajectories not only provide
economically optimal grade transitions and thus pro-
duction flexibility, but also guarantee continuous
optimal disturbance recovery in normal operation.

The dynamic optimizer tries to maximize added value
(AV) (Van der Schot et al., 1999). The added value
depends on the throughput. It is a non-linear function
with regard to operation cost and a highly non-linear
function with regard to product price as indicated before
(cf. Eq. 1).

T
AV(T) = / price(t)throughput(t) dt
0

_ /T Zfeed,—(t)COSli(f) de
0 i

+ holdup(T)price(T) — holdup(0)price(0). (1)

Two particular aspects make this optimization a real
challenge:

® For the calculation of the economic cost, a dynamic
process model simulation over the given time horizon
is needed. This model simulation is typically very
time expensive, ranging from 1 min to several hours
for one simulation run.

® The highly non-linear objective function (due to the
discontinuous price function for the end product
being on- or off-spec) typically results in a lot of
function evaluations needed by the optimizer.

In order to avoid a very time consuming optimization
run, modifications are made to standard optimization
schemes. This results into a reduction of model evalua-
tions with a factor 40, with an average of 10 rigorous
model evaluations needed to obtain the optimum path.
More details will be presented in a different paper.

To integrate the overall dynamic optimizer with the
underlying model predictive controller, an architecture
as shown in Fig. 1 is implemented. Actually the model
predictive controller is operated in a delta-mode, only

Dynamic Optimizer
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Economic cost
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Fig. 1. Integration of the overlying dynamic optimizer with the model
predictive controller.

correcting for the deviations Au and Ay from the process
input-output setpoints uqp; and y,p, that are calculated
by the overall dynamic optimizer.

The delta-mode guarantees a best of both worlds
operation. The trajectory has been carefully designed
based on a rigorous non-linear model. It would be a pity
to have this result overridden by a linear model
controller. Therefore this trajectory is applied as such
to the process. It puts a curb onto the controller, and the
controller is allowed to shift the deviations of the input—
output trajectory (iops, Yopt) between the controller input
and output. It does not only try to follow as closely the
output trajectory, but makes a compromise between
deviations from the output trajectory and from the input
trajectory.

Since the delta mode controller only considers
deviations from a given trajectory, linear models are
well suited to be used in this framework. This allows us
to use a linear MPC controller with all the advantages
with regard to model identification, robustness etc.

In order to avoid conflicts between the dynamic
optimizer and the linear model predictive controller an
economically consistent cost function for both layers is
chosen.

The model predictive controller is designed such that
it can make use of different linear models according to
the current operation point. As such trajectories can be
optimally followed. No longer one single, linear
dynamic model must be used, but instead adequately
tuned sets of linear models can be applied for all the
different grades. During transients, the model predictive
controller will smoothly switch between the different
models of a set of models through a linear interpolation
scheme. State estimation techniques are used to obtain a
good initial estimation for the models that will be used.
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A large bandwidth controller realizes tight production
at a specific Cy,, value. The C,, value is a normalized
number giving an indication about the variance ¢ of a
relevant process quality parameter compared to distance
to the tolerance boundaries (fol ., tol _) (Eq. 2) (Fig. 2).

_ min(|t017 - Ymeun|a |t01+ B YmeanD
Pk — 36 .

A large C,, value corresponds to a small variance and
thus a successful process operation. A Cp,-value of 1.6 is
standard, although sometimes 1.67 is already used in
some cases.

The economic impact of a smaller quality variance
can be understood from the shift in operation point that
can be realized. In fact, a large variance forces operation
to be better than desired since outliers may not exceed
the tolerance boundaries. If variance is reduced, one can
shift the mean operation towards the most economic
boundaries, resulting in a cost reduction. This is
indicated in Fig. 2.

A reduction in variance can only be realized by a
larger bandwidth of the controller, in accordance with
Parceval’s theorem. This large bandwidth controller is
made possible by the use of large bandwidth prediction
models opposite to the traditionally applied step
response models with restricted complexity. Systems
with both slow and fast dynamics cannot adequately be
represented by a step response model due to the fact that
only a limited number of samples is available for storing
the model and due to the fact that the steady state must
be captured for stability reasons (Fig. 3). Therefore the
fast dynamics cannot be captured in the model and
reduction of the bandwidth of the controller is needed as
a consequence. INCA™ uses state-space models that
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Fig. 2. Histogram of quality parameter in 3 different cases. Original
situation with C, = 1.0 (upper figure), reduced variance case with
C,. = 3.2 (middle figure) and reduced variance with shift in operating
point and C,, = 1.67 (lower figure).

enable the modeling of process behavior at all relevant
frequencies up to the Nyquist frequency.

Controller bandwidth can also be improved by
increasing the computation speed of the MPC control
algorithm. Special attention is made to the implementa-
tion of fast adapted QP/IP methodologies for this
application. This also allows making use of constraints
in the dynamic optimization routine.

Dynamic inferential sensors are developed for the
instant calculation of product properties such as melt
index, density, concentration... based on on-line process
measurements. This speeds up the feedback loop since
lab analysis results must no longer be waited for, thus
leading to further improvement in the closed loop
controller bandwidth.

A reduction of the total application cost is obtained by
making maximum use of a priori knowledge. In fact, the
dynamic model applied in the controller can be under-
stood as a combination of a first principles based model
part, describing the main process mechanisms, and an
empirical model part describing specific dynamic process
characteristics that cannot be modeled sufficiently
accurately for control on the basis of first principles.
The first part mainly describes physical phenomena.
Chemical phenomena often require empirical modeling
due to unknown or only roughly known reaction
complexes and reaction kinetics.

The first principle part can be tuned based on the
design data and historical data of the plant under
concern. A dominant part of these dynamics corre-
sponds to the physical phenomena, which are predomi-
nantly low frequent and which can be modeled
accurately on the basis of first principles. Once a
plant model template has been realized, this model is
tuned by optimization techniques such as simulated
annealing.

-02 \ . . L I
0 10 20 30 40 50 60

minutes
Fig. 3. A step response (here shown with 12 samples for illustrative
purposes) cannot capture high-frequent behavior such as a fast non-
minimum phase response.
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Fig. 4. Combination of low frequency identification on the rigorous
model and high frequency identification on the plant.

The chemical parts of the model and the properties
will be a mixture of first principle parts and empirical
parts. Some well-defined experiments are needed to tune
these parts of the model. These experiments do not take
much time, since the related phenomena are consider-
ably faster than the previously mentioned physical
phenomena related to mass and energy balancing,
transport phenomena etceteras.

Concerning the linear models needed for the model
predictive controller, the model identification is done in
parallel on the plant for the high frequencies and on the
rigorous model for the slow dynamics, as shown in
Fig. 4 (cf. (Backx, 1999)).

Since only high frequency components have to be
estimated on the real plant, short dedicated PRBNS
tests are sufficient, in contrast to the long experiments
that are needed for the identification of step response
models. This results in a significant reduction of project
engineering hours and thus application development
costs.

A second means of reducing the application cost is to
re-use the knowledge in several applications. As such
special shells are being developed for the polyethylene,
polypropylene and PET industry.

4. Application: the polyethylene gasphase reactor

The INCA® technology mentioned before is applied
to a HDPE fluidized bed gas phase reactor. A complete
rigorous dynamic model for the polyethylene gas
phase reactor has been developed in gPROMS based
on the model that was proposed by Choi and Ray (Choi

& Ray, 1992) and the Ph.D. thesis of McAuley
(McAuley, 1991).

The process is depicted in Fig. 5. The ethylene
monomer and butylene co-monomer react to HDPE.
The unreacted ethylene goes to the top of the reactor
and is recycled. The butylene/ethylene (CH4/CH,) ratio
and the hydrogen/ethylene (H,/CH,) ratio are crucial
handles to obtain HDPE with the desired density and
melt-index. Nitrogen is used as a cooling and transpor-
tation medium and is inert for the reaction.

There are 3 PID-controllers embedded in the process:
ethylene flow controlling total gascap pressure, coolant
flow controlling bed temperature and a reactor level
controller. Furthermore ratio controllers are implemen-
ted such that CH4/CH, and H,/CH, can be used as
manipulated variables.

The entire process to be controlled by a supervisory
model predictive controller shows 4 manipulated vari-
ables (mv) and 4 controlled variables (cv), as indicated
in Fig. 5. The purge valve is not used as a manipulated
variable in order to avoid economic losses.

Flexible operation of a HDPE-process implies the
need for a technology that supports optimal grade
change. An INCA®™ based model predictive controller
combined with a rigorous model based dynamic
optimizer provides a solution for this problem.

mvh
cv3
cv g purge i
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mv1 mv2 ¢ Ea
— i g cooler
| ratio I’
ey polymers
ethyleng ik ... [
butylenei. .. | mixer i ovd
Eoissuias
hydrogen Qf
nitrogen E
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mv1: CH;/CH;flow
mv2: H,/CH, flow
mv3: nitrogen flow
mv4: catalyst flow

cvl: meltindex
cv2: density
cv3: temperature
cv4: production

Fig. 5. Polyethylene Gasphase Reactor Process.
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In Fig. 6 the most important process variables of a
typical grade change and an optimal grade change
supported by INCA® are shown, while the manipulated
variables are given in Fig. 7. An operator, who takes
some manipulated variables on manual, typically per-
forms the grade change. This ‘manual’ grade change is
given in dashed lines.

The lines in the Density and LNMI graph (Fig. 6)
indicate the specification ranges of the respective grades.
The price of grade A is 0.67 € /kg, while grade B is worth
0.73 €/kg. The off-spec material is only worth 0.57 €/kg,
which is less than the operation cost at that moment.
This makes it very important to minimize the produc-
tion of off-spec material. To maximize added value over
the time interval covering the full grade change an
optimum has to be searched that trades off the amount
of off-spec material produced against lost production
time due to reduction of productivity during the grade
change. The transition needs to be done such a way that
the added value is continuously maximized within the
feasible operating region. The operating region is e.g.
restricted by the available cooling water flow, as
indicated by the straight line in the lower graph of
Fig. 6.

The underlying INCA® model predictive controller
supports such a non-linear excursion from one grade to
another as discussed before. In fact it is almost
transparent in the results presented here.
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Fig. 6. Process values for an optimized grade change. The dashed lines
represent the initial trajectory, while the solid lines correspond to the
optimized and controlled trajectory.

Two important results from the dynamic optimizer
can be distinguished:

1. The MPC controlled grade change occurs consider-
ably faster than a traditional grade change. The
melt index was only 12h off-spec compared to 25h
in the normal situation. In fact, both density and
melt index show undershoot and overshoot
behavior, although these phenomena stay within
the allowable grade specification range. These
dynamic effects realize maximum benefits during
the grade transition. Note that a high performance
MPC is needed to track these trajectories. It is also
needed to switch between different linear models,
since this is a large transition between different
grades. In this case two linear models are being used.
Neural-net based soft-sensors are implemented to
track quality parameters such as density and melt-
index on-line.

2. In Fig. 6 the productivity is shown. Notice how the
productivity is reduced during the grade-change. At
that time the operation costs are larger than the
revenues, urging for reduced production.

The optimized grade change discussed above results in
an extra added value (compared with the typical case) of
52.000 €/changeover.
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Fig. 7. Manipulated values for an optimized grade change. The dashed
lines represent the initial trajectory, while the solid lines correspond to
the optimized and controlled trajectory.
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5. Conclusion

An advanced model predictive control technology
based on rigorous dynamic models has been presented.
Key requirements of the new technology are the
realization of a flexible process operation, a large
bandwidth control enabling tight quality control and
low application costs. The flexible operation is realized
by the combination of a dynamic optimizer over a
rigorous model together with a model predictive
controller in delta-mode. A large bandwidth control is
enabled by the use of high frequent prediction models.
Ultimately, re-use of large parts of rigorous models for
different applications together with low frequency
testing on these rigorous models reduces the application
cost.

The application of the before mentioned technology is
shown successfully on a polyethylene gasphase reactor
simulator. A considerable economic benefit can be
obtained optimizing the transition trajectory as well as
the throughput at that time.
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