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Abstract

In this paper, we show that a recently de1ned cepstral norm for ARMA models equals, up to a constant factor, the square
root of the area enclosed by the polar plot of the logarithm of the transfer function.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cepstral analysis is used in a variety of applica-
tions such as speech processing, radar and sonar and
fault detection in rotating machines. Another area in
which cepstra show up is that of distance measures be-
tween models and/or signals. In order to quantify the
distance between two stochastic processes, one usu-
ally relies on their second-order statistical properties
only. For requirements of invariance with respect to
the measurement scale, it is desirable that the distance
is a function of the ratio between the spectra of the
processes, i.e., of the di8erence between the cepstra
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[1]. One such a cepstral distance for ARMA models
was de1ned in [4]. It has some nice system theoretical
properties, such as its formulation in terms of the poles
and zeros [4] and its relation to the principal angles
between certain subspaces derived from the models of
the stochastic processes [2].

In this paper, we show that this distance between
two single input single output (SISO) ARMA models
with respective transfer functions G1(z) and G2(z)
has another beautiful interpretation as the area en-
closed by the image of the unit circle produced by
logG1(z)=G2(z). The proof of this equality is com-
pletely analogous to the one of Hanzon [3], who
showed that the Hilbert–Schmidt–Hankel norm of
a stable system is equal, up to a constant factor, to
the square root of the area enclosed by the Nyquist
diagram of the transfer function.

In this paper, we consider SISO systems that are
discrete-time, linear time invariant, stable and mini-
mum phase, i.e. the poles and zeros all lie inside the
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Nomenclature

c(k) complex cepstrum of a model
‖logG‖cep cepstral norm of the model with

transfer function G
�(�) curve logG(ei�), where � is

running from 0 to 2	

(�) curve G(ei�), where � is run-

ning from 0 to 2	
A(�) area enclosed by �(�)
‖H‖HS Hilbert–Schmidt norm of the

Hankel matrix H
tr A trace of the matrix A
‖G(z)‖HSH Hilbert–Schmidt–Hankel norm

of the transfer
function G(z)

unit circle. Furthermore, we assume that their transfer
function is of the form

G(z) =
zn + b1zn−1 + · · · + bn−1z + bn
zn + a1zn−1 + · · · + an−1z + an

; (1)

where a1; : : : ; an; b1; : : : ; bn ∈R and n is the order of
the model. The results in this paper can be extended
to a distance measure for a set of equivalence classes
in which all transfer functions that di8er only in a
constant factor, are considered to be equivalent.

The paper’s outline is as follows. In Section 2 we
discuss the cepstral distance between ARMA models
de1ned by Martin [4]. In Section 3 we show that the
related system norm is equal to the Hilbert–Schmidt
norm of a Hankel matrix and hence can be related to
the area enclosed by a curve in the complex plane. An
analogous interpretation for the distance between two
models is made in Section 4.

2. A cepstral distance between ARMA models

The de1nition of Martin [4] for the distance be-
tween two ARMA models is based on the power cep-
strum of the models, which is the inverse Z-transform
of the logarithm of the power spectrum. In order to
fully exploit the properties of the Z-transform, we
prefer to use the complex cepstrum instead of the
power cepstrum. Since for stable and minimum phase

models the complex cepstrum coeIcients c(k) for
k¿ 0 are equal to the corresponding power cepstrum
coeIcients and since the distance measure de1ned in
[4] is based only on the power cepstrum coeIcients
for k ¿ 0, we can equally well formulate the distance
measure in terms of the complex cepstrum.

The complex cepstrum c(k) of a model with trans-
fer function G(z) is the inverse Z-transform of the
logarithm of the transfer function:

∞∑
k=−∞

c(k)z−k = logG(z);

where the complex logarithm of G(z) is appropriately
de1ned [5, pp. 495–497]. The complex cepstrum is
a real-valued function, despite its name. For stable
and minimum phase systems the complex cepstrum is
causal: c(k) = 0, for k ¡ 0.

We obtain the following de1nition for the distance
between two stable and minimum phase ARMA
models, which is equivalent to the de1nition by
Martin [4].

De�nition 1. Given two stable and minimum phase
ARMA models of order n1 and n2 with transfer func-
tions G1 and G2 as in (1) and complex cepstra c1(k)
and c2(k), respectively, the distance between the mod-
els is de1ned as

d2(G1; G2) =
∞∑
k=1

k|c1(k) − c2(k)|2: (2)

From the results of Martin [4] it follows that the sum in
(2) converges for stable and minimum phase models.
Observe that for ARMA models with transfer function
as in (1), c(0) = 0, which ensures (2) to be a metric
on that class of models.

The associated cepstral norm for an ARMA model
is de1ned as follows.

De�nition 2. Given a stable and minimum phase
ARMA model with transfer function G(z) as in (1)
and cepstrum c(k), the cepstral norm of this model is
de1ned as

‖logG‖2
cep =

∞∑
k=1

kc(k)2: (3)
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3. The cepstral system norm and the polar plot of
logG (z)

In this section, we obtain the relation between the
system norm ‖logG‖cep, de1ned in (3), and the area
enclosed by the curve �(�) = logG(ei�) where � is
running from 0 to 2	. This curve is indeed closed in
the complex plane due to the appropriate choice of the
complex logarithm. By the area enclosed by �(�) we
mean the following integral:

A(�) =
∫
x+iy∈�

y dx: (4)

In Section 3.1 we 1rst show that the cepstral norm
‖logG‖cep is equal to the Hilbert–Schmidt norm of
the Hankel matrix with the cepstrum coeIcients. In
Section 3.2 we give the relation between ‖logG‖cep

and the area enclosed by �(�). An example is given
in Section 3.3.

3.1. The Hilbert–Schmidt–Hankel norm for cepstra

Let c(k) denote the cepstrum coeIcients of the
model with transfer function G(z) and consider the
double in1nite Hankel matrix H

H =




c(1) c(2) c(3) · · ·
c(2) c(3) c(4) · · ·
c(3) c(4) c(5) · · ·

...
...

...




∈R∞×∞:

The Hilbert–Schmidt norm of H is given by

‖H‖2
HS = trHHT =

∞∑
k=1

kc(k)2:

Because the right-hand side is equal to the cepstral
system norm de1ned in (3), we obtain

‖logG‖2
cep = ‖H‖2

HS:

3.2. Relation to the polar plot of logG(z)

In [3] Hanzon considers the Hankel matrix with
the Markov parameters g(k) of a model without di-
rect feed-through term (i.e. g(0) = 0). The Markov

parameters form a causal sequence whose Z-transform
is equal to G(z). The Hilbert–Schmidt norm of that
Hankel matrix, i.e. the Hilbert–Schmidt–Hankel norm
of G(z), denoted by ‖G(z)‖HSH, is related to the
Nyquist diagram of the transfer function G(z) in the
following way:

‖G(z)‖2
HSH =

∞∑
k=1

kg(k)2 =
1
	
A(
);

where A(
) is the area enclosed by the curve 
(�) =
G(ei�); �∈ [0; 2	) running from 0 to 2	.

An analogous result holds for the cepstral norm de-
1ned in (3).

Theorem 3. Let G(z) be the transfer function of a
stable and minimum phase ARMA model as in (1).
The cepstral norm of G(z) is then equal to

‖logG‖2
cep =

1
	
A(�); (5)

where A(�) is the area enclosed by �(�) = logG(ei�);
�∈ [0; 2	) running from 0 to 2	.

Proof. Due to the causality of c(k) the cepstral norm
of G(z) that is de1ned in (3), is equal to

‖logG‖2
cep =

∞∑
k=−∞

kc(k)2:

Applying Parseval’s theorem leads to the following
line integral over the unit circle

‖logG‖2
cep =− 1

2	i

∮
d
dz

(logG(z))logG(z) dz

=− 1
2	i

∫
�
logG(z) d(logG(z));

where �(�) is the closed curve logG(ei�) and � is
running from 0 to 2	. This can further be written as

‖logG‖2
cep = − 1

2	i

∫
x+iy∈�

(x − iy) d(x + iy):

By Stokes’ theorem this is equal to 3

‖logG‖2
cep =

1
2	i

∫∫
d((x − iy) d(x + iy));

3 The change of sign is due to the clockwise orientation of �.
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Fig. 1. The curve �(�) = logG(ei�), where � is running from
0 to 2	. The starting point is (2:0746; 0) and the orientation is
indicated by the arrow. The area enclosed by � is A1 + 2A2 + 2A3
and this is equal to 11:1925	.

which leads to

‖logG‖2
cep =

1
2	i

∫∫
d(x − iy) d(x + iy)

=
1

2	i

∫∫
2i dx dy

=
1
	

∫∫
dx dy

and this is (1=	)A(�).

3.3. An example

As an example we take the 1fth-order ARMA model
with poles 0:9± 0:1i; 0:2± 0:8i and −0:95 and zeros
−0:5±0:82i; 0:1±0:7i and 0:92. Its transfer function
is denoted by G(z).

In Fig. 1 the curve �(�)= logG(ei�) corresponding
to the ARMA model is drawn. The curve starts and
ends in (2:0746; 0) and its orientation is indicated by
the arrow. The area enclosed by � is the sum

A(�) = A1 + 2A2 + 2A3

as shown in Fig. 1. The area was obtained by comput-
ing the integral in (4) numerically in Matlab, which
multiplied by 1=	 resulted in 11.1925, and the formula
for the cepstral norm as a function of the poles and

zeros, described in [4], gave the same result. Note that
we do not need to identify A1; A2 and A3 in order to
calculate the area.

4. The cepstral distance between two ARMA
models as an area in the complex plane

Consider two stable and minimum phase ARMA
models of order n1 and n2 with transfer functions
G1(z) and G2(z) and cepstra c1(k) and c2(k), respec-
tively. The cepstral distance between the two models is
de1ned in (2) as

d2(G1; G2) =
∞∑
k=1

k|c1(k) − c2(k)|2:

The sequence c1(k) − c2(k) (k ∈Z) is the in-
verse Z-transform of logG1(z) − logG2(z) =
logG1(z)=G2(z). Hence, c1(k)−c2(k) is the cepstrum
of the stable and minimum phase ARMA model with
transfer function G1(z)=G2(z), of order 6 n1 + n2.
Consequently, the distance between G1 and G2 is

d2(G1; G2) =
∣∣∣∣
∣∣∣∣log

G1

G2

∣∣∣∣
∣∣∣∣
2

cep
:

By applying (5), the distance is related to an area in
the complex plane as follows:

d2(G1; G2) =
1
	
A(�1;2);

where A(�1;2) is the area enclosed by �1;2(�) =
logG1(ei�)=G2(ei�); �∈ [0; 2	) running from 0 to 2	.

5. Conclusions

In this paper, we have shown that the cepstral dis-
tance between two stable and minimum phase ARMA
models that was de1ned by Martin [4] is equal, up to
a factor 1=

√
	, to the square root of the area enclosed

by the polar plot of the logarithm of the ratio of their
transfer functions.
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