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We present an analytical formula for the asymptotic relative entropy of entanglement with respect
to positive partial transpose states for Wermer states of arbitrary dimension. We then demonstrate its
validity using methods from convex optimization. This is the first case in which the asymptotic value of
a subadditive entanglement measure has been calculated.
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The systematic investigation of quantum entanglement
is a major goal of quantum information theory [1]. In the
study of entanglement manipulation one considers the in-
terconversion of different forms of entanglement by means
of local quantum operations and classical communication
(LQCC). For pure bipartite states entanglement manipu-
lation in both the finite and asymptotic limits is quite well
understood. For pure states necessary and sufficient condi-
tions for the local interconvertibility of entangled states are
known. In the asymptotic limit of infinitely many copies
of a pure state, a single number, the von Neumann entropy
of a subsystem, appropriately quantifies the degree of en-
tanglement [2].

Much less is known about the entanglement of mixed
states. One approach is to define entanglement measures,
which are functions of a state that cannot increase under lo-
cal operations and provide constraints on possible local en-
tanglement manipulation protocols. These measures prove
to be useful mathematical and conceptual tools and have
interesting links with other areas such as the study of chan-
nel capacities [3]. A number of such measures have been
proposed, most notably the entanglement of formation [3],
the distillable entanglement [3,4], and the relative entropy
of entanglement [4,5]. The distillable entanglement is de-
fined as the asymptotic number of pure maximally entan-
gled states that can be obtained via LQCC from a supply of
a given state. For mixed states the distillable entanglement
is exceedingly difficult to compulte as it is defined as an
asymptotic quantity referring to infinitely many copies of
a quantum state. Therefore, upper bounds on the distillable
entanglement, in particular, other entanglement measures,
are of major practical use. One such entanglement mea-
sure is the relative entropy of entanglement, defined as

Ex(o) = mipS(ollp). &

for states o, where D) is the set of states with positive
partial transpose (PPT states), and S{a|lp) = ufo Igoe —
o lgp](lg signifies log,). This function essentially quanti-
fies the distinguishability of & from the set of PPT states.
The set T can also be taken to be the set of separable
states [5]. However, the set of PPT states is much easier to
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characterize, and the resulting measure provides a tighter
bound to the distillable entanglement, one that is actually
attained on pure states and certain mixed states [3].

In general, efficient protocols for entanglement manipu-
lation require an asymptotic number of copies of the ini-
tial state. Therefore, to address any question related to
asymptotic entanglement manipulation, one will instead
have to consider asymptotic versions of the entanglement
measures. For a given measure of entanglement E, the
asymptotic version E™ is defined as the average entangie-
ment per copy in the asymptotic limit [6,7],

an
(o) = lim 2 @

n—sa n

For example, the asymptotic cost of creating a mixed state
by LQCC from a supply of pure maximally entangled
states is given by the asymptotic entanglement of formation
[7]. However, such asymptotic entanglement measures are
difficult to compute, and so far this task has not been ac-
complished except for the very rare occasions where the
measre in question is known to be additive {8].

In this Letter we present a general formula for the
asymptotic relative entropy of entanglement for an im-
portant class of bipartite states, namely, the Werner states
of arbitrary dimension [9]. These states are the only

Eg!
0.8

0.6
0.4

0.2

0

0.5 0.6 0.7 08 0.9 1 p

FIG. 1. The asymptotic relative entropy of entanglement
Ex(o(p)) of Werner states in ©f @ C7 as a function of p (the
weight of the antisymmetric state) for several values of 4. The
dashed lines separate the two regimes of Eq. (3), for 4 = 10
and for d = 3.
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states that are invariant under local unitaries of the form
U ® U. They can be conveniently formulated in terms
of the projectors g {71) on the symmetric (antisym-
metric) subspaces of a Hilbert space J{ = C¢ ® C.
Denoting the permutation operator that interchanges
the subsystems as w, the projectors can be expressed
as mo = (1 + 7)/2 and m = (1 — 7)/2. A general
Werner state is of the form o(p) = poy + {1 — p)ow,
p 10,1}, where oy = mp/tr[wo] and o = 7 /ufm ]
Appropriately exploiting the symmetry of this state is one
of the key ingredients to the proof of the main statement
of this Letter. We formulate this main result as a theorem.

Theorem: For states in C4 ® €9 of the form o{p) =
poy + (1 — pog with p € (1/2,1], Ex with respect to
(wr.t.) PPT states is given by

a+2
1 - H(p), P =55

Eglo(p)] = 3)
852 + (- plgF P> 97
where H(p) = —plgp — (1 — p}lg(l — p).

It is interesting to note from this formula that Ex never
exceeds the logarithm of the negativity [10]. Curiously,
Eg{o(p)) is a convex function of p, whereas numerics
show that Ex(o-( p)®")/n is not convex for any finite num-
ber n > 1. It is also intriguing that this formula is exactly
the same as that from a different optimization problem con-
sidered by Rains [11], where he minimizes the functicn
Blp, o) = S{plle) + log|aT| over all states o. Rains’s
quantity is also an upper bound to the distillable entangle-
ment. However, it 1s not a convex function, which makes
its minimization difficult due to the possibility of local
minima. This applies especially in the asymptotic limit
as the additivity properties of B(p, o) are unknown.

Proof: The proof proceeds in two stages. First we
provide an upper bound on Eg{o®")/n for any number
of copies n, by presenting a trial optimal state. Then
we derive a lower bound for Er(o®"}/n using convex
optimization methods. We conclude by showing that the
two bounds coincide in the asymptotic limit n — o,

Upper bound—We consider a sitnation where we hold
n copies of a Werner state o(p}. Following the work of
Ref. [12], we make heavy use of symmetry. In Refs. [4,12]
it has been shown that if a state is invariant under a certain
symmetry group, then one can restrict the minimization in
Eq. (1) to those PPT states that are also invariant under
the same group. As o{p) is invariant under the group G
of local unitaries of the form I/ ® U, the state o(p)®" is
invariant under G®*. This implies that the optimal PPT
state for o(p)®" can be chosen to be a convex sum of the
27 possible n-fold tensor products of o and o,

-1
n=2 xloy, ® 05, 8- ®0p), )

=0
where ¥ = (xg,...,x—1)7 forms a probability distribu-

tion, and f; € 40,1}, i = 1,...,n, is the ith digit in the
binary representation of f. Furthermore, as the state o"
is invariant under any permutation of the n copies, we can
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add the constraint that x; = x,, if the number of ’s in the
binary representations of / and m are the same.

We consider trial states of the form >, wi(uw;o +
v; o) %", which automatically satisfy this constraint. Such
states correspond to

. " ®n
= 3w ) ©
where the u;(v;) compone!nt is the weight of oy (o), u; +
v; = 1,and X ; w; = 1 (and therefore > ; x; = 1).

We need to know the eigenvalues of the partial transpose
of 5 in order to ensure that it is PPT. Ignoring degeneracy,
there are only two eigenvalues of the partial transpose of
the Werner state o{ p). It is easy to show that they are non-
negative if and only if (iff) the following two-component
vector is non-negative:

-1 1 P P
(v )i 2,) =707,
(6
Similarly, it can easily be shown that % will be a PPT
state iff the ¥ and X in the following equation are non-

negative vectors:

. {-1 1 o, ron: (7
y=\1 @-vfa+p) *=Tx O
Subject to this condition we need to calculate the relative

entropy between the n-copy Werner state o(p)®”" and this
generalized Werner state n. This is given by

S(e(p)®*"lin)/n = —H(p)

— (1/n} > Ckpm (1 - p)
k=0

X ngwiu?*kvf. (8)
i

At this point, we notice that since the second term in
Eq. (8) is the average of the function

E(n — k) = (1/n)1g D wi} ™o} ©)

over a binomially distributed variable k, the value can be
substituted by £(rp) when we take the limit n — o [13].
Since Egz(o(p)) is the minimal value of
S(o( p)®*lin)/n over all possible PPT states 77, any such
PPT state 7 will give us an upper bound for Eg(c(p)).
In particular, for the vector ¥ we propose a mixture of
two n-fold Kronecker powers:
2 1 - a\®"
F=> w,-( ) , (10)
i=1 G
where 0 =w; =1, wi=1—wy, 0=a; 5 1/2, and
1/2 = as = 1. Proper values for the parameters need to
be selected to ensure that the corresponding state n will be
PPT. Inspired by numerical results, we consider two sepa-
rate intervals for p in BEq. 3): 1/2 = p = (d + 2)/(2d)
and (d + 2}/Qd) = p = 1.
For the first interval, set wi = 0 and @ = 1/2 s0 that
xp = 27" for all k. This state gives us an upper bound that
equals Er for one copy of o(p):
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S{a(p)®"lln) _
4]

Ep(a(p)) = t—H(p). D

Now consider the second interval, We will set

. @+ -p _l+d-d+2a
! d+2—4p d+2-—day
(12)

1
wmi=l-w,=17—, 2= @+2-4m)/d.

We calculate 7°"%:

7= T°%% = iW( 2a; — 1 )m (13)
4 \1-2a/(d + 1

i=1

so that, with the values of Eq. (12)
oy HE)
__gg_,__) , (14)

2
= (2a; — 1 ""#(’C)(l —
Yk g{wt( i ) d+ 1

where #{k) is the number of 1’s in the binary representation
of k. It is easy to check using Eq. (12) that y; is always
non-negative.

As a consequence, by taking into account the discussion
after Eq. (8) and the notation introduced in Eq. (5), the
upper bound for n — o reads

2 1/n
o0 . -
Ex(o(p)) = —H(p) - gglgulg(z winf"v] ”)")

i=1

1/n
) g+ 8
~H(p) — 1g hm("n——n)
R 1 + Q2

f

max(ty, f)
max(g1, g2)

—H(p) —Ig (15)

with
tp = d(d — 2P(d + 2)""F(1 — p)!7Fp?,
th=[d—-2+d*1—p)Pd*p—d-2)'"7, (16)
gr=d*—4 and g, =d(d + 2 — 4p).

It is easy to check that for p = (d + 2)/(2d) (the second
interval), both #; = #; and g1 = g2. So we obtain

Ex(o(p)) = —H(p) — Ig ;—1

d -2 d+2
=lg 7 +pigd_2.

In the other regime, p = (d + 2)/(24), the bound obtain-
able from Eq. (15) is worse than Eq. (11). This ends the
proof of the upper bound.

Proof of lower bound.—We now proceed to find a lower
bound on Ex. To do this, we use the idea of Lagrange dual-
ity [14]. To calculate Ex we need to solve the optimization

(17

problem
E ®n 1 . .
R(O'(P) ) — Il'l‘lﬂ{_H(P) _ ___ZT . igx}
n x n
20—1 (18)
with ¥ = 0, —-T% % = 0,

Zxk=1,
k=0
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where 7T = (p,1 — p)®". This is a convex optimization
problem, so it is possible to consider the so-called dual
problem. It is a basic result in convex optimization theory
that the optimal (maximal) g value of the dual preblemis a
lower bound on the optimal (minimal) value of the primal
problem, which is just what we are looking for (see [14]
for a general description of duality in optimization).

The dual problem can be obtained as follows. Tirst
form the Lagrangian by multiplying the constraints with
Lagrange multipliers and adding them to the objective
function:

. Lo .
L{x,Ap)=—H(p) — ;;ZTlgx

2¢—1
— ATT®% + p(z X = 1). 19
k=0

The constraint ¥ = 0 is not included explicitly, as it de-
termines just the domain of the function lg Note that A
must exhibit the same copy-permutation symmetry as x.
Because the constraint associated to A is an inequality, we
have to introduce the constraint A = 0. The dual function
is now given by

e, w) = inf [ (%, A, 7), 20
X=
and the dual optimization problem is
maxg(A,»), A= 0, Q1)
Av

including any other constraints on the domain of g.
For our problem, the dual function can be calculated
explicitly. The derivative of the Lagrangian w.r.t. x is
L __ 1z

2T T . (22
Axy 7 in2 x; ( et @2)

The Lagrangian reaches an extremumn (minimumy) at
_ 1l a
y nln2’

where g = » — (T®"A); and we have exploited the sym-
metry of T. The dual function is

7 (23)

s o lt+hem) | 15
g(d,v) = n1n2 * n kgozklg,uk s

24)

where we have used that 7 = (p,1 — p)®”, which
implies that 3 2y z¢ lgze = —nH(p). As stated before,
A must be non-negative, and inspecting the domain of
g(, ) yields an additional constraint that the wy be
non-negative. R

Now, any acceptable assignment of values to A and »
gives a lower bound to Ex{o(p)). Again we consider
the two p intervals of Eq. (3). For p = (d + 2)/(2d) we
propose

yt = 1/(nl2),
el )]
dr [\d + 1 d+1 '
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After a short calculation we obtain ;=
p127pn (1 — py*(k). This gives a feasible point of
the dual problem, because both A and u, as given here
are non-negative. The value of g using these assignments
is g(AL»Y) = 1 — H(p).

For the second interval, p = p' = (d + 2)/(2d), we
replace p by p’ in Eq. (25), giving

2 en en
o= 2 ()]
v VA dn[(d+1 d+1 '

(26)
We now obtain g(i2,72) = g2 + (1 — p)lg 4.

As the two lower bounds g{(Al, »!) and g(A2, »2) coin-
cide with the two upper bounds {Egs. (11} and (17)], the
proof of the Theorem is now complete. O

The remarkable behavior of Ez{(o{p)) is shown in
Fig. 1 for several values of 4. The nonlinear behavior
for small values of p goes over into a linear dependence
on p above the threshold value p’ = (d + 2)/2d. An
immediate consequence of the result is that there are no
inseparable Werner states with zero entanglement cost—a
similar conclusion could not be drawn from Rains’s bound
as it is not an asymptotic quantity. It is astonishing that,
as long as p = p', E is invariant under the strongly
irreversible operation of twirling, mapping Werner states
on €% ® C? to Wemer states on C? ® C? [15].

Interestingly, the dependence of Ez{o(p)} on p is quite
similar to the conjectured behavior of the entanglement
of formation for a single copy of an isotropic state [16]:
there, one can also distinguish between two regimes, and
for larger values of the weight F of the maximally en-
tangled state in the isotropic state the dependence of the
entanglement of formation is conjectured to be linearly
dependent on F.

In this Letter we have concentrated on the important
class of Werner states. With similar methods, one can
also investigate other classes with high symmetry. It is
hoped that this work can significantly contribute to the
quest for a better understanding of the asymptotic regime
of entanglement.
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chain as a function of crystal thickness
(L) and orientational order parameter (S),
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crystal thickness. Ordered (valley) and
disordered (saddle) configurations are
shown. See article 218302.
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