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Abstract

Belief Networks in the Bayesian approach
provide a well- established methodology to
fuse prior knowledge and statistical observa-
tions for an enriched decision support. In
this paper we investigate one of the advan-
tages of the Bayesian approach - the provided
additional uncertainty information for pre-
dictions - in & medical classification problem.
We perform a Bayesian analysis using Be-
lief Network models to discriminate between
benign and malignant ovarian masses. We
report the performance of such Bayesian Be-
lief Network medels if the exclusion of some
data points is allowed based on various -
certainty measures of the prediction.

1  Introduction

The Bayesian approach is becoming more attractive
for the machine learning commmunity because it can
cope with the valuable subjective prior information
in a principled way and it provides more detailed in-
forntation for decision support. These properties are
particularly atiractive in medical applications, since
detailed uncertainty information can be vital in a med-
ical decision and frequently abundant prior domain
knowledge is available beside the statistical data. Un-
der certain conditions Belief Networks are especially
suitable for Bayesian modeling, that is to formalize the
prior domain knowledge, to update it by observations
and to perform inference in a Bayesian way [4]. In the
paper we investigate a Belief Network model from the
Bayesian perspective to discriminate belween benign
and malignant ovarian masses.

The paper is organized as follows: Section 2 re-
views the Bayesian approach in classification prob-
lems. Section 3 recapitulates the medical problemn
which will serve as a test case, infroduces the data and
defines relevant. performance measures. In Section 4
we discuss the applied Belief Network model and the
algorithms used to approximate the Bayesian perfor-
mance measures. Section 5 presents the perforinance
of the model using thresholds based on various un-

certainty measures of the prediction to exclude some
data points. In Section 6 we summarize our findings
about having a detailed Bayesianist prediction in this
medical problen:.

2 Bayesian Classification

Starting with a prior distribution expressing the initial
beliefs concerning the parameter values of the model,
we can use the observations to transform this into the
posterior distribution for the model parameters ex-
pressing the beliefs after observing the data. Using
this posterior distribution over the model parameters,
useful random variables can be defined for functions
depending on the model parameters, like predictions
and error neasures.

In a binary classification task this rationale means
the following. We are primarily interested in the cor-
rect classification of an observation m € &', This can
be achieved by constructing a binary decision function
gz, w) € {0,1} where w € @ are the model param-
eters. A more informative predictive model provides
not. only a class label, but also the class probabilities,
though it is a more complex task both from a statisti-
cal and computational point of view. As a further step
in hnproving the decision support, wncertainty infor-
mation can be provided for the class probabilities, for
example the posterior distribution of class probabili-
ties in the Bayesian framework.

In this paper we follow the Bayesian approach to
solve the classification problem for two main reasons:
to incorpaorate prior background information in a gen-
eral and principled way and to provide detailed in-
formation with clear semantics for decision support.
For a probabilistic regression model P(T = Iz, w) =
flz,w) € [0,1] it means there is a prior distribution
pa(.) over the model parameters w € . Fgq denotes
the random variable for the predicted posterior class
probability {as a scalar in the [0, 1] interval).

We asstme the existence of a labeled training set
d = {mp, t; 30, (i) € R x {0,1}, where @ is
a real valued Ldimensional input vector and # is the
corresponding class label. In the paper we use capitals
for random variables, bold indicates a vector and a
bold underline indicates a matrix.
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Using the observed data d and applying Bayes’ rule,
the prior distribution can be transformed to the pos-
terior distribution pg(w|d) given by
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that is, by
Liw|d)pp(w)

where L{w|d) denotes the probability of the data given
the parameters.

Once we have this posterior distribution for the
model parameters, we cau define random variables re-
lated to predictions, performauce, etc. In classifica-
tion problems for example, we are interesled, for a
given x, in the random variable f(z, ) where £2 is a
random parameter vector. In this way we have uncer-
tainty information about the predicted class probabil-
ity.

We can simplify this result to scalar values for the
class probabilities P(T = l|x,d). The opthnal step
hack depends on the cost fumction attached to the re-
ported scalar value. Assuming the L2 loss function,
the optimal strategy is to report the expectation of
the class probability in the posterior parameter prob-
ability space f{x) = Eqq[f(z,w)]. A further sim-
plification is to discretize this scalar value using some
user specified threshold A, deriving a binary decision
function

galz) = {

These three distinct levels, the distribution of the
class probabilities (f{x,})), the class probabilities
{(f(x)) and the class labels {gx{x)) provide dimin-
ishing possibilities for decision support, though the
burdening statistical and computational complexity
should be considered too.
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Figure I; Three levels of prediclions.

A more refined scheme allows rejection based on the
uncertainty of the prediction of the class probability

Iy

"rejected” if §[Fqq] = o
Lif Equlf (2, w)] > A

0 else.

Mo (T) =

We are using the following uncertainty measures de-
rived by the transformations of the random variable
Fig into a scalar &:
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3 Classification of Ovarian Masses

Ovarian malignancies represent the greatest challenge
among gynaecologic cancers. A reliable preoperative
prediction in terms of benign and malignant. ovarian
tumors would be of considerable help to clinicians
selecting an appropriate treatment. There are two
sources of information to construct such predictive
models: prior knowledge aud data.

The available relevant medical literature and ex-
pert knowledge is abundant and very diverse (for an
overview, see [5]). In addition to the prior background
information, data were collected prospectively from
300 consecutive patients who were referred to a sin-
gle institution (University Hospitals Letven, Belgium)
from August 1994 until June 1997. The data collec-
tion protocol ensure that the patients had an apparent
persistent extrauterine pelvic mass and excludes other
causes that may have similar symptoms such as infec-
tion or pregnancy, so the primary aim is differentiation
between benign and malignant masses (for a detailed
description, see [5]). Since the data set, is mostly com-
plete with respect to the used model in the paper we
used only this subset. Univariate statistics of data set
are presented in Table 1.

Age | Parity | CA 125 | CS8 R1
E[]0] 47.77 | LbO 11034 | 198 | 0.12
E[|1] 58.62 | 1.57 | 1222299 | 3.20 | 0.41
Std[.j0] | 15.60 1.40 976.56 0.84 | 0.77
Stdli1) | 15.18 | 173 | 3779.64 | 0.95 | 0.46

Table 1! Univariate statistics for the henign{0} and
maligiiant{1} subpopulation in the ovarian cancer data
set.,

Standard statistical studies indicate that a multi-
modal approach - the combination of various types of
variables - is necessary for the discrimination between
benign and malignant tumors. Therefore Logistic Re-
pression models, Multilayer Perceptrons and Belief
Networks were previously applied i5; 1]. These maod-
els predicted the scalar class probabilities and they
were developed and tested in the classical statistical
{framework.



A natural step to provide more detailed information
for medical decision support is to apply the Bayesian
appreoach Lo provide the distribution of class probabil-
ities. We can use the classical statistical performance
measures, such as misclassification rate for the evalu-
ation of the models in the Bayesian framework, since
any performance measure is a function of the model
parameters (for fixed observations/test data). These
performance measures then become random variables
which provide more information than a point estimate.

4 Bayesian Belief Networks

A Belief Network represents a joint probability distei-
bution over a set of variables (see e.g. [2]). We assume
that these ave discrete variables, partitioned into three
sets X, ¥ in {eg, o1}, 2 set of mput, output, and in-
termediate variables respectively. The model consists
ol a gualitative part (a directed graph) and quantita-
tive parts (dependency models). The vertices of the
graph represent. the variables aund the edges define the
qualitative dependency-independency relations among
the variables. There is a dependency model for every
vertex (i.c., for the corresponding variable) to describe
its probabilistic dependency on the parents (i.e., on
the corresponding variables).

Assuming parameter independence we use Dirich-
let distributions as dependency models (see e.g. [4;
3]). In this case the prior background knowledge is
formalized as a fixed Belief Network structure and
the prior distribution pg{.) over the model parame-
lers w € @ is given by:
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where N;j) can be interpreted as the number of previ-
ously seen examples in which the value of the ith vari-
able is k with parental configuration pa; = j (a one
based index for all possible parental configurations).

Using such Dirichlet distributions, an expert can
express his beliel in parametrizations and for com-
plete samples the posterior distribution pa{w|d) has
the same analytic formula with updated hyperparam-
eters [4; 3]

We built. the Belief Network from the available prior
knowledge from experl and literature in a ”hetero-
geneous” way incorporating biological models of the
underlying mechanism quantifiable by the literature,
parts quantified by a medical expert and parts quanti-
fiet by previousty published studies [1]. The structure
of the Belief Network nodel is shown on Fig. 2.

The target random variables to be estimated are
hierarchical: the inference P(T = 1)Q,z°%, 2, d)
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Figure 2: The BN madel structures.

and the performance related M R{Q,d). We sample
the posterior distribution pg(w|d) by direct sampling
from the updated Dirichlet distributions and com-
pute the conditional probabilities of malignancy for
the drawn parametrizations by an exact inference al-
gorithm using a join tree (see [2]). Based on these
predictions the corresponding MR values can be com-
puted.

5 Results

We investigated the advantages of having a more de-
Ltailed probabilistic prediction in the Bayesian frame-
work. Af fArst we manually evaluated the Bayesian
predictions of the Belief Network model from a medi-
cal point of view. We noticed that the predictions for
nisclassified cases are more uncertain, e.g. they have
higher variances Vargg{f(z, w)] which is one mea-
sure for the 'uncertainty’. Generally spoken, the cases
with a high value for Varga{f{z,w)} were also hard
to classify by & medical professional, in contrast with
cases with a low value for Vargu[f(e,w)], that were
almost ahvays straightforward to predict.

To identify automatically these medically hard
cases, we tried to quantify the uncertainty of the pre-
diction by the d-measures introduced in section 2. Fig.
3 and 4 show the correlation between the v, 5g and
6p measures. Correct classified samples are denoted
with ”*" and incorrect ones with a "o”.

One promising possibility of having a quantification
for tlie wncertainty of the prediction is to allow the re-
jection of the most uncertain ecases, which in practice
can mean referring such a patient to an expert or fur-
ther examinations. To investigate the efficiency of the
identification of hard cases, we computed the misclas-
sification rate when various proportions of the most
uncertain cases wre rejected. Fig. 5 shows the mis-
classification rates after excluding various proportions
of the data set based on d-measures (01, dvyr and
d5) as defined in Section 2, Fig. 6 shows the same for
the rejected partition. In these experiments, we parti-
tioned the data set deseribed in Section 3 randomly to
a test (50%) and tratuing (50%) set, this was repeated
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Figure 3: Correlation between Epmi[f] and dyg,..

Correct classified samples are dencted with "*” and
incorrect ones with "o".
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Figure 4: Correlation between B, ,[f] aud dy. Cor-
rect classified samples are denoted with " and in-
correct ones with "o”.

30 times to eliminate dependency on separation. The
reported results are based on the test set.

Tables 2 and 3 show the misclassification rates that
are achieved for 'non-rejected’ respectively 'rejected’
samples for varying uncertainiy measures defined by
Eqg. 1

6 Discussion

Since the Bayesian approach is becoming more and
more popular as an efficient inductive method for inte-
grating prior knowledge and statistical data, the ques-
tiom arises how we can use other potential advantages
of this framnework. One attractive candidate is the de-
tailed Bayesian prediction of class probabilities, since
it may allow auntomatic identification of the uncer-
tain cases for special treatment. To test this idea,
we experimented with representing the uncertainty of
a prediction by a scalar and investigated the classifica-
tion performance when cases with uncertainty above
a given threshold are 'rejected’ as defined in 2.
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Iigure 5: The misclassification rate on the test set
after rejecting varying proportions.
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Figure ¢ The misclassification rate on the rejected
data points for varying proportions.

The manual evaluation by a medical expert con-
firnted that the derived uncertahity measures from the
Bayesian prediction realistically model the subjective
uncertainty of & human decision maker. To evaluate
the efficiency of the rejection methods based on these
measures we investigated their effect on the classifi-
cation performance. As Table 2 shows without rejec-
tion the misclassification rate is 10.2% while in the
rejected sets it can be above 40% for small rejected
sets and in the most interesting region it is still he-
tween 20 — 30%. For example, if we sef our rejection
threshold to exclude 20% of the cases, the misclassifi-
cation rate drops to 5%. In practice, this means that
a decision support system can be specified to classify
80% of the cases with a low misclassification rate and
identify the remaining 20% as hard cases that need
special considerations.

As Table 2 and Fig. 6 illustrates, the effect of var-
ious rejection methods based on different d-measures
are similar and it also holds for the 47,1, which is a non-
Bayesian uncertainty measure. However, they have
slightly different characteristics which can be interest-
ing for various decision support strategies or problemns.




% Re_](‘l‘t (sb[ 6\"(&?' '5[4 JWar L$H JBe( yes
{0 10.1 10.1 10.1 10.1 10.1
(.66 8.08 8.G4 8.15 8.03 8.09
13.3 (.86 G.GH 6.81 6.81 6.73
20) 5.82 5.27 5.67 5.08 5.30
26.6 4.42 4.32 4.38 4.25 *
33.3 3.34 3.21 3.25 3.21 *
40 2.51 2.48 2.46 2.52 *
46G.G 1.71 1.89 1.82 1.70 *
53.3 1.i1 1.30 1.25 1.06 *
60 0.716 | 0.966 0.700 0.667 *

Table 2: The misclassification rate on the test set after
rejecting varying proportions.

% Rej(?ct. LSLl (SVur dbl,'l/m‘ ‘SH (sBﬂUP.S
0 * E3 E3 Ed E3
(.66 39.5 | 3L7 38.5 40.2 39.2
13.3 31.8 | 33.0 32.0 32.0 324
20 27.5 | 297 28.2 28.5 29.1
26.6 259 | 26.2 26.1 26.4 *
33.3 23.8 | 241 240 | 24.0 *
40 216 | 21.7 21.7 21.0 *
46.6 19.8 | 14.6 19.7 19.8 *
3.3 181 | 17.9 17.9 18.1 *
G0 164 | 16.3 16.4 16.5 *

Table 3: The misclassification rate on the rejected
samples.

7  Conclusions

In this paper we investigated one of the advantages
of the Bayesian approach - the provided additional
uncertainty information for predictions - in a medi-
cal classification problem. We performed a Bayesian
analysis using Belief Network models to discriminate
between benign and malignant ovarian masses alow-
ing the exclusion of some data points.

We introduced various uncertainty measures for
characterizing the confidence in the prediction. We
evaluated the medical apphcability of these uncer-
tainty measures in the problem. Iurthermore, we
demonstrated that a classifier with 'rejection’ can ef-
ficiently identify the hard cases in an automated way,
consequently its performance on the remaining cases
improves significantly. In practice, this may result in
# decisions support method where the normal cases
can be more accurately classified by the system while
the difficult cases are classified as ‘rejected’ requir-
ing special invesligations. Though Lthe examined un-
certainty measures behave similarly for this modeling
method and problem, their slightly different charac-
teristics can be utilized in various decision support
strategies or problems. In general, their comnparison
needs further investigation.
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