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‘We consider one single copy of a mixed state of a mulipartite system of arbitrary dimension
and bring those states In a normal form by a class of local operations and classical communication
(SLOCC). These normal forms are uniquely defined up to local unitary transformations and are a
generalization of the Bell diagonal states in that any partial trace over all systems but one yields
a multiple of the identity matrix. We next investigate how the entanglement of mixed multipartite
systems changes under the action of SLOCC cperations and introduce a whole new class of entangle-
ment monotones. All these entanglement monotones are maximized under the SLOCC operations
that bring the state into its normal form. As specific examples we show that the concurrence and the
3-tangle belong to the introduced class of entanglement measures, and we propose generalizations
to systems of arbitrary dimension. Finally, the local operations that bring a state into normal form
are shown to be the optimal filtering operations in the sense that they maximize all the introduced

entanglement monotones.
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One of the major challenges in the field of quantum
information theory is to get a deep understanding of
how local operations assisted by clagsical communication
(LOCQO) performed on a multipartite quantum system
can affect the entanglement between the spatially sepa-
rated systems. In this paper we investigate this problem
in the case that only operations on one copy of the sys-
tem are allowed. This is different from the general setup
of entanglement distillation, where global operations on
a large (infinite) number of copies are performed to con-
centrate the entanglement in a few copies. The main
motivation of this work was to characterize the optimal
SL.OCC operations to be performed on one copy of a
multipartite system such that, with a non zero chance, a
state with maximal possible entanglement is obtained. In
other words, we want to design the optimal filtering op-
erations for a given state, such that with a certain chance
we prepare the optimal attainable one.

In the case of a pure state of two gubits, this opti-
mal filtering procedure is commonly known as the Pro-
crustean method [1}. Following the work of Gisin [2],
Horodecki [3],Linden et al. [4] and Kent et al. [5,6], the
optimal filtering procedure for mixed states of two qubits
was recently derived in Verstraete et al. [7]. In this pa-
per we extend these ideas to pure and mixed multipartite
systems of qudits of arbitrary dimension.

The optimal filtering operations in Verstraete et al. [7]
were derived by proving the existence of a decomposition
of a mixed state of two qubits as a unique Bell diago-
nal state multiplied left and right by a tensor product
repregenting local operations. A Bell diagonal state is
special in the sense that one party alone cannot acquire
any information at all about the state: its local density

operator is equal to the identity. This can readily be

generalived to multipartite systems of arbitrary dimen-

sions, and the existence of local operations {ransforming
a generic state to a state with all local density operators
equal to the identity will be proved in the first part of this
paper. This decomposition is unique, and in the case of
pure states it leads to a transparent method of deriving
essentially different states such as GHZ- and W-states
8].

In a second part we show that all quantities exhibiting
some kind of invariance under the considered SLOCC op-
erations are entanglement monoctones [9]. It is shown that
the concurrence and the 3-tangle, introduced by Woot-
terg et al. [10,11], belong to this class of entanglement
meagures. Therefore a natural generalization of these
measures is obtained to systems of arbitrary dimensions
and an arbitrary number of parties.

The third part of the paper is concerned with finding
the optimal filtering operations for a given multipartite
state. It is shown that the SLOCC operations bringing a
stase into ite normal form maximize all the introduced en-
tanglement monotones. This was expected in the light of
the work by Nielsen about majorization [12]: the notion
of local disorder is intimately connected to the existence
of entanglement.

I. NCRMAL FORMS

We consider a multipartite system of arbitrary dimen-
sion and stochastic local quantum operations assisted by
classical communication (SLOCC) of the kind [13]
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where the {4;} are arbitrary local operators of the di-
mengion of the respective subsystems and where p' is




not normalized. Here we will restrict the {4;} to be
full rank and thus invertible, as lower rank operators can
only destroy entanglement, and we will therefore impose
the condition Vi : det(A4;) = 1. The most general local
operations involve also mixing, but as this also destroys
entanglement we witl not consider this. All density ma-
trices connected by the SLOCC operations {1} form a
class, and it’s therefore a natural question to find some
kind of representative state of each class. Inspired by the
results on two qubit systems [T}, it is natural to define the
representative state as the one for which all local corre-
lations are washed out: we expect this state to have the
largest amount of entanglement of the whole class as it is
well-known that there is some kind of trade-off between
local correlations and entanglement in a system. Let us
now state a first theorem:

Theorem 1 Consider & Ny X No x - -+ Np, pure or mized
multipartite state. Then this state can be brought into
a normal form by determinant 1 SLOCC operations (1),
where the normal form is unigquely defined up fo local uni-
tary operations and has all partial traces over all but one
party proportional to the identity. Moreover the trace of
the normal form is the minimal one that can be oblained
by determinant 1 SLOCC operalions. :

Proof: We will give a constructive proof of this the-
orem. The idea is that the local determinant 1 oper-
stors A; bringing p into its normal form can be iter-
atively determined by a procedure where at each step
one party minimizes the trace of p'. Consider there-
fore the partial trace g3 = Tra...p(p). If py is full rank,
there exists an operator X with determinant 1 such that
P, = Xp1 X" ~ In,. Indeed, X = |det(p1)|*™(\/p1) "
does the job, and we have g = det(p))"MIn,. We
therefore have the relation:

Tr(p') = Nidet(p)'™ < Tr{p), (2)

where p = (XQI---@Dp(X &I ---®@I)!. Thisinequality
follows from the fact that the geometric mean is always
gmaller then the arithmetic mean, with equality iff p;
is proportional to the identity. Therefore the trace of p
decreases after this. We can now repeat this procedure
with the other parties, and then repeat everything iter-
atively. After each iteration, the trace of p will decrease
unless all partial traces are equal to the identity. Because
the trace of a positive definite operator is bounded from
below, we know that the decrements become arbitrarily
small and following equation (2} this implies that all par-
tial traces converge to operators arbitrarily close to the
identity. We still have to consider the case where p; is

not full rank. Then there exists an X fending to infinity
with determinant 1 such that Xp; X7 = 0, leading to a
normal form identical to zero, clearly the positive oper-
ator with minimal possible trace. This ends the proof of
the existence of the normal form.

The proof of the unicity (up to local unitary opera-
tions) is obtained as follows. If the normal form were
not unique, there would exist a normal ¢, and ¢, and
diagonal matrices {I;} with determinant 1 such that
0y = (D1®--®@Dp)o,(D1®---@Dy)t: if the D; were not
diagonal we could always make them diagonal through
local unitary transformations. Writing the diagonal el-
ements of the normal g4, 07 in the Ny X Na X -+ X N
tensors Ty, T, it is readily observed that both tensors
are stochastic in all directions: the sum of whatever col-
umn in whatever direction results in 1 and all elements
are greater or equal to zero. Moreover both tensors are
connected by diagonal {D;} working on the respective
indices. For the sake of simplicity we now reason on the
bipartite case where T, and T, are doubly stochastic.
Because the column sums D) T, lie between the minimal
and maximal element of Dy (corresponding to nonzero
elements in T}, D2 can only compensate for the effect
of Dy if both Dy and Dy are a multiple of the identity,
implying ¢, = o,. The only exception arises when there
are zeros in T,. It turns out that these cases correspond
to block doubly stochastic matrices ! and even then we
have Ty, = T;.. This easily generalizes to the multipartite
case. It follows that D; ® -+ ® D, has elements of value
1 on the indices where the {equal) diagonal elements of
o and ¢ do not vanish. Due to the positiveness of g it
follows that o, = o,. Therefore the unicity of the normal
form is proven.

Due to the constructive proof of the normal form and
its unicity, it follows that the trace of the normal form is
the minimal one under all determinant 1 SLOCC opera-
tions, which ends the proof. O

It should be noted that the group of matrices having
a determinant equal to 1 is not compact. There indeed
exist low rank states that can only be brought into their
respective normal form by infinite transformations, al-
though the clags of states with this property is clearly of
measure zero. Note also that for these states the given
proof of the uniqueness is not longer valid, although we
are strongly convinced that the property of uniqueness
is still there. As an example consider the W-state [§]
[y == [001) + |010} + {100). The following identity is
easily checked:

lim (W ')®3]W) —o0.
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UThis happens for example in the case of the EPR and GHZ state: there exists local non-trivial operations that map the state

onto itself.




The normal form corresponding to the W-state is there-
fore equal to zero, clearly the state with the minimal pos-
sible trace. This is interesting, as it will be shown that
a normal form is zero iff a whole class of entanglement
monotones is equal to zero. Therefore the states with
normal form equal to zerc are fundamentally different
from those with finite normal form, and this leads to the
generalization of the W-class to arbitrary dimensions. It
thus happens that some states have normal form equal
to 0. This also happens if the state does not have fult
support on the Hilbert space in that one partial trace p;
is rank deficient.

Note also that states which do not have full support
on the Hilbert space, such as pure states from which cone
party is fully separable, ail have normal form equal to
£Ero.

As a second remark, we should note that the proof
was constructive and leads to a very efficient algorithm
for actually calculating the normal form. In the case of
pure states however, a square root version of the above
algorithm can easily be derived that directly acts on the
state and not on the density operator, which has clear
numerical advantages.

A third remark concerns the continuity of the normal
form with relation to the original density matrix. First of
all note that the non-uniqueness due to the local unitaries
can be circumvented by imposing all A; to be hermitian.
Using techniques of matrix differentiation, it is then pos-
sible to prove that a small perturbation of the original
density matrix results is a perturbation of the same or-
der of magnitude in the normal form if all { A;} are finite:
the normal form is robust against noise.

11. ENTANGLEMENT MONOTONES

The above formalism suggests a very general way of
constructing entanglement monotones:

Theorem 2 Consider a linearly homogeneous positive
funetion of a pure (unnormalized) state M(p = 1) {¢|)
that remains invarient under the determinant 1 SLOCC
operations (1). If its definition is extended to mired
states by the convex roof formalism, then M(p) is an en-
tanglement monotone where p is an arbitrary normalized
state.

Proof: A quantity M{p) is an entanglement monotone
iff its expected value decreases under the action of every
local operation. Due to the convex roof formalism, it is
immediately clear that M is decreasing under the action
of mixing. It is therefore suflicient to show that for every

local Ay < Ing, &1 = /In, — Al Ay, it holds that
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Ay can be transformed to a determinant I matrix by di-
viding it by det(4;)'/V1. Note that the homogeneity of
M {ap} = aM (p) and its invariance for pure states under
determinant 1 SLOCC operations implies that if {1}
represents an optimal decomposition of p in terms of the
convex roof formalism, then {(®4;)9))} represents an
optimal decomposition of (®4;)p(®A4;)7. Therefore the
previous inequality is equivalent to

M(p) > (1det(A1)[*™ -+ | det(A2)[/™M) M (p).

As the arithmetic mean always exceeds the geometric
mean, this inequality is always satisfied. The same argu-
ment can now be repeated for the other A;, which ends
the proof. O

Entanglement monotones of the above class can
readily be constructed using the completely anti-
symmetric {ensor €;..iy. Indeed, it holds that
EAi1j1Ai2j2 o Ay in€iegy = det{A)es iy, and as
det{A4) = 1 this leads to invariant quantities under deter-
minant 1 SLOCC operations.

Consider for example the cage of two qubits. The
quantity | > i 5 Wisgs €42 €ia g | 18 clearly of the consid-
ered clagss, and it happens to be identical to the con-
currence {10]. In the case of three qubits the simplest
non-trivial homogeneous quantity invariant under deter-
minant 1 SLOCC operations is given by
(80 2k Biagaka Vi go s Piajaha €ov iz Eisia G172 Cioga Ehr s Ehaka|
This happens to the square root of the 3-tangle intro-
duced by Wootters et al. [11], which quantifies the true
tripartite entanglement.

More generally, as the considered entanglement mono-
tones are invariant under the determinant 1 SLOCC op-
erations, the number of independent entanglement mono-
tones is equal to the degrees of freedom of the normal
form obtained in the case of a pure state minus the de-
grees of freedom induced by the local unitary operations.
Indeed, this is the amount of invariants of the whole class
of states connected by SLOCC operations. It is then eas-
ily proven that a normal form is equal to zero if and only
if all the considered entanglement monotones are equal
to zero: the entanglement monotones are homogeneous
functions of the normal form, and #f the normal form is
not equal to zero there always exists an SLOCC invariant
quantity that is different from zero.

In the case of 4 qubits for example, parameter counting
leads to (22 — 1) — 4.6 = 7 independent entanglement
monotones. The simplest monotone is given by
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and the other 6 entanglement monotones can be obtained
by including more factors. These are clearly generaliza-
tions of the concurrence and the 3-tangle to four parties.

If the subsystems happen to be of unequal dimension,
it is easy to prove that the corresponding normal forms
for pure states are equal to zero: a 2 x 4 pure state for
example effectively lives in a 2 x 2 Hilbert space. This im-
plies that all possible invariants will also be equal to zero.
Therefore the considered entanglement monotones make
only sense if all the subsystems have the same dimension.
Note also that all considered entanglement monotones
will be zero for pure states for which cne party is com-
pletely disentangled from the other ones, as the normal
form of such a state is again zero.

Let us finally give a non-trivial example of an entan-
glement monotone of the considered class in the case of
three qutrits: '

; Z ?7!)3'1.?-] k1 w‘izjzkz w‘iajaka Wiy s ka Vis js ks Wie do ko
1/8
€i152i36'£455'566j1j2j46j3j5jﬂeklk5k66k2k3k4l /3,
€ is now the 3 X 3 x 3 completely antisymmetric tensor,
and the other (2-3% - 1) —(3-16) — 1 = 4 independent en-
tanglement monotones can be constructed by including
more factors.

IIl. OPTIMAL FILTERING

The main motivation of this paper was to character-
ize the optimal SLOCC operations to be performed on
one copy of a multipartite system such that, with a non
zero chance, a state with maximal possible true multi-
partite entanglement is obtained. This question is of im-
portance for experimentalists as in general they are not
able to perform joint operations on multiple copies of the
system. Therefore the procedure outlined here often rep-
resents the best entanglement distillation procedure that
is practically achievable.

In the previous section a whole class of entanglement
monotones that measure the amount of multipartite en-
tanglement were introduced. Let us now state the fol-
iowing theorem:

Theorem 3 Consider a pure or mized multipartite state,
then the local filtering operations that maezimize oll en-
tanglement monofones introduced in theorem 2 are rep-
resented by operators proportional to the determinant 1
SLOCC operations that transform the state into ifs nor-
mal form.

Proof: The proof of this theorem is surprisingly simple.
Indeed, all the quantities introduced in theorem 2 are
invariant under determinant ¥ SLOCC operations if the
states do not get normalized. The entanglement mono-
tones themselves however are only defined on normalized

states, and due to the linear homogeneity the following
identity holds:

M( (®:.4:)p(®:.4:) ): M(p)
Tr (R A)p(@: A1) Tr {(®:4:)p(®: A;)T)

The optimal filtering operators are then obtained by the
{4;} minimizing Tr ((®;4:)p(®:A4:)?). But this problem
was solved in theorem 1, where it was proved that the
{A;} bringing the state into its unique normal form min-
imize this trace. |

It is therefore proved that the (reversible) procedure of
washing out the local correlations maximizes the multi-
partite entanglement in the system. This is in complete
accordance with the results of Nielsen [12] where it was
shown that the notion of local disorder is intimately con-
nected to the existence of entanglement.

The previous theorem allows to find the optimal filter-
ing operators for a given pure or mixed state such that
the value of all the considered entanglement monotones
for the filtered state are maximized. This is remarkable
as there is no direct way of actually calculating the value
of these monotones for mixed states due to the difficulty
involved in finding the optimal decomposition in the con-
vex roof formalism!
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