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Four qubits can be entangled in nine different ways
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We consider a single copy of a pure four-partite state of qubits and investigate its behavior under the action
of stochastic local quantum operations assisted by classical communication (SLOCC). This leads to a complete
classification of all different classes of pure states of four gubits. It is shown that there exist nine families of
states corresponding to nine different ways of entangling four qubits. The states i the generic family give rise
to Greenberger-Home-Zeilinger-like entanglement. The other ones contain essentially two-or three-qubit en-
tanglement distributed among the four parties. The concept of concurrence and 3-tangle is generalized to the
case of mixed states of four qubits, giving rise fo a seven-parameter family of entanglement monotones.
Finally, the SLOCC operations maximizing all these entanglement monotones are derived, yielding the optimal

single-copy distillation protocol.

DOT: 10.1103/PhysRevA.65.052112

One of the open questions in the field of quantum infor-
muation theory is to understand the different ways in which
multipartite systems can be entangled. As the concept of en-
tanglement is related to the nonlocal properties of a state,
iocal quantum operations cannot affect the intrinsic nature of
entanglement. It is therefore natwral to define equivalence
classes of states generated by the group of reversible stochas-
tic local quantum operations assisted by classical communi-
cation (SLOCC) operations [1,2]. In this paper we are con-
cerned with SLOCC operations on one copy of a state, which
means that we are considering actions under LOCC opera-
tions on one copy of a state without imposing that they can
be achieved with unit certainty. Two states belonging to the
same class are able to perform the same quantum inforima-
tion processing (QIF) tasks, although with a different prob-
ability.

In the case of a single copy of an entangled pure state of
two qubits, it is well known that it can be converted to the
singlet state by SLOCC operations [3]. In the case of three
entangled qubits, it was shown [2,4,5] that each state can be
converted by SLOCC operations either to the GHZ-state
(|000)y+|111))/vZ, or to the W-state ([001)+]010)
+]100))/v3, leading to two inequivalent ways of entangling
three qubits. The GHZ state is generally considered as the
state with the genuine three-partite entanglement, while the
W state has the peculiar property of having the maximal ex-
pected amount of two-partite entanglement if one party is
traced out [2]. In this paper, we extend these results to the
case of four qubits. Furthermore the widely celebrated en-
tanglement measures concurrence [6] and 3-tangle [2,7],
characterizing the amount of genuine two-and three-qubit en-
tanglement, are generalized to the case of four qubits, giving
rise to a seven-parameter family of entanglement monotones.
The SLOCC filtering operations maximizing all these en-
tanglement monotones are derived, and it is shown that these
are the unigue operations [8] (up to local unitaries) bringing
a state into a locally stochastic form (Le., bringing all local-
density operators equal to the identity). Following Gisin and
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Bechmann-Pasquinucci [9], we claim that these operations
maximize the true four-partite entanglement.

Interestingly, we found that there exist eight families of
pure four-qubit states that cannot be brought into local sto-
chastic form by finite SLOCC operafions. These states do
have the peculiar property that they have the maximal
amount of two-and/or three-qubit entanglement shared be-
tween all four parties. In some sense their entanglement is
maximally robust against the loss of one or two qubits.

An interesting feature about entanglement that emerges
out of the results of this paper is the fact that a quantun state
has only a finite susceptibility for entanglement. This will be
illustrated by the fact that the operations maximizing the true
four-partite entanglement are precisely the operations that
destroy all local correlations (i.e., the local-density operators
are made stochastic} and that also destroy the three-partite
entanglement (i.e., the three-qubit entanglement of the states
obtained by tracing out one party becomes equal o zero}.
The states having maximal two- or three-partite entangle-
ment shared among the four parties on the cther hand are
exactly the states having zero genuine four-pariite entangle-
ment {i.e., the four concurrences are all equal to zero).

Before developing the mathematical formalism, it should
be noted that the study of states of four qubits is particularly
interesting as the current experimental state of the art allows
us to entangle four photons [10-12] or ions [13]. Further-
more SLOCC operations can relatively easily be imple-
mented on photons, and it is therefore of interest to imple-
ment the optimal SLOCC operations such as to yield a state
with maximal four-partite entanglement.

This paper is organized as follows. First we derive a
simple way of determining whether two pure four-qubit
states are connected by local unitary operations. Next some
advanced linear algebra is used to determine the orbits gen-
erated by SLOCC operations. This leads to mine different
families of states, corresponding to nine essentially different
ways of entangling four qubits, although only one family is
generic. This analysis gives rise to seven independent en-
tanglement monotones characterizing the four-partite en-
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tanglement, Finally, the optimal SLOCC operations are de-
rived such as to maximize all these entanglement monotones.

iet us now first consider the problem to determine
whether two pure four-qubit states are equivalent up to local
unitary operations. Therefore, the following accident in Lie-
group theory can be exploited:

SU(2)®@SU(2)=50(4).

Here, SO(4) denotes the family of real orthogonal matrices
with determinant equal to one. More specifically, it bolds that
YU, UpeSU2): T(U,®U,)T S0(4) where

1 0 0 1
! i i 0
=210 -1 1 o ()
i 0 0 —i

A pure state of four qubits is parametrized by a four index
tensor ¢ ;. ;;, with i;e {1,2}. This tensor can be rewritten as

a 4X4 matrix by concatenating the indices (iy,i,} and
(i5,14). Next we define the matrix R as

R=T§T. )

it 1s then straightforward to show that a local unitary trans-
formation | ¢/ )=U,@U,&@ U3®U,|#) results in a transfor-
mation R'=0,R0, with O, 0,e80(4) and O=
T, @UNTY, 0;=T(U;0U)"T". A normal form under
local unitary operations can now be imposed as follows:
make the (1, 1} entry of R real by multiplying the whole
malrix with the appropriate phase, and use O, and O to
diagonalize the real part of R through the unique real singu-
lar value decomposition. This procedure eliminates alfl 13
degrees of freedom of the local unitary operations, and two
states are therefore equivalent up to local unitary operations
if they have the same normal form.

Next we move to the central problem of this paper,
namely, characterizing the local orbits generated by SLOCC
operations of the form

[ )=A1RA,@A;QA | ) (3)

with {4} full rank and therefore invertible 2 X2 matrices.
There is no restriction in choosing {4} e SL(2,0), and then
a useful accident arises

ST(2.0)®SL(2.0)~50(4,C). @)

S0{4, C) denotes the noncompact group of complex orthogo-
nal matrices OTO=I,. Again it holds that ¥ A, B
e SL(2,0): T(A,®A,)TT e S0(4,C) with T given in Eg. (1),
and SLOCC-operations therefore correspond to left and right
multiplication of R (2) with complex orthogonal matrices.
The challenge is now to exploit the two times 12 degrees of
freedom of these complex orthogonal matrices to bring A
into an unique normal form with maximal 8 real degrees of
freedom left. This will be possible using some advanced
techniques of linear algebra.
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We will now state a technical theorem that is a generali-
zation of the singular value decomposition to complex or-
thogonal matrices.

Theorem 1. Given a complex nXn matrix R, then there
always exist complex square orthogonal matrices O and O,
such that R’ = 0, R0, is a unique direct sum of blocks of the
form

(1) m > m blocks of the form (A;{,+5,,) being symmet-
ric Jordan blocks (see, for example, [14] 4.4.9), and A; is a
complex parameter {note that the case m=1 cotresponds to
the scalar case);

(2) m>Xm blocks consisting of an upper left (m + 1)
X, part being the matrix obtained by taking the odd rows
and even columns of an (Zm;+ 1) X{(2m,+ 1) symmetric
Jordan block, and a lower right {m —m; — 1) X {(m~-m) part
being the iranspose of the matrix obtained by taking the odd
rows and even columns of a [2(m—m ) —1]X[2(m—m,)
— 1] symmetric Jordan block.

Proof. Consider the 2nX2n complex symmetric matrix

0 R
P=(RT 0). &)

Due to Theorem 3 in Chap. XTI of [15], there exists a com-
plex orthogonal @ such that P=QP’Q" with P’ a direct
sum of symmetric m X m Jordan blocks J; with eigenvalue
;. Next we observe that whenever [v ;v4] (v and v, both
have n rows such that [v;v,] has 2n rows) is the eigens-
pace of P corresponding to a symmetric Jordan block J;,
then [v;—wv,! is the eigenspace of P corresponding t¢ a
Jordan block —J;. Due to the uniqueness of the Jordan ca-
nonical decomposition, these eigenspaces will be either lin-
early independent (this holds, for example, for sure if the
corresponding eigenvalue is different from zero), or equal to
each other (which implies that the corresponding eigenvalue
is equal to zero). If the first case applies, both v and v, are
orthogonal matrices.

The second degenerated case however is more difficult. In
this case, it holds that [v|;v5]=[v;—v.]Q for some or-
thogonal (. Let us first calculate the standard nonsymmetric
Jordan canonical form J of the symmetric Jordan block
with eigenvalue 0: J= UTTU with U unitary and symmetric.
If we define [xy;xy]=[0vy;0,]U" and Q=UTQU, the
following identities hold: 0"Ag,,0=Ag;,, OJ=~JQ and
[xg:x2] x ) 1x0] =Ag;p (the matrix Ag;, is defined as the ma-
trix permuting all veciors [xq,%9 %] o {x,, %, - 211}
The conditions on  imply that O is equal to the mafrix

Oy=+(—1)'8,;. Therefore [x,;x,] is either of the form
X1 ay 0 bl 0 cp -
= (6}
%) L0 a4, O by O

or

7

o
=

5o

-
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Due to the constraint [x;x,]7[x;x,]=4 sip» the row di-
mension of [x;;x,| and therefore of J has to be odd, as
otherwise the upper rightmost entry cannot be equal to one.
Retransforming to the original picture with the unitary U, it
holds that this structure is preserved, and the eigenspace
[v,;v2] is of a form (6} or (7},

As the dimension of a J; giving rise to the degenerated
case has to be odd, it is compulsory that there is an even
number of degenerated cases (indeed, the nondegenerate
cases give rise to two times a similar block and the total
dimension is even). More precisely, for each [v;v,]; of the
form (6), there has to exist a [v ;v ]z of the form (7) (even-
tually of different dimension). The eigenstructure of such
pairs of degenerate cases can then be brought into the form

a bieadd BX -0 0 - 000
00 -+ 0 0 -vab by a5 Bt

by right multiplication with a permutation matrix W. The
effect on J; and J, is to transform them as

0 0 K 0

I, 0 0o o o0 kI
WT( i W= . k
0 J, Kl 0 0 0

0 kK, 0 0

where K, represents the matrix obtained by taking the odd
rows and even columms of the symmetric Jordan block J,,.

Collecting all the pieces, it is now easily verified that the
canonical form obtained is exactly of the form stated in the
theorem. This completes the proof. ]

Due to the equivalence of SL{2,0)®SL(2,0), and
SO(4,0), the normal forms arising in the above lemma will
immediately vield a natural representative state for each class
of four-qubit states connected by SLOCC operations. The
normal form encodes the genuine non-iocal properties of the
state, while the SLOCC operators needed to bring the state
into normal form characterize the local information. The fol-
lowing classification is obtained:

Theorem 2. A pure state of four qubits can, up to permu-
tations of the qubits, be transformed into one of the follow-
ing nine families of states by determinant one SLOCC op-
erations {3):

a+d a—d
Gabc.¢=——2-(J0000)+|1111))+ T(fOOli}—l—illOO))

bte b—c
+ —2—{30101)—4- |1010)) + T([0110)+ [1001)),

a+b a—b
Lab%z T(|UOOO>+ [1111))+ ~—2—(!0011)+ [1100%)
+¢(]0101)+{1010)) +]0110),
La25,2=a(|0{)00)+ [1111))+5(|0101) +|1010}) + 0110}

110011},
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a+b
Labgza(|0000)+ [1111))+ —u-z—-(|0101)+ [1010%)

a—b i
+ T(|0110}+ 11001)) + E(FOO{)I) + (0010}

+]0LL1}+] 101 1)),
Lo, =a(]0000)+[0101)+ [ 1010) |1 111)) +(i]0001)
+]0110y— ] 1011)),

L =g(|0000) + 1 1111))+ (j0011} +{0101) +[0110)),

230557

Ly, ,;=10000)+|0101) +|1000) + 1110},
Ly, .= [0000)+[1011) +|1101)+|1110),
Lo, 0,07 |0000) +{0111).

The complex parameters a, b, ¢,  are the unique eigenvalues
of P (5) with nonnegative real part, and the indices L ,z... ate
representative for the Jordan block structure of P (e.g.,

2,057 NEANS that the eigenstructure of P consists of two

2% 2 Jordan blocks with eigenvalues a and —¢, and a de-
generated pair of dimension, respectively, 3 and 1).

Proof. If Theorem 1 is applied to a 4 X4 R, it is easily
checked that 12 different families arise where a family Is
defined as having Jordan and degenerated Jordan blocks of
specific dimension. Note however that the orthogonal matri-
ces obtained by application of the theorem can have deter-
minant equal to —1, while the SLOCC operations correspond
to an orthogonal matrix with determinant +1; this is how-
aver not a problem as these operations correspond to SLOCC
operations followed by a permutation of the qubits (1—2)
ot (3+:4). One can proceed by checking that permutations
of qubits (2+-3) or (1+=4) transform different families into
each other. Tt is indeed true that R=J{a}®J(b)D K37
transforms inte R’ =J,{a)}®J,(b) i qubit 2 and 3 are per-
muted. This also happens in the case J{(a) @ Ksz1—J4(a).
Moreover it can be shown that J,(a)® K3 is equivalent to
Ji(a)®J3(0). Therefore only mine essentially different not-
mal forms are retained. |

A generic pure state of four qubits can always be trans-
formed to the ., state. This state is peculiar in the sense
that all local-density operators, obtained by fracing out all
parties but one, are proportional to the identity. As shown in
[8], this is the unique state (up to focal unitary operations)
with this property of all states connected by SLOCC opera-
tions. In the light of the results of Gisin and Bechmann-
Pasquinuca [9] and Nielsen and Nielsen and Kenpe about
majorization [16,17], we claim that this is the state with
maximal four-partite entanglement on the complete orbit
generated by SLOCC operations: the more entanglement, the
more local entropy. In a later section, this argument will be
made hard by showing that a whole class of entanglement
monotones are indeed maximized for the locally stochastic
state.
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It is interesting to note that the 3-tangle [2] of the mixed
states obtained by tracing out one party of this G, state is
always equal to zero. Indeed, if the right-unitary matrix {7

1 (1 g1 —B)
1+ gH\s 1 -p 1)

being the square root of the density operator obtained by
tracing out the first qubit, four three-qubit W states are ob-
tained. If we define the mixed 3-tangle as the convex roof of
the square root of the three-qubit entanglement, this quantity
is clearly equal to zero. Therefore the SLOCC operations
maximizing the four-partite entanglement result in a loss of
all true three-partite entanglement. This is reminiscent to the
case of three qubits where the two-qubit state obtained by
tracing out one particle of a GHZ state is separable.

Let us next discuss some specific examples. A completely
separable state belongs to the family L., with a=b=c¢

=(). if only two qubits are entangled, an Einstein-Podolsky-
Rosen (EPR) state arises belonging to the family L, , with

a=h=0. A state consisting of two EPR pairs belongs to
G opeq With (a=1;h=c=d=0) or a=b=c=d, depending
on the permutation. The class Ly, -, - consists of all three-
qubit GHZ states accompanied with a separable qubit, while
the three-qubit W state belongs to the family I, o - with
a=0.

The four-qubit |®,) state [18] belongs to the generic fam-
ily, while the four qubit W state {[0001)+[0010}+|0100}
+[1000))/2 belongs to the family L,,, with @=5=0. This
can be shown to have a mixed 3-tangle equal to zero, but has
a concurrence of 1/2 when whatever two qubits are traced
out. On the contrary the state Lo - has all concurrences
equal to zero if two qubits are traced out. This state is com-
pletely symmetric in the permutation of the qubits 2, 3, and
4. It has the property of having a mixed 3-tangle equal to 1/2
if particle 2, 3, or 4 is traced out. This can be proven by
considering the 8 X2 “square root” '

1 T

Some straightforward calculations show that the average
square root of the three-qubit entanglement of the vectors
obtained by multiplying this matrix with whatever 2Xn
right-unitary matrix is equal to 1/2. Similar arguments show
that only three-qubit W-type entanglement { 7=0) is retained
if the first qubit is traced out.
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B=N—q+ g,
g=8ad>+8b%c*— 4a’b* — da’c - 4d°b* — 4d% 7,
r={a*~d*}(b*—c?),

is applied to the 8 X2 matrix

0 b+e b—c¢ 07
a—d 0 0 a+d

The state L05$§ is somehow a hybrid of both the four-
qubit W state and Low}—. Again a mixed 3-tangle of 1/2 is

obtained if qubit 2, 3, or 4 is traced out, a mixed 3-tangle
equal to zero if qubit 1 is traced out, but now the mixed state
obtained by tracing out qubit 1 and (3 or 4) has a concur-
rence equal to 1/2, while the other concurrences vanish.
Another interesting state belongs to the family 7, with
a=0: |¢y=(j0001)}+|0110}+|1000%)/¥3. Its mixed
3-tangle equals 2/3 in the case of tracing out qubit 1 or 4 and
vanishes otherwise. Moreover the concurrence vanishes ev-
erywhere if two qubits are traced out except in the case of
tracing out qubits 2 and 3, reselting in a concurrence of 2/3.
After this zoological survey, let us next move on to the
topic of entanglement monotones. The complex elgenvalues
of P (5), given by * (a,b,¢,d), are the only invariants under
all determinant one SLOCC operations (note that an eigen-
valne zero is associated to the degenerated Jordan blocks). In
[8] it was proven that all real positive functions of the pa-
rameters of a pure state that are linearly homogensous in p
and remain invariant under determinant one SLOCC opera-
tions, are entanglement monotones (in the case of mixed
states they are defined by the convex roof formalism). There-
fore all real positive homogeneous functions of
(a?,b2,¢%,d%) are entanglement monotones, such as

M () =a®+b¥+ ™+ do 7.

Taking into account one degree of freedom due to the phase,
this gives rise to a seven-parameter family of entanglement
monotones. All these entanglement monotones are maxi-
mized by the operations making the density matrix locally
stochastic [8] {meaning that the identity is obtained when all
qubits but one are traced out). The optimal single-copy dis-
tillation procedure for a generic pure state is therefore to
implement the SL.OCC operations bringing it into its normal
form G 4. This is in complete accordance with the results
of Nielsen on majorization [ 16]. Note that all the other nor-
mal forms can only be brought into the local stochastic nor-
mal form by a filtering procedure whose probability of suc-
cess tends o zero [8].
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In summary, we have identified all different families of
pure states of four qubits generated by SLOCC operations.
Only one family is generic, and all states in it can be made
locally stochastic by SLOCC operations. The same SLOCC
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operations represent the optimal single-copy distillation pro-
tocol. The eight other families correspond to states having
some kind of degenerated four-partite entanglement and are
the four-partite generalizations of the three-partite W state.
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