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Using microarrays is a powerful technique to monitor the
expression of thousands of genes in a single experiment. From
series of such experiments, it is possible to identify the mech-
anisms that govern the activation of genes in an organism.
Short deoxyribonucleic acid patterns (called binding sites) near
the genes serve as switches that control gene expression. As a
result similar patterns of expression can correspond to similar
binding site patterns. Here we integrate clustering of coexpressed
genes with the discovery of binding motifs. We overview several
important clustering techniques and present a clustering algo-
rithm (called adaptive quality-based clustering), which we have
developed to address several shortcomings of existing methods.
We overview the different techniques for motif finding, in par-
ticular the technique of Gibbs sampling, and we present several
extensions of this technique in our Motif Sampler. Finally, we
present an integrated web tool called INCLUSive (available online
at http://www.esat.kuleuven.ac.be/~dna/BioI/Software.html) that
allows the easy analysis of microarray data for motif finding.

Keywords—Adaptive quality-based clustering, clustering, Gibbs
sampling, microarray, motif finding, regulation.

I. INTRODUCTION

Unraveling the mechanisms that regulate gene activity
in an organism is a major goal of molecular biology. In
the past few years, microarray technology has emerged as
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an effective technique to measure the level of expression
of thousands of genes in a single experiment. Because
of their capacity to monitor many genes, microarrays are
becoming the workhorse of molecular biologists studying
gene regulation. However, these experiments generate data
in such amount and of such a complexity that their analysis
requires powerful computational and statistical techniques.
As a result, unraveling gene regulation from microarray
experiments is currently one of the major challenges of
bioinformatics.

Starting from microarray data, a first major computational
task is to cluster genes into biologically meaningful groups
according to their pattern of expression [23]. Such groups
of related genes are much more tractable for study by
biologists than the full data themselves. Classical clustering
techniques such as hierarchical clustering [13] or-means
[51] have been applied to microarray data. Yet the specificity
of microarray data (such as the high level of noise or the
link to extensive biological information) has created the
need for clustering methods specifically tailored to this
type of data [17]. We overview both the first generation
of clustering methods applied to microarray data as well
as second-generation algorithms, which are more specific
to microarray data. In particular, we address a number of
shortcomings of classical clustering algorithms with a new
method called adaptive quality-based clustering [10] in
which we look for tight reliable clusters.

In a second step, we ask what makes genes belong to the
same cluster. A main cause of coexpression of genes is that
these genes share the same regulation mechanism at the se-
quence level. Specifically, some control regions (called pro-
moter regions) in the neighborhood of the genes will contain
specific short sequence patterns, called binding sites, which
are recognized by activating or repressing proteins, called
transcription factors. In such a situation, we say that the genes
are transcriptionally regulated. Switching our attention from
expression data to sequence data, we consider algorithms that
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discover such binding sites in sets of deoxribonucleic acid
(DNA) sequences from coexpressed genes. We analyze the
upstream region of those genes to detect patterns, also called
motifs, that are statistically overrepresented when compared
to some random model of the sequence. The detection of
overrepresented patterns in DNA or amino-acid sequences
is called motif finding.

Two classes of methods are available for motif finding:
word-counting methods and probabilistic sequence models.
Word-counting methods are string-matching methods based
on counting the number of occurrences of each DNA word
(called oligonucleotide) and comparing this number with the
expected number of occurrences based on some statistical
model. Probabilistic sequence models build a likelihood
function for the sequences based on the motif occurrences
and a model of the background sequence. Probabilistic
optimization methods, such as expectation maximization
(EM) and Gibbs sampling, are then used to search for good
configurations (motif model and positions). After briefly
presenting the word-counting methods and the method based
on EM, we discuss the basic principles of Gibbs sampling
for motif finding more thoroughly. We also present our
Gibbs sampling method, called the Motif Sampler, where
we have introduced a number of extensions to improve
Gibbs sampling for motif finding, such as the use of a
more precise model of the sequence background based on
higher-order Markov chains. This improved model increases
the robustness of the method significantly.

These two steps, clustering and motif finding, are in-
terlocked and specifically dedicated to the discovery of
regulatory motifs from microarray experiments. In partic-
ular, clustering needs to take into account that motif finding
is sensitive to noise. Therefore, we need clustering methods
that build conservative clusters for which coexpression
can be guaranteed in an attempt to increase the proportion
of coregulated genes in a cluster. This is one of the re-
quirements that warranted the development of our adaptive
quality-based clustering algorithm. Also, the motif-finding
algorithms are specifically tailored to the discovery of
transcription factor binding motifs (while related algorithms
can be developed for slightly different problems in protein
sequence analysis). These tight links mandate our integrated
presentation of these two topics in this paper. Furthermore,
the same links call for integrated software tools to handle
this task in an efficient manner. Our INCLUSive web tool
(http://www.esat.kuleuven.ac.be/~dna/BioI/Software.html)
supports motif finding from microarray data. Starting with
the clustering of microarray data by adaptive quality-based
clustering, it then retrieves the DNA sequences relating
to the genes in a cluster in a semiautomated fashion, and
finally performs motif finding using our Motif Sampler (see
Fig. 1). Integration is paramount in bioinformatics as, by
optimally matching the different steps of the data analysis
to each other, the total analysis becomes more effective than
the sum of its parts.

This paper is organized as follows. In Section II, we briefly
describe microarray technology; in Section III, we summa-
rize the basic concepts of molecular biology relevant to motif

finding. In Section IV, we overview current clustering algo-
rithms for microarray data, in particular our adaptive quality-
based clustering algorithm. We also discuss methods for pre-
processing microarray data to make them suitable for clus-
tering and methods for assessing the quality of clustering
results from the statistical and biological standpoints. Next,
we describe in Section V the problem of motif finding and
overview several of the methods available for this problem.
We then explore, in Section VI, the basic principles of Gibbs
sampling for motif finding and describe the extensions neces-
sary for its efficient practical application. In Section VII, we
describe our INCLUSive web tool for the integration of adap-
tive quality-based clustering and Gibbs sampling for motif
finding.

II. M EASURING GENE EXPRESSIONPROFILES

Cells produce the proteins they need to function properly
by 1) transcribingthe corresponding genes from DNA into
messenger ribonucleic acid (mRNA) transcripts and 2)trans-
lating the mRNA molecules into proteins. Microarrays ob-
tain a snapshot of the activity of a cell by deriving a mea-
surement from the number of copies of each type of mRNA
molecule (which also gives an indirect and imperfect picture
of the protein activity). The key to this measurement is the
double-helix hybridization properties of DNA (and RNA).
When a single strand of DNA is brought in contact with a
complementary DNA sequence, it will anneal to this com-
plementary sequence to form double-stranded DNA. For the
four DNA bases, adenine is complementary to cytosine, and
guanine is complementary to thymine. Because both strands
have opposite orientations, the complementary sequence is
produced by complementing the bases of the reference se-
quence starting from the end of this sequence and proceeding
further upstream. Hybridization will therefore allow a DNA
probe to recognize a copy of its complementary sequence ob-
tained from a biological sample.

An array consists of a reproducible pattern of different
DNA probes attached to a solid support. After RNA extrac-
tion from a biological sample, fluorescently labeled comple-
mentary DNA (cDNA) or complementary RNA (cRNA) is
prepared. This fluorescent sample is then hybridized to the
DNA present on the array. Thanks to the fluorescence, hy-
bridization intensities (which are related to the number of
copies of each RNA species present in the sample) can be
measured by a laser scanner and converted to a quantitative
readout. In this way, microarrays allow simultaneous mea-
surement of expression levels of thousands of genes in a
single hybridization assay.

Two basic array technologies are currently available:
cDNA microarrays and gene chips. cDNA microarrays [12]
are small glass slides on which double-stranded DNA is
spotted. These DNA fragments are normally several hundred
base pairs (bp) in length and are often derived from reference
collections of expressed sequence tags (which are subse-
quences from an mRNA transcript that uniquely identify this
transcript) extracted from many sources of biological mate-
rials so as to represent the largest possible number of genes.
Usually each spot represents a single gene.Twosamples are
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Fig. 1. A high-level description of data analysis for motif finding from microarray data. The
analysis starts from scanned microarray images. After proper quantification and preprocessing, the
data are available for clustering in the form of a data matrix. Clustering then determines clusters of
potentially coregulated genes. Focusing on a cluster of genes of interest, motif finding analyzes the
sequences of the control regions of the genes in the cluster. A number of true motifs are present in
those sequences, but they are unknown. Motif finding analyzes those sequences for statistically
overrepresented DNA patterns. Finally, candidate motifs are returned by the motif-finding algorithm
and are available for further biological evaluation.

used in cDNA microarrays: a reference and a test sample (e.g.,
normal versus malignant tissue). A pair of cDNA samples is
independently copied from the corresponding mRNA popula-
tions with the reverse transcriptase enzyme and labeled using
distinct fluorescent molecules (green and red). These labeled
cDNA samples are then pooled and hybridized to the array.
Relative amounts of a particular gene transcript in the two
samples are determined by measuring the signal intensities
detected at both fluorescence wavelengths and calculating
the ratios (here, only relative expression levels are obtained).
A cDNA microarray is therefore a differential technique,
which intrinsically normalizes for part of the experimental
noise. An overview of the procedure that can be followed
with cDNA microarrays is given in Fig. 2.

GeneChip oligonucleotide arrays (Affymetrix, Inc.,
Santa Clara, CA) [30] are high-density arrays of oligonu-
cleotides synthesized using a photolithograpic technology
similar to microchip technology. The synthesis usesin situ
light-directed chemistry to build up hundreds of thousands of
different oligonucleotide probes (25 nucleotides long). Each
gene is represented by 15–20 different oligonucleotides,
serving as unique sequence-specific detectors. In addition,
mismatch control oligonucleotides (identical to the perfect
match probes except for a single base-pair mismatch) are
added. These control probes allow estimation of cross-hy-
bridization and significantly decrease the number of false
positives. With this technology, absolute expression levels
are obtained (no ratios).
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Fig. 2. Schematic overview of an experiment with a cDNA microarray. (1) Spotting of the
presynthesized DNA probes (derived from the genes to be studied) on the glass slide. These probes
are the purified products from polymerase chain reaction amplification of the associated DNA clones.
(2) Labeling (by reverse transcriptase) of the total mRNA of the test sample (red channel) and
reference sample (green channel). (3) Pooling of the two samples and hybridization. (4) Readout
of the red and green intensities separately (measure for the hybridization by the test and reference
sample) in each probe. (5) Calculation of the relative expression levels (intensity in the red channel
divided by the intensity in the green channel). (6) Storage of results in a database. (7) Data mining.

III. I NTRODUCTION TOTRANSCRIPTIONALREGULATION

In this section, we present concisely the main concepts
from biology relevant to our discussion of motif finding in
DNA sequences.

A. Structure of Genes

Genes are segments of DNA that encode for proteins
through the intermediate action of mRNA. A gene and the
genomic region surrounding it consists of a transcribed
sequence, which is converted into an mRNA transcript, and
of various untranscribedsequences. The mRNA consists
of a coding sequence that is translated into a protein and
of severaluntranslatedregions (UTRs). The untranscribed
sequences and the UTRs play a major role in the regulation
of expression. Notably, thepromoter region in front of
the transcribed sequence contains thebinding sitesfor the
transcription factor proteins that start up transcription.
Moreover, the region upstream of the transcription start
contains many binding sites for transcription factors that act
as activatorsand repressorsof gene expression (although
some transcription factors can bind outside this region).

B. Transcription

Transcription means the assembly of ribonucleotides into
a single strand of mRNA. The sequence of this strand of
mRNA is dictated by the order of the nucleotides in the tran-
scribed part of the gene. The transcription process is initiated

Fig. 3. Initiation of the transcription process by the association of
the complex of transcription factors (gene regulatory proteins), the
RNA polymerase, and the promoter region of a gene.

by the binding of several transcription factors to regulatory
sites in the DNA, usually located in the promoter region of
the gene. The transcription factor proteins bind each other to
form a complex that associates with an enzyme called RNA
polymerase. This association enables the binding of RNA
polymerase to a specific site in the promoter. In Fig. 3, the
initiation of the transcription process is shown.

Together, the complex of transcription factors and the
RNA polymerase unravel the DNA and separate both
strands. Subsequently, the polymerase proceeds down on
one strand while it builds up a strand of mRNA complemen-
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Table 1
Databases on Transcriptional Regulation

tary to the DNA, until it reaches the terminator sequence. In
this way, an mRNA is produced that is complementary to
the transcribed part of the gene. Then, the mRNA transcript
detaches from the RNA polymerase, and the polymerase
breaks its contact with the DNA. In a later stage, the mRNA
is processed, transported out of the nucleus, and translated
into a protein.

C. Transcription Factors

Transcription factors are proteins that bind to regulatory
sequences on eukaryotic chromosomes thereby modifying
the rate of transcription of a gene. Some transcription factors
bind directly to specific sequences in the DNA (promoters,
enhancers, and silencers), others bind to each other. Most of
them bind both to the DNA as well as to other transcription
factors. It should be noted that the transcription rate can be
positively or negatively affected by the action of transcription
factors. When the transcription factor significantly decreases
the transcription of a gene, it is called a repressor. If, on the
other hand, the expression of a gene is upregulated, biolo-
gists speak of an activator.

D. Regulatory Elements on the Web

Regulatory elements play a central role in the study of
biological sequences and many databases are available to
explore known regulatory elements. Table 1 gives a list of
databases of promoters and gene regulation that are acces-
sible online. Most of these sites are also portals to specific
tools for the analysis of regulatory mechanisms.

IV. CLUSTERING OFGENE EXPRESSIONPROFILES

Using microarrays, we can measure the expression levels
of thousands of genes simultaneously. These expression
levels can be determined for samples taken at different time
points during a certain biological process (e.g., different
phases of the cycle of cell division) or for samples taken
under different conditions (e.g., cells originating from tumor
samples with a different histopathological diagnosis). For
each gene, the arrangement of these measurements into a
(row) vector leads to what is generally called an expression

profile. These expression profiles or vectors can be regarded
as data points in a high-dimensional space.

Because relatedness in biological function often implies
similarity in expression behavior (and vice versa) and be-
cause several genes might be involved in the process under
study, it will be possible to identify subgroups or clusters
of genes that will have similar expression profiles (i.e., ac-
cording to a certain distance function, the associated expres-
sion vectors are sufficiently close to one another). Genes with
similar expression profiles are said to be coexpressed. Con-
versely, coexpression of genes can thus be an important ob-
servation to infer the biological role of these genes. For ex-
ample, coexpression of a gene of unknown biological func-
tion with a cluster containing genes with known (or partially
known) function can give an indication of the role of the un-
known gene. Also, as discussed in Section V, coexpressed
genes are more likely to be coregulated.

Cluster analysis in a collection of gene expression profiles
aims at identifying subgroups (i.e., clusters) of such coex-
pressed genes, which thus have a higher probability of par-
ticipating in the same pathway. Note that cluster analysis of
expression data is only a first rudimentary step preceding fur-
ther analysis, which includes motif finding [49], [41], [54],
functional annotation, genetic network inference, and class
discovery in the microarray experiments or samples them-
selves [5], [17]. Moreover, clustering often is an interactive
process where the biologist or medical doctor has to validate
or further refine the results and combine the clusters with
prior biological or medical knowledge. Full automation of
the clustering process is still far away.

The first generation of cluster algorithms (e.g., direct
visual inspection [9], -means [51], self-organizing maps
(SOMs) [44], hierarchical clustering [13]) applied to gene
expression profiles were mostly developed outside biolog-
ical research. Although it is possible to obtain biologically
meaningful results with these algorithms, some of their
characteristics often complicate their use for clustering
expression data [43]. They require, for example, the predefi-
nition of one or more user-defined parameters that are hard to
estimate by a biologist (e.g., the predefinition of the number
of clusters in -means and SOM—this number is almost
impossible to predict in advance). Moreover, changing
these parameter settings will often have a strong impact
on the final result. These methods therefore need extensive
parameter fine-tuning, which means that a comparison of
the results with different parameter settings is almost always
necessary—with the additional difficulty that comparing the
quality of the different clustering results is hard. Another
problem is that first-generation clustering algorithms often
force every data point into a cluster. In general, a consider-
able number of genes included in the microarray experiment
do not contribute to the biological process studied, and these
genes will therefore lack coexpression with other genes (they
will have seemingly constant or even random expression
profiles). Including these genes in one of the clusters will
contaminate their content (these genes represent noise) and
make these clusters less suitable for further analysis. Finally,
the computational and memory complexity of some of these
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algorithms often limit the number of expression profiles that
can be analyzed at once. Considering the nature of our data
sets (number of expression profiles often running up into the
tens of thousands), this constraint is often unacceptable.

Recently, many new clustering algorithms have started to
tackle some of the limitations of earlier methods (e.g., the
self-organizing tree algorithm [SOTA] [18], quality-based
clustering [21], adaptive quality-based clustering [10],
model-based clustering [15], [58], simulated annealing [35],
gene shaving [17], the cluster affinity search technique
[CAST] [5]). Also, some procedures were developed that
could help biologists to estimate some of the parameters
needed for the first generation of algorithms (such as the
number of clusters present in the data [15], [35], [58]). We
will discuss a selection of these clustering algorithms in the
following sections.

An important problem that arises when performing cluster
analysis of gene expression profiles is the preprocessing
of the data. A correct preprocessing strategy is almost as
important as the cluster analysis itself. First, it is necessary
to normalize the hybridization intensities within a single
array experiment. In a two-channel cDNA microarray ex-
periment, for example, normalization adjusts for differences
in labeling, detection efficiency, and in the quantity of
initial RNA within the two channels [23]. Normalization is
necessary before one can compare the results from different
microarray experiments. Second, transformation of the data
using a nonlinear function (often the logarithm is used,
especially for two-channel cDNA microarray experiments
where the values are expression ratios) can be useful [23].
Third, expression data often contain numerous missing
values, and many clustering algorithms are unable to deal
with them [52]. It is therefore imperative either to use
appropriate procedures that can estimate and replace these
missing values or to adapt existing clustering algorithms,
enabling them to handle missing values directly (without
actually replacing them [10], [24]). Fourth, it is common to
(crudely) filter the gene expression profiles (removing the
profiles that do not satisfy some simple criteria) before pro-
ceeding with the actual clustering [13]. A fifth preprocessing
step is standardization or rescaling of the gene expression
profiles (e.g., multiplying every expression vector with a
scale factor so that its length is one [23]). This makes sense
because the aim is to cluster gene expression profiles with
the same relative behavior (expression levels go up and
down at the same time) and not only the ones with the same
absolute behavior. Some of these preprocessing steps will
be discussed in more detail in the following sections.

Validation is another key issue when clustering gene
expression profiles. The biologist using the algorithm is
of course mainly interested in the biological relevance of
these clusters and wants to use the results to discover new
biological knowledge. This means that we need methods
to (biologically and statistically) validate and objectively
compare the results produced by new and existing clustering
algorithms. Some methods for cluster validation have
recently emerged (Figure of merit (FOM) [58], (adjusted)
Rand index [60], and looking for enrichment of functional

Table 2
Availability of Clustering Algorithms

categories [46]), and will be discussed below. Note that no
real benchmark data set exists to unambiguously validate
novel algorithms (however, the measurements produced by
Cho et al. [9] on the cell cycle of yeast are often used for
this purpose).

A. Clustering Algorithms

As stated at the beginning of this section, many clustering
methods (first- and second-generation algorithms) are avail-
able; we will discuss some of the more important ones in
more detail below.

1) First-Generation Algorithms:Notwithstanding some
of the disadvantages of these early methods, it must be noted
that many good implementations (see Table 2) of these algo-
rithms exist ready for use by biologists (which is not always
the case with the newer methods).

a) Hierarchical clustering: Hierarchical clustering
[13], [23], [43] is the most widely used method for clus-
tering gene expression data and can be seen as thede facto
standard. Hierarchical clustering has the advantage that the
results can be nicely visualized (see Fig. 4). Two approaches
are possible: a top-down approach (divisive clustering; see
[1]) and a bottom-up approach (agglomerative clustering;
see [13]). The latter is the most commonly used and will be
discussed here. In the agglomerative approach, each gene
expression profile is initially assigned to a single cluster.
The distance between every couple of clusters is calculated
according to a certain distance measure (this results in a
pairwise distance matrix). Iteratively (and starting from all
singletons as clusters), the two closest clusters are merged,
and the distance matrix is updated to take this cluster
merging into account. This process gives rise to a tree
structure where the height of the branches is proportional to
the pairwise distance between the clusters. Merging stops
if only one cluster is left. Finally, clusters are formed by
cutting the tree at a certain level or height. Note that this
level corresponds to a certain pairwise distance, which in its
turn is rather arbitrary (it is difficult to predict which level
will give the best biological results). Finally, note that the
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Fig. 4. Typical result from an analysis using hierarchical
clustering using 137 expression profiles of dimension 8. The
left side of the figure represents the tree structure. The terminal
branches of this tree are linked with the individual genes and the
height of all the branches is proportional to the pairwise distance
between the clusters. The right side of the figure (also called
a heat map) corresponds to the expression matrix where each
row represents an expression profile, each column a microarray
experiment, and the individual values are represented on a color
(green to red) or gray scale.

memory complexity of hierarchical clustering is quadratic
in the number of gene expression profiles, which can be a
problem when considering the current size of the data sets.

b) -means clustering: -means clustering [46],
[51] results in a partitioning of the data (every gene ex-
pression profile belongs to exactly one cluster) using a
predefined number of partitions or clusters. -means
starts by dividing up all the gene expression profiles among

initial clusters. Iteratively, the center (which is nothing
more than the average expression vector) of each cluster is
calculated, followed by a reassignment of the gene expres-
sion vectors to the cluster with the closest cluster center.
Convergence is reached when the cluster centers remain
stationary.

Note that the predefinition of the number of clusters by
the user is also rather arbitrary (it is difficult to predict the
number of clusters in advance). In practice, this makes it nec-
essary to use a trial-and-error approach where a comparison
and biological validation of several runs of the algorithm with
different parameter settings are necessary.

c) Self-organizing maps:In SOMs [26], [44], the user
has to predefine a topology or geometry of nodes (e.g., a two-
dimensional grid—one node for each cluster), which again
is not straightforward. These nodes are then mapped into
the gene expression space, initially at random and iteratively
adjusted. In each iteration, a gene expression profile is ran-
domly picked, and the node that maps closest to it is selected.
This selected node (in gene expression space) is then moved
into the direction of the selected expression profile. The other
nodes are also moved into the direction of the selected ex-
pression profile but to an extent proportional to the distance
from the selected node in the initial two-dimensional node
topology.

2) Second-Generation Algorithms:In this section we
describe several of the newer clustering methods that
have specifically been designed to cluster gene expression
profiles.

a) Self-organizing tree algorithm:The SOTA [18]
combines both self-organizing maps and divisive hierar-
chical clustering. The topology or node geometry here takes
the form of a dynamic binary tree. Like SOMs, the gene
expression profiles are sequentially and iteratively presented
to the terminal nodes (located at the base of the tree—these
nodes are also called cells). Subsequently, the gene expres-
sion profiles are associated with the cell that maps closest to
it, and the mapping of this cell plus its neighboring nodes
are updated (moved into the direction of the expression
profile). The presentation of the gene expression profiles to
the cells continues until convergence. After convergence the
cell containing the most variable population of expression
profiles (variation is defined here by the maximal distance
between two profiles that are associated with the same
cell) is split into two sister cells (causing the binary tree
to grow), whereafter the entire process is restarted. The
algorithm stops (the tree stops growing) when a threshold of
variability is reached for each cell, which involves the actual
construction of a randomized data set and the calculation
of the distances between all possible pairs of randomized
expression profiles.

The approach described in [18] has some properties that
make it potentially useful for clustering gene expression pro-
files.

1) The clustering procedure itself is linear in the number
of gene expression profiles (compare this with the
quadratic complexity of standard hierarchical clus-
tering).

2) The number of clusters does not have to be known in
advance. Moreover, the procedure provides for a statis-
tical procedure to stop growing the tree. Therefore, the
user is freed from choosing an (arbitrary) level where
the tree has to be cut (like in standard hierarchical clus-
tering).
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In our opinion, however, this method also has some disad-
vantages:

1) The procedure for finding the threshold of variability is
time-consuming. The entire process described in [18]
is in fact quadratic in the number of gene expression
profiles.

2) No biological validation was provided showing that
this algorithm indeed produces biologically relevant
results.

b) Model-based clustering:Model-based clustering
[14], [15], [58] is an approach that is not really new and
has already been used in the past for other applications
outside bioinformatics. In this sense it is not really a true
second-generation algorithm. However its potential use
for cluster analysis of gene expression profiles has been
proposed only recently; thus, we treat it in this text as a
second-generation method.

Model-based clustering assumes that the data are gener-
ated by a finite mixture of underlying probability distribu-
tions, where each distribution represents one cluster. Usually,
multivariate normal distributions are used for these.

The covariance matrix for each cluster can be represented
by its eigenvalues decomposition, which controls the ori-
entation, shape, and volume of each cluster. Note that sim-
pler forms for the covariance structure can be used (e.g., by
having some of the parameters take the same values across
clusters), thereby decreasing the number of parameters that
have to be estimated but also decreasing the model flexibility
(capacity to model more complex data structures).

First, the parameters of the model are estimated with
an EM algorithm using a fixed value for the number of
clusters and a fixed covariance structure. This parameter
estimation is then repeated for different numbers of clusters
and different covariance structures. The result of the first
step is thus a collection of different models fitted to the data
and all having a specific number of clusters and a specific
covariance structure. Second, the best model in this group
of models is selected (i.e., the most appropriate number
of clusters and a covariance structure is chosen here). This
model selection step involves the calculation of the Bayesian
information criterion [42] for each model, which is not
further discussed here.

Yeung et al. [58] reported good results using their
MCLUST software [14] on several synthetic data sets and
real expression data sets. They claimed that the performance
of MCLUST on real expression data was at least as good as
could be achieved with a heuristic cluster algorithm (CAST
[5], not discussed here).

c) Quality-based clustering:In [21], a clustering algo-
rithm (called QT_Clust) is described that produces clusters
that have a quality guarantee which ensures that all mem-
bers of a cluster should be coexpressed with all other mem-
bers of this cluster. The quality guarantee itself is defined as
a fixed and user-defined threshold for the maximal distance
between two points within a cluster. Briefly said, QT_Clust is
a greedy procedure that finds one cluster at a time satisfying
the quality guarantee and containing a maximum number of

expression profiles. The algorithm stops when the number of
points in the largest remaining cluster falls below a prespec-
ified threshold. Note that this stop criterion implies that the
algorithm will terminate before all expression profiles are as-
signed to a cluster.

This approach was designed with cluster analysis of ex-
pression data in mind and has some properties that could
make it useful for this task.

1) By using a stringent quality guarantee, it is possible
to find clusters with tightly related expression profiles
(containing highly coexpressed genes). These clusters
might therefore be good “seeds” for further analysis.

2) Genes not really coexpressed with other members of
the data set are not included in any of the clusters.

There are, however, also some disadvantages.

1) The quality guarantee of the clusters is a user-defined
parameter that is hard to estimate and too arbitrary.
This method is therefore hard for biologists to use in
practice, and extensive parameter fine-tuning is neces-
sary.

2) This algorithm produces clusters all having the same
fixed diameter not optimally adapted to the local data
structure.

3) The computational complexity is quadratic in the
number of expression profiles.

Furthermore, no ready-to-use implementation is available.
d) Adaptive quality-based clustering:Adaptive

quality-based clustering [10] was developed starting from
the principles of quality-based clustering (finding clusters
with a quality guarantee containing a maximal number
of members) but was designed to circumvent some of its
disadvantages.

Adaptive quality-based clustering is a heuristic iterative
two-step approach. In the first step, a quality-based approach
is followed. Using an initial estimate of the quality of the
cluster, a cluster center is located in an area where the den-
sity of gene expression profiles is locally maximal. Contrary
to the original method [21], the computational complexity of
this first step is only linear in the number of expression pro-
files.

In the second step, called the adaptive step, the quality
of the cluster—given the cluster center, found in the first
step, that remains fixed—is re-estimated so that the genes be-
longing to the cluster are, in a statistical sense, significantly
coexpressed (higher coexpression that could be expected by
chance—according to a significance level). To this end,
a bimodal and one-dimensional probability distribution (the
distribution consists of two terms: one for the cluster and one
for the rest of the data) is fitted to the data using an EM algo-
rithm. Note that, the computational complexity of this step
is negligible with respect to the computational complexity of
the first step.

Finally, steps one and two are repeated, using the re-es-
timation of the quality as the initial estimate needed in the
first step, until the relative difference between the initial and
re-estimated quality is sufficiently small. The cluster is sub-
sequently removed from the data and the whole procedure is
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restarted. Note that only clusters whose size exceeds a pre-
defined number are presented to the user.

The adaptive quality-based clustering approach has some
additional advantages over standard quality-based clustering
that make it suited for the analysis of gene expression pro-
files.

1) In adaptive quality-based clustering, the user has to
specify a significance level . This parameter has a
strict statistical meaning and is therefore much less ar-
bitrary (contrary to the quality guarantee used in stan-
dard quality-based clustering). It can be chosen in-
dependently of a specific data set or cluster and it
allows for a meaningful default value (95%) that in
general gives good results. This makes this approach
user friendly without the need for extensive parameter
fine-tuning.

2) Adaptive quality-based clustering produces clusters
adapted to the local data structure (the clusters do not
have the same radius).

3) The computational complexity of the algorithm is
linear in the number of expression profiles.

4) Adaptive quality-based clustering was extensively bi-
ologically validated.

However, the method also has some limitations.

1) It is a heuristic approach not proven to converge in
every situation.

2) Because of the model structure used in the second step,
some additional constraints have to be imposed. They
include the fact that only standardized expression pro-
files are allowed and that the method has to be used in
combination with the Euclidean distance and cannot
directly be extended to other distance measures.

As a conclusion to this overview of clustering algorithms,
Table 2 gives an overview of some clustering methods for
which the software is available for download or can be ac-
cessed online.

B. Preprocessing of the Data

As stated at the start of this section, clustering also implies
performing some additional operations on the data, preparing
them for the actual cluster analysis. Below, we will discuss
some of the most common preprocessing steps.

1) Normalization: The first step is the normalization
of the hybridization intensities within a single array ex-
periment. In a two-channel cDNA microarray experiment,
several sources of noise (such as differences in labeling,
in detection efficiency, and in the quantity of initial RNA
within the two channels) create systematic sources of biases.
The biases can be computed and removed to correct the data.
Since many sources can be considered and since they can be
estimated and corrected in a variety of ways, many different
normalization procedures exist. We therefore do not cover
this topic further here; see [23] for more details.

2) Nonlinear Transformations:It is common practice to
pass expression values through a nonlinear function. Often
the logarithm is used for this nonlinear function. This is espe-
cially suited for dealing with expression ratios (coming from

two-channel cDNA microarray experiments, using a test and
reference sample), since expression ratios are not symmet-
rical [23]. Upregulated genes have expression ratios between
one and infinity, while downregulated genes have expression
ratios squashed between one and zero. Taking the logarithms
of these expression ratios results in symmetry between ex-
pression values of up- and downregulated genes.

3) Missing Value Replacement:Microarray experiments
often contain missing values (measurements absent because
of technical reasons). The inability of many cluster algo-
rithms to handle such missing values necessitates the re-
placement of these values. Simple replacements such as a
replacement by zero or by the average of the expression
profile often disrupt these profiles. Indeed, replacement by
average values relies on the unrealistic assumption that all
expression values are similar across different experimental
conditions. Because of an erroneous missing value replace-
ment, genes containing a high number of missing values can
be assigned to the wrong cluster. More advanced techniques
of missing value replacement (which use the-nearest
neighbor method or the singular value decomposition) have
been described [52] that take advantage of the rich informa-
tion provided by the expression patterns of other genes in
the data set.

Finally, note that some implementations of algorithms use
only the measured values to derive the clusters and as such
obviate the need for missing value replacement [10].

4) Filtering: As stated in the overview section, a set
of microarray experiments, generating gene expression
profiles, frequently contain a considerable number of genes
that do not really contribute to the biological process that is
being studied. The expression values of these profiles often
show little variation over the different experiments (they
are called constitutive with respect to the biological process
studied). Moreover, these constitutive genes will have seem-
ingly random and meaningless profiles after standardization
(division by a small standard deviation results in noise
inflation), which is also a common preprocessing step (see
further). Another problem comes from highly unreliable
expression profiles containing many missing values.

The quality of the clusters would significantly degrade if
these data were passed to the clustering algorithms as such.
Filtering [13] removes gene expression profiles from the data
set that do not satisfy some simple criteria. Commonly used
criteria include a minimum threshold for the standard devia-
tion of the expression values in a profile (removal of consti-
tutive genes) and a threshold on the maximum percentage of
missing values.

5) Standardization or Rescaling:Biologists are mainly
interested in grouping gene expression profiles that have the
same relative behavior; i.e., genes that are up- and downreg-
ulated together. Genes showing the same relative behavior
but with diverging absolute behavior (e.g., gene expression
profiles with a different baseline or a different amplitude
but going up and down at the same time) will have a rela-
tively high Euclidean distance. Cluster algorithms based on
this distance measure will therefore wrongfully assign these
genes to different clusters.
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This effect can largely be prevented by applying standard-
ization or rescaling to the gene expression profiles to have
zero mean and unit standard deviation. Gene expression pro-
files showing the same relative behavior will have a small(er)
Euclidean distance after rescaling [23].

C. Cluster Validation

As mentioned before, clustering will produce different re-
sults. Even random data often produce clusters depending on
the specific choice of preprocessing, algorithm, and distance
measure. Therefore, validation of the relevance of the cluster
results is of utmost importance. Validation can be either sta-
tistical or biological. Statistical cluster validation can be done
by assessing cluster coherence, by examining the predictive
power of the clusters, or by testing the robustness of a cluster
result against the addition of noise.

Alternatively, the relevance of a cluster result can be as-
sessed by a biological validation. Of course it is hard, not to
say impossible, to select the best cluster output, since “the
biologically best” solution will be known only if the bio-
logical system studied is completely characterized. Although
some biological systems have been described extensively,
no such completely characterized benchmark system is now
available. A common method to biologically validate cluster
outputs is to search for enrichment of functional categories
within a cluster. Detection of regulatory motifs (see [46]) is
also an appropriate biological validation of the cluster results.
Some of the recent methodologies described in literature to
validate cluster results will be highlighted in the following.

1) Testing Cluster Coherence:Based on biological intu-
ition, a cluster result can be considered reliable if the within-
cluster distance is small (i.e., all genes retained are tightly co-
expressed) and the cluster has an average profile well delin-
eated from the remainder of the data set (maximal intercluster
distance). Such criteria can be formalized in several ways,
such as the sum-of-squares criterion of-means [51], sil-
houette coefficients [24], or Dunn’s validity index [2]. These
can be used as stand-alone statistics to mutually compare
cluster results. They can also be used as an inherent part of
cluster algorithms, if their value is optimized during the clus-
tering process.

2) Figure of Merit: FOM [59] is a simple quantitative
data-driven methodology that allows comparisons between
outputs of different clustering algorithms. The methodology
is related to the jackknife and leave-one-out cross-validation.
The method goes as follows. The clustering algorithm (for
the genes) is applied to all experimental conditions (the data
variables) except for one left-out condition. If the algorithm
performs well, we expect that if we look at the genes from
a given cluster, their values for the left-out condition will
be highly coherent. Therefore, we compute the FOM for a
clustering result by summing, for the left-out condition, the
squares of the deviations of each gene relative to the mean
of the genes in its clusterfor this condition. The FOM mea-
sures the within-cluster similarity of the expression values of
the removed experiment and therefore reflects the predictive
power of the clustering. It is expected that removing one ex-
periment from the data should not interfere with the cluster

output if the output is robust. For cluster validation, each con-
dition is subsequently used as a validation condition, and the
aggregate FOM over all conditions is used to compare cluster
algorithms.

3) Sensitivity Analysis:Gene expression levels are the
superposition of real biological signals and experimental er-
rors. A way to assign confidence to a cluster membership of
a gene consists in creating newin silico replicas of the mi-
croarray data by adding to the original data a small amount of
artificial noise (similar to the experimental noise in the data)
and clustering the data of those replicas. If the biological
signal is stronger than the experimental noise in the measure-
ments of a particular gene, adding small artificial variations
(in the range of the experimental noise) to the expression pro-
file of this gene will not drastically influence its overall pro-
file and therefore will not affect its cluster membership. In
this case, the cluster membership of that particular gene is
robust with respect to sensitivity analysis, and a reliable con-
fidence can be assigned to the clustering result of that gene.
However, for genes with low signal-to-noise ratios, the out-
come of the clustering result will be more sensitive to adding
artificial noise. Through some robustness statistic [6], sensi-
tivity analysis lets us detect which clusters are robust within
the range of experimental noise and therefore trustworthy for
further analysis.

The main issue in this method is to choose the noise level
for sensitivity analysis. Bittneret al. [6] perturb the data by
adding random Gaussian noise with zero mean and a standard
deviation that is estimated as the median standard deviation
for the log-ratios for all genes across the experiments. This
implicitly assumes that ratios are unbiased estimators of rel-
ative expression, yet reality shows often otherwise.

The bootstrap analysis methods described by Kerret al.
[25] to identify statistically significant expressed genes or
to assess the reliability of a clustering result offers a more
statistically founded basis for sensitivity analysis and over-
comes some of the problems of the method described by Bit-
tneret al.[6]. Bootstrap analysis uses the residual values of a
linear analysis of variance (ANOVA) model as an estimate of
the measurement error. By using an ANOVA model, noncon-
sistent measurement errors can be separated from variations
caused by alterations in relative expression or by consistent
variations in the data set. These errors are assumed to be in-
dependent with mean zero and constant variancebut no
explicit assumption on their distribution is made. The resid-
uals are subsequently used to generate new replicates of the
data set by bootstrapping (adding residual noise to estimated
values).

4) Use of Different Algorithms:Just as clustering results
are sensitive to adding noise, they are sensitive to the choice
of clustering algorithm and to the specific parameter set-
tings of a particular algorithm. Many clustering algorithms
are available, each of them with different underlying statis-
tics and inherent assumptions about the data. The best way
to infer biological knowledge from a clustering experiment
is to use different algorithms with different parameter set-
tings. Clusters detected by most algorithms will reflect the
pronounced signals in the data set. Again statistics similar to
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that of Bittneret al. [6] are used to perform these compar-
isons.

Biologists tend to prefer algorithms with a deterministic
output, since this gives the illusion that what they find is
“right.” However, nondeterministic algorithms offer an ad-
vantage for cluster validation, since their use implicitly in-
cludes a form of sensitivity analysis.

5) Enrichment of Functional Categories:One way tobi-
ologically validate results from clustering algorithms is to
compare the gene clusters with existing functional classifi-
cation schemes. In such schemes, genes are allocated to one
or more functional categories [15], [46] representing their
biochemical properties, biological roles, and so on. Finding
clusters that have been significantly enriched for genes with
similar function is proof that a specific clustering technique
produces biologically relevant results.

As stated in the overview section, the results of the
expression profiling experiment of Choet al. [9] studying
the cell development cycle of yeast in a synchronized culture
is often used as a benchmark data set. It contains 6220
expression profiles taken over 17 time points (measurements
over 10-min intervals, covering nearly two cell cycles;
see also http://cellcycle-www.stanford.edu). One of the
reasons that these data are so frequently used as bench-
mark data for the validation of new clustering algorithms
is because of the striking cyclic expression patterns and
because the majority of the genes included in the data
have been functionally classified [38] (MIPS database; see
http://mips.gsf.de/proj/yeast/catalogues/funcat/index.html),
making it possible to biologically validate the results.

Assume that a certain clustering method finds a set of clus-
ters in the Choet al.data. We could objectively look for func-
tionally enriched clusters as follows: Suppose that one of the
clusters has genes where genes belong to a certain func-
tional category in the MIPS database, and suppose that this
functional category in its turn containsgenes in total. Also
suppose that the total data set containsgenes (in the case
of Cho et al. [9], would be 6220). Using the cumulative
hypergeometric probability distribution, we could measure
the degree of enrichment by calculating the probability or

-value of finding by chance at leastgenes in this specific
cluster of genes from this specific functional category that
contains genes out of the wholeannotated genes

These -values can be calculated for each functional cat-
egory in each cluster. Since there are about 200 functional
categories in the MIPS database, only clusters where the

-value is smaller than 0.0003 for a certain functional
category, are said to be significantly enriched (level of
significance 0.05). Note that these-values can also be used
to compare the results from functionally matching clusters
identified by two different clustering algorithms on the same
data.

As an example of cluster validation and as an illustration
of our adaptive quality-based clustering, we compared

-means with adaptive quality-based clustering on the Cho
et al. data. We performed adaptive quality-based clustering
[10] using the default setting for the significance level
(95%) and compared these results with those for-means
reported by Tavazoieet al. [46]. As discussed above, the
genes in each cluster have been mapped to the functional
categories in the MIPS database and the negative base-10
logarithm of the hypergeometric -values (representing
the degree of enrichment) have been calculated for each
functional category in each cluster. In Table 3, we compare
enrichment in functional categories for the three most
significant clusters found by each algorithm. To compare

-means and adaptive quality-based clustering, we iden-
tified functionally matching clusters manually. The first
column (“Cl. #, AC”) gives the index of the cluster identified
by adaptive quality-based clustering. The second column
(“Cl. #, KM”) gives the index of the matching cluster for

-means as described in Tavazoieet al. [46]. The third
column (“# Gene, AC”) gives the number of genes of in
the cluster for adaptive quality-based clustering. The fourth
column (“# Gene, KM”) gives the number of genes of in the
cluster for -means. The fifth column (“MIPS functional
category”) lists the significant functional categories for the
two functionally matching clusters. The sixth column (“In
cat., AC”) gives the number of genes of the corresponding
functional category in the cluster for adaptive quality-based
clustering. The seventh column (“In cat., KM”) gives the
number of genes of the corresponding functional category
in the cluster for -means. The eighth column (“-val.,
AC”) gives the negative logarithm in base 10 of the hyperge-
ometric -value for adaptive quality-based clustering. The
ninth column (“ -val., KM”) gives the negative logarithm
in base 10 of the hypergeometric-value for -means
(NR not reported). Although we do not claim to draw
any conclusion from this single table, we observe that the
enrichment in functional categories in stronger for adaptive
quality-based clustering than for -means. This result and
several others are discussed extensively in [10].

V. SEARCHING FORCOMMON BINDING SITES OF

COREGULATED GENES

In the previous section, we described the basic ideas under-
lying several clustering techniques together with their advan-
tages and shortcomings. We also discussed the preprocessing
steps necessary to make microarray data suitable for clus-
tering. Finally, we described methodologies for validating
the result of a clustering algorithm. We can now make the
transition toward looking at the groups of genes generated
by clustering and study the sequences of these genes to de-
tect motifs that control their expression (and cause them to
cluster together in the first place).

Given a cluster of genes with highly similar expression
profiles, the next step in the analysis is the search for the
mechanism responsible for their coordinated behavior.
We basically assume that coexpression frequently arises
from transcriptional coregulation. As coregulated genes
are known to share some similarities in their regulatory
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Table 3
Comparison of Functional Enrichment for the Yeast Cell Cycle Data of Choet al. Using
Adaptive-Quality Based Clustering andK-Means

mechanism, possibly at transcriptional level, their promoter
regions might contain some common motifs that are binding
sites for transcription regulators. A sensible approach to
detect these regulatory elements is to search for statistically
overrepresented motifs in the promoter region of such a set
of coexpressed genes [7], [40], [41], [46], [61].

In this section, we describe the two major classes of
methods to search for overrepresented motifs. The first
class of methods are string-based methods that mostly rely
on counting and comparing oligonucleotide frequencies.
The second class of methods is based on probabilistic
sequence models. For these methods, the model parameters
are estimated using maximum-likelihood (ML) or Bayesian
inference.

Table 4 gives an overview of some of the methods de-
scribed in the section that can be accessed online or where
the software is available for download.

In this section, we begin with a discussion of the impor-
tant facts that we can learn by looking at a realistic bio-
logical example. Prior knowledge about the biology of the
problem at hand will facilitate the definition of a good model.
Next, we discuss the different string-based methods, starting
from a simple statistical model and gradually refining the
models and the statistics to handle more complex configura-

Table 4
Availability of Motif-Finding Algorithms

tions. Then we switch to the probabilistic methods and intro-
duce EM for motif finding. In Section VI, we discuss Gibbs
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Fig. 5. Schematic representation of the upstream region of a set of coregulated genes. Several
possible combinations of the two motifs are present: 1) motifs occur on both strands; 2) some
sequences contain one or more copies of the two binding sites; or 3) some sequences do not
contain a copy of a motif.

sampling for motif finding. This method is less well known
than EM, yet it is more effective for motif finding in DNA
sequences. We therefore explain the basic ideas underlying
this method and overview the extensions, including our own
work, that are necessary for the practical use of this method.

A. Realistic Sequence Models

To search for common motifs in sets of upstream se-
quences, a realistic model should be proposed. Simple
motif models are designed to search for conserved motifs of
fixed length, while more complex models will incorporate
variability like insertions and deletions into the motif model.
But not only the model of the binding site itself is important;
the model of the background sequence in which the motif
is hidden and the number of times a motif occurs in the
sequence also play important roles.

To illustrate this complexity, we look at an example
in baker’s yeast (Saccharomyces cerevisiae). Fig. 5 gives
a schematic representation of the upstream sequences
from 11 genes inS. cerevisiaewhich are regulated by the
Cbfl-Met4p-Met28p complex and Met31p or Met32p in re-
sponse to methionine [53]. The consensus (which is the dom-
inant DNA pattern describing the motif) for these binding
sites is given by for the Cbfl-Met4p-Met28p
complex and for Met31p or Met32p [53].
A logo representation of the aligned instances of the two
binding sites is shown in Fig. 6. This logo represents the
frequency of each nucleotide at each position; the relative
size of the symbol represents the relative frequency of each
base at this position, and the total height of the symbol
represents the magnitude of the deviation from a uniform
(noninformative) distribution. Fig. 6 shows the locations
of the two binding sites in the region 800 bp upstream of
translation start. It is clear from this picture that there are
several possible configurations of the two binding sites
present in this data set. First of all, it is important to note
that motifs can occur on both strands. Transcription factors
indeed bind directly on the double-stranded DNA; therefore,
motif detection software should take this fact into account.

Fig. 6. Logo representation of the transcription factor binding
sites present in the MET data set.

Second, sequences could have either zero, one, or multiple
copies of a motif. This example gives an indication of the
kind of data that come with a realistic biological data set.

1) Palindromic Motifs: Palindromicmotifs are a special
type of transcription factor binding site from a computational
point of view. This kind of motif is a subsequence that is
exactly the same as its own reverse complement. The first
motif in Fig. 5 is an example of a motif with a palindromic
core.

2) Gapped Motifs:A second class of special motifs are
gappedmotifs or spaced dyads. Such a motif consists of two
smaller conserved sites separated by a gap or spacer. The
spacer occurs in the middle of the motif because the tran-
scription factors bind as a dimer. This means that the tran-
scription factor is made out of two subunits that have two
separate contact points with the DNA sequence. The parts
where the transcription factor binds to the DNA are con-
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Fig. 7. Logo representation of the FNR binding site. The motif
consists of two conserved parts,TTGAy andATCAA, separated by a
spacer of length 4.

served but are typically rather small (3–5 bp). These two con-
tact points are separated by a nonconserved gap or spacer.
This gap is mostly of fixed length but might be slightly vari-
able. Fig. 7 shows a logo representation of the FNR binding
site in bacteria.

3) Cooperatively Binding Factors and Modules:Cur-
rently another important research topic is the search for
cooperatively binding factors [56]. When only one of the
transcription factors binds, there is no activation but the
presence of two or more transcription factors activates the
transcription of a certain gene. If we translate this to the motif-
finding problem, we could search for individual motifs and
try to find, among the list of possible candidates, motifs that
tend to occur together. Another possibility is to search for
multiple motifs at the same time.

B. Oligonucleotide Frequency Analysis

The most intuitive approach to extract a consensus pattern
for a binding site is a string-based approach, where typically
overrepresentation is measured by exhaustive enumeration
of all oligonucleotides. The observed number of occurrences
of a given motif is compared with the expected number of
occurrences. The expected number of occurrences and the
statistical significance of a motif can be estimated in many
ways. In this section we give an overview of the different
methods.

A basic version of the enumeration methods was imple-
mented by van Heldenet al. [53]. They presented a simple
and fast method for the identification of DNA binding sites
in the upstream regions from families of coregulated genes
in S. cerevisiae. This method searches for short motifs 5–6
bp long. First, for each oligonucleotide of a given length,
we compute the expected frequency of the motif from all
the noncoding, upstream regions in the genome of interest.
Based on this frequency table, we compute the expected
number of occurrences of a given oligonucleotide in a
specific set of sequences. Next, the expected number of
occurrences is compared with the actual counted number of
occurrences in the data set. Finally, we compute a signifi-
cance coefficient that takes into account the distinct number
of oligonucleotides. A binomial statistic is appropriate in
the case where there are nonoverlapping segments.

Later, van Heldenet al. [54] extended their method to
find spaced dyads, motifs consisting of two small conserved
boxes separated by a fixed spacer. The spacer can be dif-

ferent for distinct motifs; therefore, the spacer is systemat-
ically varied between 0 and 16. The significance of this type
of motif can be computed based on the combined score of
the two conserved parts in the input data or based on the esti-
mated complete dyad frequency from a background data set.

The greatest shortcoming of this method is that there are
no variations allowed within an oligonucleotide. Tompa [50]
addressed this problem when he proposed an exact method to
find short motifs in DNA sequences. Tompa used a different
measure from that used by van Heldenet al. to calculate the
statistical significance of motif occurrences. First, for each

-mer with an allowed number substitutions, the number of
sequences in whichis found is calculated. Next, the proba-
bility of finding at least one occurrence ofin a sequence
drawn from a random distribution is estimated. Finally, the
associatedz-score is computed as

gives a measure of how unlikely it is to have occur-
rences of given the background distribution. Tompa pro-
posed an efficient algorithm to estimatefrom a set of back-
ground sequences based on a Markov chain.

Another interesting string-based approach is based on the
representation of a set of sequences with a suffix tree [36],
[55]. Sagotet al. [55] have used suffix trees to search for
single motifs in whole bacterial genomes. Marsanet al. [36]
later extended the method to search for combinations of mo-
tifs. The proposed configuration of a structured motif is a set
of motifs separated by a spacer that might be variable. The
variability is limited to 2 bp around an average gap length.
They also allow for variability within the binding site. The
representation of upstream sequences as suffix trees resulted
in an efficient implementation despite the large number of
possible combinations.

C. Probabilistic Methods

In the previous section, a binding site was modeled as a
set of strings. The following methods are all based on a rep-
resentation of the motif model by a position weight matrix.

1) Probabilistic Model of Sequence Motifs:In the sim-
plest model, we have a set of DNA sequences where each
sequence contains a single copy of the motif of fixed length.
(For the sake of simplicity, we will consider here only models
of DNA sequences, but the whole presentation applies di-
rectly to sequences of amino acids.) Except for the motif,
a sequence is described as a sequence of independent nu-
cleotides generated according to a single discrete distribu-
tion called the background model.
The motif itself is described by what we call a position
weight matrix, which are independent positions generated
according to different discrete distributions:
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Fig. 8. In this basic sequence model, each sequence contains one and only one copy of the motif.
The first part of the sequence is generated according to the background model� , then the motif
is generated by the motif matrix� , after which the rest of the sequence is again generated
according to the background model.

If we know the location of the motif in a sequence ,
the probability of this sequence given the motif position, the
motif matrix, and the background model is

Wherever appropriate, we will pool the motif matrix and
the background model into a single set of parameters

. For a set of sequences, the probability of the
whole set given thealignment(i.e., the
set of motif positions), the motif matrix, and the background
model is

The sequence model is illustrated in Fig. 8. The idea of the
EM algorithm for motif finding is to find simultaneously the
motif matrix, the alignment position, and the background
model that maximize the likelihood of the weights and
alignments. Gibbs sampling for motif finding extends EM
stochastically by not looking for the ML configuration
but generating candidate motif matrices and alignments
according to their posterior probability given the sequences.

2) Expectation Maximization:One of the first imple-
mentations to find a matrix representation of a binding site
was a greedy algorithm by Hertzet al. [19] to find the site
with the highest information content (which is the entropy
of the discrete probability distribution represented by the
motif matrix). This algorithm was capable of identifying a
common motif that is present once in every sequence. This
algorithm has been substantially improved over the years
[20]. In their latest implementation, CONSENSUS, Hertz
and Stormo have provided a framework to estimate the
statistical significance of a given information content score
based on large deviation statistics.

Within the ML estimation framework, EM is the first
choice of optimization algorithm. EM is a two-step iterative
procedure for obtaining the ML parameter estimates for a
model of observed data and missing values. In the expec-
tation step, the expectation of the data and missing values
is computed given the current set of model parameters. In
the maximization step, the parameters that maximize the
likelihood are computed. The algorithm is started with a

set of initial parameters and iterates over the two described
steps until the parameters have converged. Since EM is a
gradient ascent method, EM strongly depends on the initial
conditions. Poor initial parameters may lead EM to converge
to a local minimum.

EM for motif finding was introduced by Lawrence and
Reilly [28] and was an extension of the greedy algorithm of
Hertzet al.[19]. It was primarily intended for searching mo-
tifs in related proteins, but the described method could also
be applied to DNA sequences. The basic models assump-
tion is that each sequence contains exactly one copy of the
motif, which might be reasonable in proteins but is too strict
in DNA. The starting position of each motif instance is un-
known and is considered as being a missing value from the
data. If the motif positions are known, then the observed fre-
quencies of the nucleotides at each position in the motif are
the ML estimates of model parameters. To find the starting
positions, each subsequence is scored with the current es-
timate of the motif model. These updated probabilities are
used to re-estimate the motif model. This procedures is re-
peated until convergence.

Since assuming there is exactly one copy of the motif per
sequence is not really biologically sound, Bailey and Elkan
proposed an advanced EM implementation for motif finding
called MEME [3]. Although MEME was also primarily in-
tended to search for protein motifs, MEME can also be ap-
plied to DNA sequences.

To overcome the problem of initialization and getting
stuck in local minimums, MEME proposes to initialize the
algorithm with a motif model based on a contiguous sub-
sequence that gives the highest likelihood score. Therefore,
each substring in the sequence set is used as a starting point
for a one-step iteration of EM. Then the motif model with
the highest likelihood is retained and used for further opti-
mization steps until convergence. The corresponding motif
positions are then masked and the procedure is repeated.
Finally, Cardon and Stormo proposed an EM algorithm to
search for gapped motifs [8]. However, while performing
well for extended protein motifs, EM often suffers badly
from local minimums for short DNA motifs.

VI. GIBBS SAMPLING FOR MOTIF FINDING

Gibbs sampling is a Markov chain Monte Carlo (MCMC)
method for optimization by sampling. The idea behind sam-
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pling methods for optimization is the following. In ML such
as EM, we choose a set of parameters to describe our data by

However, the likelihood function contains much
more information about the data than just the point
estimate . In fact, the posterior distribution

provides a more accurate
representation of which parameter values are good can-
didates to describe our data. For example, if is
multimodal, the modes provide very different models that
describe the data well. Also, we can construct confidence in-
tervals for the parameters based on this distribution while we
do not get this information from an optimal point estimate.
Thus, it is advantageous to work with the full probability
distribution instead of limiting ourselves to a point estimate.

In some cases, it is possible to describe the posterior distri-
bution analytically. However, for more complex models such
as our sequence model, it is impossible to handle the proba-
bility distributions analytically. In that case, several methods
are available to generate data according to a complex proba-
bility distribution. These are methods such as the Metropolis-
Hasting algorithm [39] (which is well-known as the foun-
dation of the simulated annealing algorithm for global opti-
mization), the hybrid MCMC method [11], and Gibbs sam-
pling [45].

Here we will describe the general Gibbs sampling method
and how it can be applied to motif finding. If we assume that
we can generate samples according to the posterior dis-
tribution , we can use these samples to approximate
quantities of interest (possibly using Monte Carlo integra-
tion). For example, we can approximate aglobal solution
with maximum posterior probability by tracking the sample
with the highest posterior probability if we draw enough sam-
ples from the posterior distribution. Further, we can approx-
imate the posterior mean solution

by averaging the samples drawn from the posterior distribu-
tion.

A. The Missing Data Problem and Data Augmentation
Methods

Before describing of the general Gibbs sampling method,
we need to explain further how sampling can be applied to
motif finding. The idea is to generate plausible motifs and
alignments by drawing samples from the poste-
rior . From these samples, we can then track a best
motif matrix or alignment or compute an average motif ma-
trix or alignment.

However, we need to make an important semantic distinc-
tion. Indeed, the alignment is a property of the data, not of
the model. However, although the set of sequencesis avail-
able, the alignment is unknown. If the alignment were avail-
able in the form of sequence labels, our task of estimating
the motif matrix would be greatly facilitated. So, when we
set up the likelihood function , the alignment is

in fact missing from our sequence data. Therefore, recov-
ering the alignment is called the missing data problem [3].
Moreover, recovering the alignment is often less important
than estimating the model parameters. We could thus try to
set up directly the likelihood . But writing down this
likelihood function directly is next to impossible. It is only
by introducing the alignment that we get a simple expression
for our likelihood. Simplifying the likelihood by introducing
new variables is called the data augmentation method.

B. The Gibbs Sampler

Gibbs sampling is an MCMC method introduced by
Tanner and Wong [45] for data augmentation problems.
The idea is to describe a complex probability distribution in
terms of a Markov chain built with the simpler marginals
of the distribution. Suppose we have only three (possibly
continuous) variables described by the probability distribu-
tion . Gibbs sampling consists of sampling

according to , then sampling
according to , and then sampling
according to ; and repeating this
process indefinitely. We denote the fact that, under mild con-
ditions, this Markov chain converges to the joint distribution
by thechain operator:

C. The Collapsed Gibbs Sampler

For motif finding, we thus want to build a Gibbs sampler to
sample from . However, many variables are now
involved, which leaves a great deal of leeway in how the exact
sampling is set up. In the basic Gibbs sampler with three
variables as an illustration, we have

But in some cases, we may be able togroup variables to-
gether. For example, we may have

with . Or we may
be able tocollapseone of the variables

Liu [31] showed that the collapsed Gibbs sampler converges
faster than the grouped Gibbs sampler, which itself converges
faster than the basic Gibbs sampler.

For motif finding, Liu then proposed to set up a collapsed
Gibbs sampler as

where the chain directly approximates .
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Table 5
Basic Gibbs Sampling Algorithm for Motif Finding

D. The Basic Algorithm for Gibbs Sampling for Motif
Finding

In the previous sections, we have discussed the main ideas
behind Gibbs sampling for motif finding. The derivation
of the exact algorithm as presented by Lawrenceet al.
[27] and by Liu et al. [33] is more technical; we do not
discuss it here (Liu covers the technical details). Briefly, the
algorithm is basically the Markov chain described above,
but the computation of the probability distributions involves
the use of multinomial probability distributions (for the
probability of the data based on the likelihood function
presented in Section V-C1 and on the motif matrix and the
background model) and of Dirichlet probability distributions
(for the probability of the parameters of the motif matrix).
The derivation of the collapsed Gibbs sampler involves
several properties of integrals of Dirichlet distributions, and
a number of approximations are used to speed up the algo-
rithm further. The resulting algorithm appears in Table 5.

E. Extended Gibbs Sampling Methods

Several groups proposed advanced methods to fine-tune
the Gibbs sampling algorithm for motif finding in DNA se-
quences. A first version of the Gibbs sampling algorithm that
was especially tuned toward finding motif in DNA sequences
is AlignACE [41]; this version was later refined [22]. This al-

gorithm was the first reported to be used for the analysis of
gene clusters. Several modifications were made in AlignACE
with respect to the original Gibbs sampling algorithm. First,
one motif at the time was retrieved and the positions were
masked instead of simultaneous multiple motif searching.
Second, AlignACE was implemented with a fixed single nu-
cleotide background model based on base frequency in the
sequence set. Also, both strands were included in the search.
Finally, in the latest version, themaximum a posteriorilike-
lihood score was used to judge different motifs.

BioProspector [34] also uses a Gibbs sampling strategy
to search for common motifs in the regulatory region of co-
expressed genes. In this implementation various extensions
are proposed. First, BioProspector uses zero to third-order
Markov background models. The predictive update formula
is changed so that the probability of the instance being gen-
erated by the background model is given by this higher-order
background model

Second, the core sampling step was replaced by athreshold
sampler. This threshold sampling step was incorporated to
estimate the number of copies of a motif in a sequence. The
program defines two thresholds, and . Instances with
a score higher than will be automatically selected,
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while there will be one motif sampled from those motifs that
have a score between and . is set proportional
to the product of the average length of the input sequences
and the motif width. is initialized at zero and linearly in-
creased till it reaches the value of . This threshold sam-
pling step ensures faster convergence. As another modifica-
tion, BioProspector proposes two possible alternative motif
models. The first possibility is to search for palindromic mo-
tifs. The second possibility is to search for a gapped version
of the motif model, where the motif consists of two blocks
separated by a gap of variable length. The gapped version
searches for two motifs at the same time that occur within a
given range.

Within the INCLUSive framework [49], we designed the
Motif Sampler [47], [48] specifically to search in sets of up-
stream sequences from groups of coexpressed genes. Such
groups typically come from a cluster analysis of the expres-
sion profiles. Since the results of clustering are known to be
subject to noise, only a subset of the set of coexpressed genes
will be actually coregulated and have one or more copies of
the binding site. Therefore, it is important to have an algo-
rithm that can cope with this noise. The Motif Sampler uses
the framework of the probabilistic sequence model to esti-
mate the number of copies of a motif in a sequence. For each
sequence in the data set, the number of copies of the motif is
estimated, which is more accurate than earlier methods. Fur-
thermore, we demonstrated [48] that the use of a higher-order
background model built from an independent data set sig-
nificantly improves the performance of the Gibbs sampling
algorithm. We also provide precompiled background models
for several organisms (Arabidopsis thaliana, S. cerevisiae, E.
coli, Helicobacter pylori, Caenorhabditis elegans).

To exemplify the improvements obtained by further re-
finements of the Gibbs sampling strategy, we report here
briefly the use of higher-order background models on a data
set of coregulated genes from plants (see Fig. 9). The data
set consists of 33 genes known to be regulated in part by
the G-box transcription factor, which is linked to the light
response of plants. Additionally, noisy sequences not sus-
pected to contain an active motif are added gradually. We
can observe that the performance of the higher-order algo-
rithms is more robust to the addition of noisy sequence than
that of the zero-order algorithm. The improved robustness of
the method thanks to the higher-order background model is
discussed extensively in [47].

Ann_spec [57] has a slightly different approach to model
the motif. The motif model is represented with a sparsely
encoded perceptron with one processing unit. The weights
of the perceptron resemble the position weight matrix. This
model is based on the approximation of the total protein
binding energy by the sum of partial binding energies at the
individual nucleotides in the binding sites. The use of a per-
ceptron is also justified by the fact that it can be used to ap-
proximate posterior probability distributions. A gradient de-
scent training method is used to find the parameters of the
perceptron. For the training set for the perceptron, positive
examples are selected using a Gibbs sampling procedure.
Negative examples can be either constructed from random

Fig. 9. Total number of times the G-box motif is found in 10
repeated runs of the tests for three different background models.
The data set consists of the 33 G-box sequences and a fixed number
of added noisy sequences. The background models are order 0 and
order 3 based on a reference set or on the data only. A background
model of order 0 corresponds to the classical background model of
earlier versions of Gibbs sampling for motif finding.

sequence or from genomic data. To improve the specificity
of the motif model, a background model based on an inde-
pendent data set is preferred.

Ann_spec was recently extended to search for coopera-
tively acting transcription binding factors by GuhaThakurta
and Stormo [16]. Co-Bind searches for two motifs simulta-
neously by combining the weights that optimize the objec-
tive functions of the two individual perceptrons. The identi-
fication of two motifs simultaneously improved significantly
the detection of the true motifs compared with the classical
methods searching for one motif at the time.

McCueet al. have used a Gibbs motif-finding algorithm
for phylogenetic footprinting [37]. They also proposed a
motif model that accounts for palindromic motifs. Their
most important contribution lies in the use of a posi-
tion-specific background model estimated with a Bayesian
segmentation model [32]. This model accounts for the
varying composition of the DNA upstream of a gene.

VII. INCLUSIVE: INTEGRATED CLUSTERING, UPSTREAM

SEQUENCERETRIEVAL, AND MOTIF SAMPLING

Analysis of a microarray experiment is not restricted to a
single cluster experiment. Inferring “biological knowledge”
from a microarray analysis usually involves a complete
analysis going from preprocessing, sequential use of distinct
data preparation steps to the use of different complex
procedures that make predictions on the data. Clustering
predicts whether genes behave similarly, while motif
finding aims at retrieving the underlying mechanism of
this similar behavior. These data-mining procedures make
thus predictions about the same biological system. These
predictions are in the best case consistent with each other,
but they can also contradict each other. Combining these
methods into a global approach therefore increases their
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Table 6
Results of the Motif Search in Four Clusters From a Microarray Experiment on Mechanical
Wounding inA. thalianafor the Third-Order Background Model

relevance for biological analysis. Moreover, this integration
also allows the optimal matching of the different procedures
(such as the quality requirements in adaptive quality-based
clustering that reduce the noise level for Gibbs sampling for
motif finding). Furthermore, such global approaches require
extensive integration at the information technology level.
Indeed, as is often underestimated, the collection of data
from multiple data sources and transformation of the output
of one algorithm to the input of the next algorithm are often
tedious tasks.

To make such an integrated analysis of microarray data
possible, we have developed and made publicly available
our INCLUSive Web tool (INtegrated CLustering, Up-
stream sequence retrieval, and motif Sampling; http://www.
esat.kuleuven.ac.be/~dna/BioI) (see also the flowchart of
Fig. 1). As an illustration of the results obtained by combined
adaptive quality-based clustering and the Motif Sampler, we
show the results of motif finding on a microarray experiment
in plants. The data are from a microarray experiment on the
response to mechanical wounding of the plantA. thaliana.
The microarray consists of 150 genes related to stress
response in plants. The experiment consists of expression

measurements for those 150 genes at seven time points
following wounding (after 30 min, 60 min, 90 min, 3 h, 6 h,
9 h, and 24 h). The expression data were clustered using
adaptive quality-based clustering with a significance level
of 95%. Four clusters where identified that contained at
least five genes and those were selected for motif finding.
The Motif Sampler was used to search for six motifs of
length 8 bp and for six motifs of length 12 bp. A background
model of order 3 was selected as it gave the most promising
results. The analysis was repeated ten times, and only the
motifs identified in at least five runs were retained. Table 6
presents the motifs found. In the first column, the cluster
is identified together with the number of genes it contains.
The second column gives the consensus of the motif found.
The consensus of a motif is the dominant DNA pattern
in the motif described using a degenerate alphabet (e.g.,

); capitals are for strong positions, and lower
letters are for degenerate positions. The third column gives
the number of times this motif was found in the ten runs. The
fourth column gives matching known motifs found in the
PlantCARE database [29], if any. Finally, the last column
gives a short explanation of the matching known motifs.
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VIII. C ONCLUSION

We have presented algorithmic methods for the analysis
of microarray data for motif finding. Using microarrays is a
powerful technique to monitor the expression of thousands of
genes,andakey technique forbiologistsattempting tounravel
the regulation mechanisms of genes in an organism. After
reviewing the basics of microarray technology, we introduced
some concepts from molecular biology to describe how
transcription factors recognize binding sites to control gene
activation.Wethen introduced thestrategyof integratingclus-
tering (to detect groups of potentially coregulated genes) with
motif finding (todetect theDNAmotifs thatcontrol thiscoreg-
ulation). We presented several clustering techniques (such
as hierarchical clustering, -means, self-organizing maps,
quality-based clustering, and our adaptive quality-based
clustering) and discussed their respective advantages and
shortcomings. We also discussed the preprocessing steps
necessary to prepare microarray data for clustering: normal-
ization, nonlinear transformation, missing value replacement,
filtering, and rescaling. We also presented several strategies
to validate the results of clustering biologically as well as
statistically. Turning to motif finding, we described the two
main classes of methods for motif finding: word counting
and probabilistic sequence models. We focused on the par-
ticular technique of Gibbs sampling for motif finding. After
reviewing the basic ideas underlying this MCMC method, we
discussed several extensions that improve the effectiveness
of this method in practice. We introduced our Motif Sampler,
which in particular includes the use of higher-order back-
ground models that increase the robustness of Gibbs sampling
for motif finding. Finally, we briefly presented our integrated
Web tool INCLUSive, which allows the easy analysis of
microarray data for motif finding. Furthermore, we illustrated
the different steps of this integrated data analysis at the hand
of several practical examples.

It should be emphasized that a major endeavor of bioin-
formatics is to develop methodologies that integrate multiple
types of data (here expression data together with sequence
data) to obtain robust and biologically relevant results in an
efficient and user-friendly manner. Only such powerful tools
can deliver the necessary support for 21st-century molecular
biology.

ACKNOWLEDGMENT

The authors would like to thank for their cooperation Prof.
P. Rouzé and S. Rombauts of the Department of Plant Sys-
tems Biology of the University of Ghent, Belgium and of the
Flemish Interuniversity Institute for Biotechnology, and Ma-
gali Lescot of the Department of Genetics and Physiology of
Development of the University of Marseille, France.

REFERENCES

[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack,
and A. J. Levine, “Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays,” inProc. Natl. Acad. Sci. USA, vol. 96, 1999,
pp. 6745–6750.

[2] F. Azuaje, “A cluster validity framework for genome expression
data,”Bioinformatics, vol. 18, pp. 319–320, 2002.

[3] T. L. Bailey and C. Elkan, “Unsupervised learning of multiple
motifs in biopolymers using expectation maximization,”Machine
Learning, vol. 21, pp. 51–80, 1995.

[4] A. Ben-Dor, N. Friedman, and Z. Yakhini, “Class discovery in gene
expression data,” inProc. 5th Annu. Conf. Comput. Mol. Biol., 2001,
pp. 31–38.

[5] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression
patterns,”J. Comput. Biol., vol. 6, pp. 281–297, 1999.

[6] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix,
M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E.
Dougherty, E. Wang, F. Marincola, C. Gooden, J. Lueders, A. Glat-
felter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C.
Beaudry, M. Berens, D. Alberts, and V. Sondak, “Molecular classi-
fication of cutaneous malignant melanoma by gene expression pro-
filing,” Nature, vol. 406, pp. 536–540, 2000.

[7] P. Bucher, “Regulatory elements and expression profiles,”Current
Opinion in Structural Biol., vol. 9, pp. 400–407, 1999.

[8] L. R. Cardon and G. D. Stormo, “Expectation maximization for iden-
tifying protein-binding sites with variable lengths from unaligned
DNA fragments,”J. Mol. Biol., vol. 223, pp. 159–170, 1992.

[9] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D.
man, D. J. Lockhart, and R. W. Davis, “A genome-wide transcrip-
tional analysis of the mitotic cell cycle,”Mol. Cell, vol. 2, pp. 65–73,
1998.

[10] F. De Smet, J. Mathys, K. Marchal, G. Thijs, B. De Moor, and Y.
Moreau, “Adaptive quality-based clustering of gene expression pro-
files,” Bioinformatics, vol. 18, no. 5, pp. 735–746, 2002.

[11] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
Monte Carlo,”Phys. Lett. B, vol. 195, pp. 216–222, 1990.

[12] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent, “Ex-
pression profiling using cDNA microarrays,”Nature Genetics, vol.
21, no. 1 Suppl., pp. 10–14, 1999.

[13] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” inProc.
Nat. Acad. Sci. USA, vol. 95, 1998, pp. 14 863–14 868.

[14] C. Fraley and E. Raftery, “MCLUST: Software for model-based
cluster analysis,”J. Classification, vol. 16, pp. 297–306, 1999.

[15] D. Ghosh and A. M. Chinnaiyan, “Mixture modeling of gene expres-
sion data from microarray experiments,”Bioinformatics, vol. 18, pp.
275–286, 2002.

[16] D. GuhaThakurta and G. D. Stormo, “Identifying target sites for co-
operatively binding factors,”Bioinformatics, vol. 17, pp. 608–621,
2001.

[17] T. Hastie, R. Tibshirani, M. B. Eisen, A. Alizadeh, R. Levy, L. Staudt,
W. C. Chan, D. Botstein, and P. Brown. (2000) ‘Gene shaving’ as
a method for identifying distinct sets of genes with similar expres-
sion patterns. Genome Biology[Online]. Available: http://genome-
biology.com/2000/1/2/research/0003/.

[18] J. Herrero, A. Valencia, and J. Dopazo, “A hierarchical unsupervised
growing neural network for clustering gene expression patterns,”
Bioinformatics, vol. 17, pp. 126–136, 2001.

[19] G. Z. Hertz, G. W. Hartzell, and G. D. Stormo, “Identification of
consensus patterns in unaligned DNA sequences known to be func-
tionally related,”Comput. Appl. Biosci., vol. 6, pp. 81–92, 1990.

[20] G. Z. Hertz and G. D. Stormo, “Identifying DNA and protein pat-
terns with statistically significant alignments of multiple sequences,”
Bioinformatics, vol. 15, no. 7/8, pp. 563–577, 1999.

[21] L. J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring expression
data: Identification and analysis of coexpressed genes,”Genome
Res., vol. 9, pp. 1106–1115, 1999.

[22] J. D. Hughes, P. W. Estep, S. Tavazoie, and G. M. Church, “Com-
putational identification ofcis-regulatory elements associated with
groups of functionally related genes inSaccharomyces cerevisiae,”
J. Mol. Biol., vol. 296, pp. 1205–1214, 2000.

[23] J. Quackenbush, “Computational analysis of microarray data,”Nat.
Rev. Genetics, vol. 2, pp. 418–427, 2001.

[24] L. Kaufman and P. J. Rousseeuw,Finding Groups in Data: An Intro-
duction to Cluster Analysis. New York: Wiley, 1990.

[25] M. K. Kerr and G. A. Churchill, “Bootstrap cluster analysis: As-
sessing the reliability of conclusions from microarray experiments,”
Proc. Nat. Acad. Sci. USA, vol. 98, pp. 8961–8965, 2001.

[26] T. Kohonen,Self-Organizing Maps. Berlin, Germany: Springer-
Verlag, 1997.

[27] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton, “Detecting subtle sequence signals: A
Gibbs sampling strategy for multiple alignment,”Science, vol. 262,
pp. 208–214, 1993.

MOREAU et al.: FUNCTIONAL BIOINFORMATICS OF MICROARRAY DATA: FROM EXPRESSION TO REGULATION 1741

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on October 14, 2008 at 07:17 from IEEE Xplore.  Restrictions apply.



[28] C. E. Lawrence and A. A. Reilly, “An expectation maximization
(EM) algorithm for the identification and characterization of
common sites in unaligned biopolymer sequences,”Proteins, vol.
7, pp. 41–51, 1990.

[29] M. Lescot, P. Déhais, G. Thijs, K. Marchal, Y. Moreau, Y. Van de
Peer, P. Rouzé, and S. Rombauts, “PlantCARE, a database of plant
cis-acting regulatory elements and a portal to tools forin silico
analysis of promoter sequences,”Nucleic Acids Res., vol. 30, pp.
325–327, 2002.

[30] R. J. Lipschutz, S. P. A. Fodor, T. R. Gingeras, and D. J. Lockheart,
“High density synthetic oligonucleotide arrays,”Nature Genetics,
vol. 21, no. 1, pp. Suppl. 20–24, 1999.

[31] J. S. Liu, “The collapsed Gibbs sampler in Bayesian computations
with applications to a gene regulation problem,”J. Amer. Statist.
Assoc., vol. 89, no. 427, pp. 958–966, 1994.

[32] J. S. Liu and C. E. Lawrence, “Bayesian inference on biopolymer
models,”Bioinformatics, vol. 15, pp. 38–52, 1999.

[33] J. S. Liu, A. F. Neuwald, and C. E. Lawrence, “Bayesian models for
multiple local sequence alignment and Gibbs sampling strategies,”
J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1156–1170, 1995.

[34] X. Liu, D. L. Brutlag, and J. S. Liu, “BioProspector: Discovering
conserved DNA motifs in upstream regulatory regions of co-ex-
pressed genes,” inProc. Pacific Symp. Biocomputing, vol. 6, 2001,
pp. 127–138.

[35] A. V. Lukashin and R. Fuchs, “Analysis of temporal gene expres-
sion profiles: Clustering by simulated annealing and determining the
optimal number of clusters,”Bioinformatics, vol. 17, pp. 405–414,
2001.

[36] L. Marsan and M.-F. Sagot, “Algorithms for extracting structured
motifs using a suffix tree with application to promoter and regulatory
site consensus identification,”J. Comp. Biol., vol. 7, pp. 345–360,
2000.

[37] L. A. McCue, W. Thompson, C. S. Carmack, M. P. Ryan, J. S. Liu, V.
Derbyshire, and C. E. Lawrence, “Phylogenetic footprinting of tran-
scription factor binding sites in proteobacterial genomes,”Nucleic
Acids Res., vol. 29, pp. 774–782, 2001.

[38] H. W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps,
K. Lemcke, G. Mannhaupt, F. Pfeiffer, C. Schuller, S. Stocker, and
B. Weil, “MIPS: A database for genomes and protein sequences,”
Nucleic Acids Res., vol. 28, pp. 37–40, 2000.

[39] R. M. Neal,Bayesian Learning for Neural Networks. New York:
Springer, 1996, Lecture Notes in Statistics.

[40] U. Ohler and H. Niemann, “Identification and analysis of eukaryotic
promoters: Recent computational approaches,”Trends in Genetics,
vol. 17, no. 2, pp. 56–60, 2001.

[41] F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church, “Finding
DNA regulatory motifs within unaligned noncoding sequences clus-
tered by whole genome mRNA quantitation,”Nature Biotech., vol.
16, pp. 939–945, 1998.

[42] G. Schwarz, “Estimating the dimension of a model,”Ann. Statist.,
vol. 6, pp. 461–464, 1978.

[43] G. Sherlock, “Analysis of large-scale gene expression data,”Current
Opinion in Immunology, vol. 12, pp. 201–205, 2000.

[44] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-
vsky, E. S. Lander, and T. R. Golub, “Interpreting patterns of gene
expression with self-organizing maps: methods and application to
hematopoietic differentiation,”Proc. Nat. Acad. Sci. USA, vol. 96,
pp. 2907–2912, 1999.

[45] M. A. Tanner and W. H. Wong, “The calculation of posterior dis-
tributions by data augmentation (with discussion),”J. Amer. Statist.
Assoc., vol. 82, no. 398, pp. 528–550, 1987.

[46] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
Church, “Systematic determination of genetic network architecture,”
Nature Genetics, vol. 22, no. 7, pp. 281–285, 1999.

[47] G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P.
Rouzé, and Y. Moreau, “A higher order background model improves
the detection of promoter regulatory elements by Gibbs sampling,”
Bioinformatics, vol. 17, no. 12, pp. 1113–1122, 2001.

[48] G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De Moor, P.
Rouzé, and Y. Moreau, “A Gibbs sampling meyhod to detect
over-represented motifs in the upstream regions of co-expressed
genes,”J. Comput. Biol., vol. 9, no. 2, pp. 447–464, 2002.

[49] G. Thijs, Y. Moreau, F. De Smet, J. Mathys, M. Lescot, S. Rom-
bauts, P. Rouzé, B. De Moor, and K. Marchal, “INCLUSive: IN-
tegrated CLustering, Upstream sequence retrieval and motif sam-
pling,” Bioinformatics, vol. 18, no. 2, pp. 331–332, 2002.

[50] M. Tompa, “An exact method for finding short motifs in sequences,
with application to the ribosome binding site problem,” inProc.
7th Intl. Conf. Intelligent Syst. for Mol. Biol., Heidelberg, Germany,
Aug. 1999, pp. 262–271.

[51] J. T. Tou and R. C. Gonzalez, “Pattern classification by distance
functions,” inPattern Recognition Principles. Reading, MA: Ad-
dison-Wesley, 1979, pp. 75–109.

[52] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R.
Tibshirani, D. Botstein, and R. B. Altman, “Missing value estima-
tion methods for DNA microarrays,”Bioinformatics, vol. 17, pp.
520–525, 2001.

[53] J. van Helden, B. André, and L. Collado-Vides, “Extracting regu-
latory sites from upstream region of yeast genes by computational
analysis of oligonucleotide frequencies,”J. Mol. Biol., vol. 281, pp.
827–842, 1998.

[54] J. van Helden, A. F. Rios, and J. Collado-Vides, “Discovering regula-
tory elements in noncoding sequences by analysis of spaced dyads,”
Nucleic Acids Res., vol. 28, no. 8, pp. 1808–1818, 2000.

[55] A. Vanet, L. Marsan, A. Labigne, and M. F. Sagot, “Inferring regu-
latory elements from a whole genome. An analysis of helicobacter
pylori sigma family of promoter signals.,”J. Mol. Biol., vol. 297,
no. 2, pp. 335–353, 2000.

[56] T. Werner, “Models for prediction and recognition of eukaryotic pro-
moters,”Mammalian Genome, vol. 10, pp. 71–80, 1999.

[57] C. T. Workman and G. D. Stormo, “Ann-spec: A method for dis-
covering transcription binding sites with improved specificity,” in
Proc. Pacific Symp. Biocomputing, vol. 5, Honolulu, HI, 2000, pp.
464–475.

[58] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo,
“Model-based clustering and data transformations for gene expres-
sion data,”Bioinformatics, vol. 17, pp. 977–987, 2001.

[59] K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, “Validating clustering
for gene expression data,”Bioinformatics, vol. 17, pp. 309–318,
2001.

[60] K. Y. Yeung and W. L. Ruzzo, “Principal component analysis
for clustering gene expression data,”Bioinformatics, vol. 17, pp.
763–774, 2001.

[61] J. Zhu and M. Q. Zhang, “Cluster, function and promoter: Analysis
of yeast expression array,” inProc. Pacific Symp. Biocomputing, vol.
5, 2000, pp. 467–486.

Yves Moreau was born in Haine-St-Paul, Bel-
gium, in July 1970. He received the M.S. of elec-
trical engineering from the Faculté Polytechnique
de Mons, Mons, Belgium in 1992. He was a Ful-
bright Grantee at the Division of Applied Math-
ematics, Brown University, Providence, RI, and
there received the M.S. degree in applied mathe-
matics in 1993. He received the Ph.D. degree in
electrical engineering from the Katholieke Uni-
versiteit Leuven, Leuven, Belgium, in 1998.

He is currently an Assistant Professor at the
Department of Electrical Engineering of K.U. Leuven and a Postdoctoral
Researcher with FWO—Vlaanderen (the Fund for Scientific Research, Flan-
ders, Belgium). He is also a cofounder of the spin-off company Data4s NV.
His research focuses on Bayesian and maximum-likelihood methods for
graphical models in bioinformatics and medical informatics, with an em-
phasis on microarray data analysis.

Dr. Moreau was awarded the biannual Siemens Prize in 2002.

Frank De Smet was born in Bonheiden,
Belgium, in August 1969. He received the
M.S. degree in electrical and mechanical
engineering and is a Medical Doctor with an
additional degree in electrocardiography from
the Katholieke Universiteit, Leuven, Belgium,
in 1992 and 1998, respectively. He is currently
pursuing the Ph.D. degree at the Department
of Electrical Engineering at K.U. Leuven. He
is a Reviewer for the Bioinformatics journal
and the International conference on Intelligent

Systems for Molecular Biology (ISMB). His research interests are in the
area of bioinformatics and biostatistics, more specifically in the clinical
management of malignant neoplasms using microarrays, in clustering of
gene expression profiles and in the development of artificial intelligence
models for the assessment of endometrial, ovarian, and breast cancer.

1742 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 11, NOVEMBER 2002

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on October 14, 2008 at 07:17 from IEEE Xplore.  Restrictions apply.



Gert Thijs (Student Member, IEEE) was born in
Bilzen, Belgium, on June 1, 1973. He received
the M.S. degree in electrical engineering at
the Katholieke Universiteit Leuven, Leuven,
Belgium, in 1998. He is currently pursuing the
Ph.D. degree at the Department of Electrical
Engineering (ESAT) at K.U. Leuven.

He is a Research Assistant with the Institute
for the Promotion of Innovation by Science and
Technology (IWT), Flanders, Belgium. The sub-
ject of his Ph.D. research is the application of ad-

vanced pattern recognition and data mining methods to detect regulatory
elements in DNA sequences. His main focus is on the application of Gibbs
sampling for motif finding. He has also a strong interest in the practical ap-
plication and integration of diverse bioinformatics tools.

Kathleen Marchal was born in Leuven, Bel-
gium in 1972. She received the M.S. degree
in bioengineering and the Ph.D. degree in
applied biological sciences from the Faculty of
Agricultural and Applied Biological Sciences,
Katholieke Universiteit Leuven, Leuven, Bel-
gium, in 1995 and 1999, respectively.

She is currently working in the ESAT/SCD
bioinformatics group as a Postdoctoral Re-
searcher with FWO—Vlaanderen (the Fund
for Scientific Research, Flanders, Belgium).

Her research has been focusing on the analysis and inference of relevant
biological information from global expression profiling experiments (pre-
processing and cluster analysis of microarray data, retrieval of regulatory
motifs and genetic network inference).

Dr. Marchal was laureate of the DSM prize for Chemistry and Technology
in 2000. In 2002, together with Dr. J. Mathys and Dr. Y. Moreau, she received
the biannual Siemens prize.

Bart De Moor (Senior Member, IEEE) was born
in Halle, Brabant, Belgium, on July 12, 1960. He
received the Ph.D. degree in applied sciences in
1988 from the Katholieke Universiteit Leuven,
Leuven, Belgium.

He was a Visiting Research Associate with the
Department of Computer Science and Electrical
Engineering, Stanford University, Stanford, CA,
from 1988 to 1989. Since 1989, he has been with
the Electrical Engineering Department, K.U.
Leuven, where he has been a Full Professor since

2000. From 1991 to 1992, he was the Chief of Staff of the Belgian Federal
Minister of Science W. Demeester-DeMeyer and, later, of the Belgian
Prime Minister W. Martens. From 1994 to 1999, he was the main advisor
on science and technology policy to the Flemish Minister-President L. Van
den Brande. His research interests include numerical linear algebra, system
identification, control theory, and signal processing. He has more than 200
papers in international journals and conference proceedings.

Dr. De Moor received the Leybold-Heraeus Prize in 1986, the Leslie
Fox Prize in 1989, the Guillemin-Cauer Best Paper Award of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS in 1990, and the biannual
Siemens prize in 1994. He became a Laureate of the Belgian Royal
Academy of Sciences in 1992. He is a member of several boards of
administrators of (inter)national scientific, cultural, and commercial
organizations, including the Belgian Institute for Control and Automation,
the Flemish Interuniversity Institute for Biotechnology, and the spin-off
companies ISMC NV and Data4s NV.

MOREAU et al.: FUNCTIONAL BIOINFORMATICS OF MICROARRAY DATA: FROM EXPRESSION TO REGULATION 1743

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on October 14, 2008 at 07:17 from IEEE Xplore.  Restrictions apply.


