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Abstract

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We

propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a

(Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-

box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transforma-

tion of the belief network into an informative prior. The first one consists in generating samples

according to the most probable parameterization of the Bayesian belief network and using them as

virtual data together with the real data in the Bayesian learning of a multilayer perceptron. The

second approach consists in transforming probability distributions over belief network parameters

into distributions over multilayer perceptron parameters. The essential attribute of the hybrid

methodology is that it combines prior knowledge and statistical data efficiently when prior knowl-

edge is available and the sample is of small or medium size. Additionally, we describe how the

Bayesian approach can provide uncertainty information about the predictions (e.g. for classification

with rejection). We demonstrate these techniques on the medical task of predicting the malignancy of

ovarian masses and summarize the practical advantages of the Bayesian approach. We compare the

learning curves for the hybrid methodology with those of several belief networks and multilayer

perceptrons. Furthermore, we report the performance of Bayesian belief networks when they are

allowed to exclude hard cases based on various measures of prediction uncertainty.
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1. Introduction

In this paper, we describe a two-step methodology to construct classifiers that consists of

(1) the formalization of domain knowledge and (2) the combination of this formalized

knowledge with data. This methodology stands in the Bayesian statistical framework and

relies on a dual representation of belief networks and black-box regression models. For the

formalization step, we use belief networks to elicit and represent the domain knowledge

in the Bayesian framework. For the combination step, we introduce a method for the

transformation of belief networks into an informative prior distribution for black-box

models and describe the use of virtual prior samples for the same purpose. We evaluate our

methodology on the medical classification task of discriminating preoperatively between

benign and malignant ovarian tumors. The results show that the methodology based on the

dual representation is superior to both the pure belief network and the multilayer perceptron.

Additionally, we describe how the Bayesian approach can provide uncertainty information

about the predictions and how to use this information for classification with rejection (when

the hard cases can be excluded based on various measures of prediction uncertainty).

The paper is organized as follows: Section 2 reviews the application of domain

knowledge when constructing a classifier, and outlines our motivation for a methodology

based on a dual representation. Section 3 summarizes the Bayesian approach in general and

specifically in classification. Section 4 describes the preoperative prediction of malignancy

in ovarian tumors, which serves as an evaluation domain, and introduces the data set.

Section 5 introduces the prior belief network, summarizes its construction and its

application for tumor classification. Section 6 introduces the concept of informative prior

distribution for parametric black-box models together with the two methods we propose

for the construction of such an informative prior. Section 7 first presents the performance of

the prior belief network against medical experts. We then report the comparison of the

different prior transformation methods by presenting the performance of learning methods

for belief networks, multilayer perceptrons and hybrid models. Additionally, we use

various Bayesian uncertainty measures to identify ‘‘hard’’ cases. Finally, we report the

performance of belief networks when rejection is allowed based on these measures.

Sections 8 and 9 contain the discussion and conclusion.

2. Motivation for the hybrid application of belief networks and
multilayer perceptrons

In the paper we make the following assumptions about the classification task we

consider:

(1) The classification is binary with continuous and nominal input variables and the

prediction of the class probability and of an uncertainty measure about this

probability is advantageous.

(2) The size of the sample is small or medium with respect to the learnability of the

problem and missing data are infrequent.

(3) A large amount of prior knowledge is available about the domain, the variables, the

dependencies between variables, and the quantification of these dependencies.
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These assumptions are inspired partly by the ovarian tumor problem described in

Section 4 and our mathematical derivations will be formulated in this context. It is

however important to stress that the methods proposed can straightforwardly be extended

to multiclass classification and to regression, simply by rewriting the mathematical details

accordingly.

If standard statistical tools, such as logistic regression, do not give satisfactory results,

we need to use more complex models like data-driven black-box methods (such as

multilayer perceptrons, decision trees and kernel-based methods) or more knowledge-

oriented white-box methods (such as belief networks).

In the case of black-box methods, the possibilities to incorporate prior knowledge in the

model or in the learning process are limited, even though this incorporation is frequently

essential. It is generally confined to the selection of the input variables, of the model

structure, of the learning algorithm, and to the management of missing values. In the

Bayesian context, an inherent problem for black-box parametric models is that it is not

possible to directly construct an informative prior distribution.

In the case of white-box methods, particularly for belief networks, the possibilities to

incorporate domain knowledge in the model are greatly enhanced. A prior distribution for

the parametrization of a given model structure or for the model structures can be

constructed by established methods [36,52]. However, the sample complexity of parameter

learning [20] is in practice frequently higher than the black-box models. The full scale

Bayesian inference or general structure learning is hindered by the superexponential

cardinality of the structure space and the high sample complexity [18,25,26]. Additionally,

the general structure learning methods—the data-dependent terms and regularization

terms—are optimal for learning the joint distribution (i.e. for complex model discovery).

It means that they are more appropriate to solve a much harder task than is necessary in a

standard classification. As a solution, special belief network classifiers with restricted

structures were suggested (tree augmented networks, TAN) [15,24,39], which decrease the

sample complexity of learning and are biased towards classification. Partly related to this

problem, general structure-learning algorithms have failed in our preliminary experiments

to achieve a good quantitative performance, while multilayer perceptrons reached nearly

the performance of expert diagnosticians [54], but only in the large sample region (i.e. for

all the cases occurred in 2 years in a large, referal medical center). Because small or

medium size samples are frequent in medical problems and a good prior belief network was

available [9], we decided to investigate the incorporation of prior knowledge into a

multilayer perceptron as an evaluation of a general methodology for such problems.

Our two-step methodology combines certain complementary advantages of belief

networks and multilayer perceptrons by (1) formalizing the prior knowledge with the

belief network and (2) incorporating the formalized knowledge into the Bayesian learning

and inference of the multilayer perceptron (Fig. 1). The use of a black-box method in the

inductive phase provides a computationally and statistically efficient solution to refine

jointly the a priori structure, the prior over the parameters, and the a priori discretization

corresponding to the a priori belief network.

Beside the research on belief network classifiers, the sequential application of the

white-box and black-blox techniques arises from the standpoint of black-box learning.

The appearance of learning theories [14,21,60] made it possible to formalize how the
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incorporation of domain knowledge in inductive techniques reduces the statistical com-

plexity of learning (in the classical statistical context [1,29,34] and in the Bayesian context

[35]). On the practical side, Abu-Mostafa [1] and Niyogi et al. [45] reported methods for

exploiting a priori known regularities and symmetries in the input space. Another

approach, the knowledge-based artificial neural network, used the prior knowledge for

selecting an appropriate multilayer perceptron architecture [57]. This method formalizes

the domain knowledge in propositional logic to construct the structure of a multilayer

perceptron. Further works reported results about the inductive refinement of the initial

network structure, the extension of the translation and transformation of symbolic rules

into a feedforward artificial neural network (for surveys about knowledge-based neuro-

computing, see [17,49]). Sowmya [50] extended the symbolic paradigm for the transfor-

mation of domain theories into a feedforward neural network by proposing belief networks

with certain local models for knowledge modeling. Another proposal [42] similarly

emphasized the appropriateness of belief networks for prior knowledge formalization

and described a mapping of belief networks onto stochastic neural networks to support

parallel computations. The potential of Bayesian belief networks for supporting the

construction of a classifier was surveyed in [4].

3. Introduction to Bayesianism

The Bayesian approach is attractive for machine learning because it combines valuable

subjective prior information in a principled way. Furthermore, the Bayesian prediction

provides more detailed information for decision support than a class label or class

probability. For overviews, see [12,28,43].

3.1. Bayesian classification

Starting from a prior distribution expressing the initial beliefs in the parameters of the

model, we can use the observations to transform this prior into the posterior distribution for the

model parameters (which expresses the beliefs after observing the data). Using this posterior

distribution over the model parameters, random variables can be defined for the predicted

class probability for a case and performance measures for a model class on a data set.

Fig. 1. The methodology based on (1) belief networks for knowledge acquisition, (2) a prior transformation

method, and (3) black-box models for learning and classification (left). Classification can target three levels: the

class label (discrimination), the class probability (regression), and the distribution of the class probability

(Bayesian prediction) (right).
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To treat the binary classification task, we introduce the following notations: we use

capitals for random variables, bold for vectors, and bold underlined for matrices, x 2 Rn

denotes the model parameters, and when distinction is necessary, x denotes the parameters

of the multilayer perceptron and h the parameters of the belief network. We assume the

existence of a labeled training set d ¼ fðxk; tkÞgn
k¼1; ðxk; tkÞ 2 Rd � f0; 1g, where x is a

real-valued l-dimensional input vector and t is the corresponding class label.

For a probabilistic regression model PðT ¼ 1jx;xÞ ¼ f ðx;xÞ 2 ½0; 1�, we assume a prior

distribution over the model parameters x. The corresponding random vector is denoted with

X and pXð�Þ denotes the distribution. Using the observed data d and applying Bayes’ rule,

the prior distribution can be transformed into the posterior distribution pXðxjdÞ by

pXðxjdÞ ¼
pTðt1; . . . ; tnjx; x1; . . . ; xnÞpXðxÞ

pDðdÞ
/ LðxjdÞpXðxÞ

LðxjdÞ denotes the probability of the data given the parameters and FXjdðxÞ � f ðx;XÞ
denotes the induced random variable on ½0; 1� for the predicted posterior class probability.

Note that the distribution over the parameters of an input–output model is independent of

the input values (i.e. pXjx1;...;xn
is equal to pX).

For the assessment of the performance of a probabilistic classifier, we have chosen the

area under the receiver operating characteristic (ROC) curve (AUC), which is a utility-

independent performance measure particularly widespread in medical applications (for the

definition and interpretations of the ROC curve, see [31,32]). There are two possibilities to

apply and report this performance measure in the Bayesian framework, depending on the

formalization of the reporting problem. A first possibility is to integrate out the model

parameters, which results in scalar class probabilities from which the area under the ROC

curve can be computed directly. A second possibility is to interpret this area as a function of

the model parameters for a fixed data set—that is, as the random variable AUCðO; dÞ. In

this paper we follow the second approach.

3.2. Classification with rejection based on Bayesian prediction

In binary classification problems, we are interested, for a given x, in the random variable

f ðx;XÞ corresponding to the probability PðT ¼ 1jx;xÞ for Class 1, where X is a random

parameter vector. In this way the distribution of f ðx;XÞ gives us uncertainty information

about the predicted class probability. One possible use of the Bayesian prediction of the

class probability is to compute the expected loss corresponding to an imaginary reporting

situation. If it exceeds a certain threshold t, then no subsequent real decision is taken, for

example, further examinations can follow. A rejection scheme in this case can be defined

by the loss function L of the imaginary reporting situation, by the imaginary reporting ~f ðxÞ
and by the posterior belief represented by the random vector Xjd:

Definition 1.

gl;tðxÞ ¼
‘‘rejected’’ if t <

R
Rn Lðf ðx;xÞ;~f ðxÞÞ dPXjd

else 1 if l < ~f ðxÞ
else 0

8><
>:
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Using this scheme, we define the following quantities to characterize the ‘‘hard’’ cases.

We use the induced measure by the random variable f ðx;XÞ on ½0; 1� in the definitions,

which is denoted by Pf ðx;XÞ.

Definition 2.

dL1
ðxÞ ¼

Z 1

0

jy � Medianðf ðx;XÞÞj dPf ðx;XÞ (1)

dVarðxÞ ¼
Z 1

0

ðy � Meanðf ðx;XÞÞÞ2
dPf ðx;XÞ (2)

dHðxÞ ¼
Z 1

0

logðyÞ dPf ðx;XÞ (3)

dL1
defines the expected loss in the case of the L1 loss function and the corresponding

optimal reporting of the median. dVar is the variance of the Bayesian prediction of the class

probability, it defines the expected loss in the case of the L2 loss function and the

corresponding optimal reporting of the mean. dH defines the uncertainty from the

information theoretic point of view as an entropy.

4. Classification of ovarian masses

We shall illustrate our theoretical developments on a real-world medical problem

relating to cancer. Ovarian malignancies represent the greatest challenge among gyneco-

logic cancers. Early detection is of primary importance for the survival of the patient, since

currently more than two thirds of the patients are diagnosed only at an advanced stage and

therefore have poor prognosis. A reliable test to discriminate between benign and

malignant tumors before surgery would be of considerable help to clinicians. It would

help them to recognize patients for whom treatment with minimally invasive surgery or

conservative management suffices versus those for whom referral to a gynecologic

oncologist is needed for more aggressive treatment. There are two different types of

information for the development of such predictive models: the biological and medical

information about the disease and the growing amount of patient data.

4.1. Domain

The abundant background knowledge is diverse: for example, the MEDLINE collection

of abstracts from biomedical journal papers contain tens and thousands of items about

ovarian cancer. Factors known to affect the risk of malignancy are parity (number of

pregnancies), infertility treatment, duration of lactation, oral contraceptives, foreign bodies

(carcinogens), family history of breast and ovarian cancer, genetic deficiencies, age, age

at menopause and hysterectomy. Beside clinical data, additional measurements and

observations are the following: bilaterality of the tumor, pelvic pain, morphological

descriptors of the mass (such as smoothness and solidness), descriptors of its echogenicity
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and vascularization, level of several serum tumor markers, such as CA125, amount of fluid

in the abdominal cavity and the day of the cycle. While the effect of some of these variables

can be quantified reliably (such as the effect of the family history and genetic deficiencies),

other effects are only qualitatively known and highly subjective (such as the use of the

vascularization indices).

4.2. Data

In addition to the prior background information, data have been collected prospectively

from 300 consecutive patients who were referred to a single institution (University

Hospitals Leuven, Belgium) from August 1994 till June 1997. The data collection protocol

excludes other causes with similar symptoms, such as infection or ectopic pregnancy

and ensures that the patients with persistent extrauterine pelvic mass undergo surgery.

This eliminates the possibility of false negatives and the quality of this single center

study provides reliable pathology values as gold standard (for a detailed description, see

[54–56]). Univariate statistics of the data set are presented in Table 1.

4.3. Previous studies

The first predictive models were based on single variables (such as CA125, resistance

index) or risk indices (Lerner’s scoring system, risk of malignancy index (RMI)). Standard

statistical studies indicate that a multimodal approach—the combination of several

variables—is necessary for the discrimination between benign and malignant tumors.

Therefore, several studies [9,55] have applied logistic regression, multilayer perceptrons

Table 1

Univariate statistics for the benign (72:3%) and malignant (27:7%) subpopulations in the ovarian cancer data set

[54]

Variable Benign Malignant

Age 47.77 (15.60) 58.81 (15.18)

CA 125 110.3 (976.6) 1235.0 (3757.4)

Color score 1.98 (0.84) 3.20 (0.95)

Parity 1.495 (1.397) 1.578 (1.719)

Resistance index 0.634 (0.163) 0.543 (0.168)

Ascites (present) (%) 6.45 48.2

Bilateral (yes) (%) 14.4 41.0

Postmenopause (yes) (%) 35.0 69.9

Papillation (present) (%) 10.6 66.3

Locularity

Unilocular (%) 43.7 4.8

Unilocular—solid (%) 4.3 14.5

Multilocular (%) 29.9 4.8

Multilocular—solid (%) 13.4 38.5

Solid (%) 8.7 37.4

We report the mean and standard deviation in the benign and the malignant subpopulation for the continuous

variables, and the occurrences (%) of the values for the nominal variables.
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and belief networks. These models predicted the scalar class probabilities and they were

developed and tested in the classical statistical framework on a smaller data set (Table 2).

.

5. Bayesian belief networks

A belief network represents a joint probability distribution over a set of variables [46].

We assume that these are discrete variables, partitioned into three sets X, Y , Z: set of inputs,

output, and intermediate variables, respectively. The model consists of a qualitative part (a

directed graph) and quantitative parts (dependency models). The vertices Vi of the graph

represent the random variables Xi and the edges define the independency relations (each

variable is independent of its nondescendants given its parents [46]). There is a prob-

abilistic dependency model for each variable that describes its dependency on its parents.

In this paper, we use standard multinomial dependency models which directly encode

the conditional probabilities of the child conditioned on parental value configurations.

Following Spiegelhalter et al. [52], we assume parameter independence and use Dirichlet

distributions to define a distribution over these parameters of the dependency models. In

this case, the prior background knowledge is formalized as a single belief network structure

and a prior density over the parameters is given by

pðhÞ ¼
Ym
i¼1

Ypai

j¼1

Dirichletðyij1; . . . ; yijri
jNij1; . . . ;Nijri

Þ (4)

where the Nijk hyperparameters can be interpreted as the number of previously seen

examples for Xi ¼ k and j is an one-based index for all possible parental configurations pai

(equal to the product of the cardinality of parental values). Furthermore, the posterior

update of a Dirichlet prior over the parameters of a multinomial distribution is also a

Dirichlet distribution for multinomial sampling: the hyperparameters are simply updated

according to the ‘‘counting’’ interpretation. Because of the assumption of parameter

independence, the local Dirichlet models can be updated independently if they are fully

observable according to the decomposition of the directed graph.

In a simplified approach the prior hyperparameters are derived using a single sample size

N, which can be interpreted as the number of complete cases seen a priori [27]. In this case,

the posterior inference PðT ¼ 1jx;HÞ follows a Dirichlet (Beta) distribution. However, this

approach is frequently too strict in practice, for example, in our case different parts of the

prior belief network are quantified by different experts or studies and consequently the

Table 2

Performance of previous models (area under the ROC curve): univariate discrimination based on the level of

serum CA125, discrimination based on the risk of malignancy index, logistic regression, multilayer perceptron,

and two belief networks

Model CA125 RMI LR MLP Naı̈ve BN Parametric BN

Area under ROC 0.874 0.891 0.904 0.951 0.938 0.952

Standard error 0.034 0.032 0.060 0.039 0.037 0.034
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network cannot be characterized by a single prior sample size N. Consequently, we

perform the Bayesian inference in two steps. At first, a parametrization h is drawn by direct

sampling from the Dirichlet distributions [47], subsequently an exact inference computa-

tion is performed using a probability propagation algorithm in tree of cliques. For the

theoretical foundations and implementational issues, see [2,37,51].

5.1. Belief network for ovarian cancer

In the prior belief network, we used 13 variables from which the continuous and integer

variables were discretized according to the medical literature and expert knowledge. We

built a ‘‘heterogeneous’’ belief network containing biological models of the underlying

mechanism quantifiable by the literature: parts quantified by a medical expert and parts

quantified from previous studies (for a more detailed description of the model construction

process, see [9]). The prior belief network is shown in Fig. 2.

Because of the extensive and complex usage of the prior knowledge, we used a strict

documentation method to track the route of the prior information from studies into the model,

which has lead to the introduction of the Annotated Belief Networks. For its applicability on

information retrieval, knowledge engineering, and structure learning, see [5,7,8].

6. Bayesian multilayer perceptrons

A multilayer perceptron defines a nonlinear input–output mapping defined by the layers

of summation and elementary nonlinear mappings [13]. The model used in this paper is

defined by the following formula:

f ðx;xÞ ¼ s
X5

i¼1

oi tanh
X10

j¼1

ðoijxj þ oi0Þ
" # !" #

Fig. 2. The prior belief network model for the ovarian cancer problem. The predicted variable ‘‘Pathology’’ is

indicated by the thick node. The input variables that are not used in the inductive methods—except in the

parametric learning with the fixed a priori BN structure —are grayed (left). Relevant publications provide

information on logical dependency and parametric dependency for certain variables beside the expert’s opinion

(right) [11,16,22,23,30,33,38,53,58,59,61].
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in which the tranfer function is a hyperbolic tangent and the logistic function sðxÞ ¼
1=ð1 þ e�xÞ; x contains all the parameters including the bias parameters oi0. In the case of

the ovarian tumor classification, there are four nominal inputs (locularity, menopausal status,

papillation, and bilaterality) and six continuous (color score, resistance index, age, level of

CA125, parity, and amount of ascites). The number of neurons in the hidden layer is five.

We interpret the output as a posterior probability, that is, PðT ¼ 1jxÞ ¼ f ðx;xÞ. As

summarized in Section 3.1 in the case of a complete data set and the existence of a prior

distribution, this interpretation gives a posterior distribution for the model parameters. We

used multiple imputation for the missing input data based on the prior probabilistic model

from the expert (since only the measurement CA125 is missing at random in 33 cases) [28].

For the Bayesian inference we sample from the posterior distribution pOðxjdÞ by using the

hybrid Monte Carlo method [41,43].

6.1. Noninformative prior

The parameters of the multilayer perceptron are the weights and biases of the composing

neurons, which are hard to interpret in a multilayer model. This prohibits the incorporation

of prior knowledge into this model by directly specifying a prior distribution over the

parameters (versus the intuitive interpretation of the Dirichlet used in the belief network).

In practice, the prior is used only for penalizing the complexity of the model, for example,

based on the L2 norm of the parameter vector x by using a Gaussian prior distribution

Nð0;IÞ[13,43].

6.2. Informative prior from belief network

In the simplest situation explained in Section 5, the encoded prior knowledge comes from

N previously seen complete cases, which could be used as data in the Bayesian inference

with the multilayer perceptron. Therefore, we examine the possibility of generating a certain

number of prior samples from the domain model.

However, if the belief network is hyperparametrized from heterogeneous sources

(e.g. various parts of the model are quantified by different experts or studies), then such

a prior complete data set is not available. Even if a complete prior data set is available and

reconstructed, then its direct usage as real data loses certain aspects of the prior uncertainty

modeling (e.g. network structure, Dirichlet assumption). So we introduce a second method

that transforms the domain knowledge encoded in the prior distribution of the belief

network into an informative prior distribution for the multilayer perceptron.

6.2.1. Informative prior by prior samples

Let us first assume that the prior domain knowledge consists of N complete cases, called

the prior sample D
prior
N , which will be used together with the real data Dreal

N . Assuming a

noninformative prior distribution PðoÞ for the multilayer perceptron, the Bayesian update

is defined as follows:

Definition 3.

PðojDprior
N ;Dreal

N Þ / PðDreal
N joÞPðojDprior

N Þ ¼ PðDreal
N joÞP0ðoÞ (5)
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This grouping of the terms illustrate the effect of the prior sample D
prior
N to transform the

noninformative prior distribution PðoÞ into an informative prior P0ðoÞ ¼ PðojDprior
N Þ. If

the prior data set follows the real conditional distribution, then the effect of this Bayesian

update by the prior sample is the same as by real data. A problematic issue is the selection

of the prior sample size—particularly, if the prior belief network is heterogeneously

hyperparametrized. It is difficult in general, because it means selecting an optimal

complexity regularization, consequently it can be influenced by the real sample size,

the problem, the general correctness of the prior domain model and in practice even by the

inference scheme. In our domain the results of this method proved robust for changing the

virtual sample size in the 15–50 range.

In our experiments, we use a stochastic scheme to generate a prior sample equivalent to

N samples. We fix the most probable a priori parametrization in the belief network. Instead

of generating a sample of size N, we generate a larger number of prior samples that we

rescale to an effective sample size in the update and inference process. This approach

reduces the impact of stochastic effects.

6.2.2. Informative prior by direct transformation

The second method for transforming the domain knowledge encoded in the prior

distribution of the belief network into an informative prior distribution over the MLP

parameters (pMLP-I) is based on the direct transformation of the a priori distribution

between model spaces. To formalize this transformation we follow the definition of

Neal [44] instead of our earlier approach [6] which corresponds to the asymptotic case

(pMLP-NI denotes a noninformative distribution over the MLP parameters):

Definition 4.

pMLP-IðoÞ ¼
X

d1;...;dk

pMLP-NIðojd1; . . . dkÞ
Z Yk

i¼1

pðdijyÞpBN-IðyÞ dy (6)

This defines a transformation of the prior probability measure pH over the parameter

space of the donor model (the belief network in our case is denoted by BN-I) to a prior

probability measure pX over the parameter space of the recipient model (the MLP model).

The main steps for the practical implementation of the mapping in the case of multilayer

perceptron are listed below.

Algorithm 1 (Construction of an informative MLP prior).

(1) Generate prior sample.

(a) Generate belief network parametrizations fy1; . . . ; ylg.

(b) Generate a block of prior samples from each parametrization fD
p
1; . . . ;D

p
l g.

(2) Generate a multilayer perceptron parametrization from the posterior based on each

block of samples, resulting in a block of MLP parametrizations fo1; . . . ;olg.

(3) Estimate the transformed distribution pMLP-IðoÞ from the MLP parametrizations with

a mixture of Gaussians.

The belief network parametrizations are generated from the Dirichlet distribution by

standard methods. The sample blocks are generated according to the belief network
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parametrizations. Next, a simple preprocessing of the input variables is necessary: (1)

perform one-out-of-c coding for nominal variables [13] and (2) resample in the discretiza-

tion intervals for discretized continuous variables. To generate the multilayer perceptron

parametrizations from the posterior, we used the hybrid Monte Carlo Markov Chain [43].

Finally, to estimate the transformed prior distribution pMLP-IðoÞ over the black-box

model parameter space X from the trained perceptrons, we used a mixture of Gaussians

(for the approximation with one kernel, see [13]):

pðoÞ �
XL

i¼1

aiNðojmi;RiÞ; where 0 � ai � 1;
XL

i¼1

ai ¼ 1

Because the total number of symmetries (due to possible permutations and sign

symmetries) in a multilayer perceptron with k hidden layers and Li neurons in layer i

is given by
Qk

i¼1 2Li Li!, this prior estimation requires the proper management of symme-

tries in the parameter space [48]. We applied a heuristic clustering algorithm exploiting the

symmetries to map the parametrizations into clusters with minimal within-cluster variance

(for a more detailed description, see [6]).

7. Results

First, we investigated the performance of the prior belief network. The misclassification

rate is 12.0% on the data set and the mean of the Bayesian area under the ROC curve is

0:905. To get a more detailed understanding of the performance of the model we compared

its predictions with those of medical experts. In a previous study six ultrasonographers

(denoted by A–F in Table 3) have evaluated the 300 patients based on the corresponding

medical records and ultrasound images. Two of them were highly experienced (A and B),

one moderately experienced (C) and three less experienced (D, E, and F) [54]. Since these

classifications were based on the original observations (such as images), in a recent

experiment an expert (G) has performed the classification using only the discrete values of

the variables present in the prior belief network. In this experiment the expert has also rated

the cases as 1 ¼ very certain benign, 2 ¼ uncertain benign, 3 ¼ uncertain, 4 ¼ uncertain

malignant, and 5 ¼ very certain malignant, which is an aggregate expression of the mixed

nature of the adnexal mass (‘‘fuzziness’’) and the probabilistic uncertainty.

Table 3 presents the number of previously performed examinations, the misclassification

rate and the agreements with the prior model (Cohen’s kappa) for the diagnosticians [10].

The correspondence with the prior model is the highest for expert A (indicated in bold)

Table 3

Expert agreement with the prior domain model in discriminating benign and malignant adnexal masses [54]

Observer A B C D E F G Prior-BN

# � 4000 � 10000 � 1000 200 300 300 300 –

MR 8.3 8.3 11.0 17.7 7.7 13.3 18.0 12.0

k 0.713 0.687 0.650 0.577 0.503 0.590 0.577 –

Number of examinations (#), misclassification rate (MR), Cohen’s kappa (k).
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which is in line with our expectation because expert A participated in the construction of

the prior model.

To evaluate the effect of the prior incorporation methods, we compare them in a

retrospective setup with standard learning algorithms for belief networks and multilayer

perceptrons. For belief networks, we present results for four models with a noninformative

prior distribution (BN-naı̈ve, BN-fixed-noninformative, BN-TAN and BN-general) and

one with an informative prior distribution (BN-fixed-informative). For the MLP model

class, we describe one model with a noninformative prior (MLP-noninformative), one with

prior samples (MLP-prior sample) and one with an informative prior (MLP-informative) as

explained in Sections 6.1, 6.2.1 and 6.2.2. The BN-fixed-noninformative and BN-fixed-

informative methods use the same fixed structure as the prior domain model shown in

Fig. 2, in all the other learning methods two deterministic variables that are functions of

the variable Locularity were removed, because these auxiliary variables were introduced

to support knowledge elicitation.

The BN-fixed-noninformative, BN-fixed-informative, and the BN-naı̈ve methods per-

form only parameter learning (the BN-naı̈ve method uses a naı̈ve Bayes structure, a tree

where all variables are direct children of the predicted variable pathology). The BN-TAN

method searches in the space of generalized tree-augmented networks, which are extended

naı̈ve belief network structures [15,24]. Finally, the BN-general method searches the space

of directed acyclic graphs (in each crossvalidation session 105 random orderings of the

variables are generated, for each ordering the parental sets are evaluated exhaustively up to

three parents, and if necessary, by the greedy (not exhaustive) K2 algorithm [18]).

In the prior sample (MLP-prior sample) method, 1000 samples are generated from the

prior belief network rescaled to an effective sample size of 30 in the Bayesian inference

scheme as explained in Section 6.2.1. In the informative prior (MLP-informative) method,

the informative prior was estimated on 5000 multilayer perceptron parametrizations using

the mixture of three Gaussian kernels. Each multilayer perceptron parametrization is

computed from an independently drawn belief network parametrization by training the

multilayer perceptron on 1000 random samples produced by the belief network, as

explained in Section 6.2.2.

For the Bayesian inference, direct sampling was used for the belief network and hybrid

Monte Carlo methods were used for multilayer perceptrons to draw 100 parametrizations

from the a posteriori distribution, thus performing 100 inferences for the test set. This

process was repeated for 100 cross-validation sessions (different partitions of the data set

into test and training set). Fig. 3 shows the detailed effect of the prior incorporation for

varying proportions of samples used in the training set.

Two characteristic points from this learning curve (the small and large sample region)

are shown in Figs. 4 and 5 corresponding to the 5–95% and 75–25% training–test

proportions.

We investigated the advantages of having a more detailed probabilistic prediction in the

Bayesian framework. We noticed that the predictions for misclassified cases are more

uncertain (e.g. they have higher variances VarXjd½ f ðx;xÞ� which is one measure for the

‘‘uncertainty’’). Generally spoken, the cases with a high value for VarXjd½ f ðx;xÞ� were

also hard to classify for a medical professional, in contrast with cases with a low value

for VarXjd½ f ðx;xÞ� that were almost always straightforward to predict.
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Fig. 3. The learning curves for the multilayer perceptron models using an informative prior (MLP-informative), a noninformative prior (MLP-noninformative) or prior

samples (MLP-prior sample). For the belief network models, the learning curves correspond to the naı̈ve Bayes structure (BN-naı̈ve) with noninformative prior, a search

in the generalized tree-augmented networks (BN-TAN) with noninformative prior, and to the fixed prior structure in combination with the informative prior (BN-fixed

informative) (left). The other figure shows the learning curves for the multilayer perceptron and belief network models using an informative prior (MLP-informative and

BN-fixed informative) in comparison with three belief network models using a noninformative prior in combination with a search over the generalized tree-augmented

network space (BN-TAN), the fixed prior structure (BN-fixed noninformative) and a general belief network structure learning algorithm (BN-general) (right). The x axis

indicates the proportion of samples used for training while the y axis represents the corresponding area under the ROC curve.

5
2

P
.

A
n

ta
l

et
a

l./A
rtificia

l
In

tellig
en

ce
in

M
ed

icin
e

2
9

(2
0

0
3

)
3

9
–

6
0



To evaluate this observation quantitatively, we introduced the following definitions for

‘‘uncertainty’’ based on the experts prediction from the experiments.

Definition 5.

� Expert is uncertain: expert G labeled a case as uncertain (uncertainty score of 2, 3, or 4).

� Expert misclassifies: either expert A or B misclassifies.

� Less experienced misclassifies: at least two out of the experts C, D, E, and F misclassify.

� Majority misclassifies: at least two out of the six experts misclassify.

� BN-I misclassifies: the model BN-fixed-informative itself misclassifies.

To quantify the efficiency of the uncertainty measures defined in Definition 2 to dif-

ferentiate these groups, we computed the corresponding area under the ROC curve using

the BN-fixed-informative model. Table 4 shows the AUC values for various definitions of

‘‘hard cases’’ versus uncertainty measures.

Fig. 4. The a posteriori distribution of the area under the ROC curve at the 5–95% training–test proportion for

the MLP-informative (MLP-I), MLP-noninformative (MLP-NI), MLP-priorsample (MLP-PS), BN-fixed-

informative (BN-I), BN-fixed-noninformative (BN-NI), BN-TAN, BN-general (BN-G), and BN-naı̈ve models.

Fig. 5. The a posteriori distribution of the area under the ROC curve at the 75–25% training–test proportion for

MLP-informative (MLP-I), MLP-noninformative (MLP-NI), MLP-priorsample (MLP-PS), BN-fixed-informa-

tive (BN-I), BN-fixed-noninformative (BN-NI), BN-TAN, BN-general (BN-G) and BN-naı̈ve models.
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One promising possibility of having a quantification for the uncertainty of the prediction

is to allow the rejection of the most uncertain cases, which in practice can mean further

examinations or referring such a patient to an expert. To investigate the effect of rejection,

we computed the area under the ROC curve when various proportions of the most uncertain

cases are rejected. Fig. 6 shows the AUC values after excluding various proportions of the

data set based on the uncertainty measures and the same for the rejected partition. In these

experiments, we partitioned the data set randomly into a training (70%) set and test (30%),

this was repeated 100 times to eliminate dependency on separation. The reported results are

based on the test set.

8. Discussion

As more and more domain knowledge becomes available beside statistical data, machine

learning increasingly needs methods that integrate domain knowledge [3,40]. The first step

in this prior incorporation is the acquisition and formalization of the heterogeneous a priori

information. Because of space limitations, this research direction cannot be followed and

covered in this paper, however the experiences of building the reported prior domain model

and particularly recent attempts to broaden the scope of the model has lead us to the

Annotated Belief Network, the semantic annotation of the belief network model with expert

knowledge and documents (for results on its potential for knowledge engineering and

machine learning, see [8] and [5,7]). The second step is the incorporation of the formalized

prior knowledge in a task-specific model. The prior incorporation methods described in

Section 6.2 make it possible to integrate probabilistic domain knowledge into black-box

models. This hybrid use of knowledge-oriented and data-driven methods can be particu-

larly advantageous in constructing a classifier when the size of the sample is small or

medium and a large amount of domain knowledge is available.

The efficiency and simplicity of the prior sample method makes it attractive. This method

has the advantage that the generation of the prior data set from a belief network is

straightforward, computationally simple and that it can be applied to nonparametric models,

such as support vector machines. Prior incorporation significantly enhances the performance

for small sample sizes. More surprisingly, we also observed slight improvements when

the size of the real data exceeds the effective prior sample size by a factor of two to four

(the 0.2–0.4 region in Fig. 3). The rescaled large prior sample block—which may contain

Table 4

Identification of ‘‘hard cases’’ (based on expert errors and assessments) using the predicted uncertainty measures

from the BN-fixed-informative (BN-I) model (based on the Bayesian predictions)

Expert is

uncertain

Expert

misclassifies

Less experienced

misclassifies

Majority

misclassifies

BN-I

misclassifies

dL1
0.642 0.776 0.793 0.796 0.775

dVar 0.610 0.753 0.776 0.766 0.777

dH 0.678 0.800 0.805 0.817 0.775

Average area under the ROC values are reported on the test set, 70–30% training–test proportion, 30 times

cross-validation.
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Fig. 6. Classification by the BN-fixed-informative model with rejecting varying number of samples: AUC values on the test set (left) and on the rejected set (right).
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infrequent samples as vital hints from the prior belief network—is probably the source of

this improvement.

Similarly, the informative prior method immediately achieves the same performance as

the prior belief network and gives better performance than the noninformative multilayer

perceptron for any amount of real data available in the experiment. It means that the

estimated prior is efficient in the small sample region and not restrictive in the large sample

region; it has a balanced, lasting positive impact. Beside this statistical (machine learning)

aspect, the related computational aspect of the inference similarly provides certain

advantages. The high computational complexity of deriving the informative prior (when

compared to simply generating blocks of samples in the prior sample method) is compen-

sated by a lower complexity in the inference. Note that the additional blocks of prior samples

slows down the likelihood and gradient computations in the Bayesian inference in MLP

models. This precomputation property of the informative prior method is similarly relevant

in the belief network context. Remember that, for belief networks (even using only a single

structure with single parametrization), the computational complexity of the exact inference

or its approximation is NP hard [19]. Consequently, the transformation itself—the pre-

computation of the collapse of a complex general Bayesian model into a task specific,

simpler classification model—can be advantageous, if the computational efficiency of the

Bayesian inference is important—for example, if a regular classification task in medical

decision support involves only a relatively small, but fixed subpart of a complex a priori

belief network covering the overall domain.

Multilayer perceptrons perform generally better than belief networks, but part of this

difference comes from the refinement of the a priori discretization. Indeed, the perfor-

mance of a corresponding noninformative multilayer perceptron with the original nominal

inputs is similarly worse (for 70�30% train–test ratio, the mean AUC is 0.945 and the

misclassification rate is 9%).

Figs. 4 and 5 give a more detailed characterization of the different models, showing that

in the small sample region (5%) the prior based methods have the best performance

(BN-fixed-informative, MLP-informative, and MLP-prior sample). From the tabula rasa

methods (MLP-noninformative, BN-general, BN-TAN, and BN-naı̈ve) the BN-naı̈ve has

the best performance. Another effect of the incorporation of the prior domain knowledge is

that the performance of these models has smaller variance. In the large sample region

(75%) the MLP methods have the best performance, specifically the MLP-informative is

still slightly better than the MLP-noninformative.

Table 4 presents results on identifying ‘‘hard’’ cases with various Bayesian uncertainty

measures. The high AUC values show that uncertainty measures based on the Bayesian

prediction (Definition 2) characterize well the uncertainty concepts based on expert errors

and assesments (Definition 5).

Fig. 6 shows that without rejection the AUC is 0:937 while in the rejected sets it can be

below 0:7. For example, if we set the rejection threshold to exclude 25% of the cases, the

AUC rises to 0:97. In practice, this means that a decision support system can be specified to

classify 75% of the cases with a lower misclassification rate (from 9 to 6%) and identify the

remaining 25% as hard cases that need special considerations. The effect of various

rejection methods based on different uncertainty measures is similar and their slightly

different characteristics need further investigations.
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9. Conclusion

We investigated two approaches to incorporate domain knowledge into Bayesian

multilayer perceptrons based on the formalization of the prior knowledge as a Bayesian

belief network. The prior sample method generates an artificial data set equivalent to a

certain ‘‘effective sample size’’, which is used together with real data in the Bayesian

inference. The informative prior method approximates the informative prior of the belief

network with a prior for the multilayer perceptron.

These techniques were elaborated for a prototype task—classification in presence of

rich prior domain knowledge and moderate sample size—that we presented in Section 2;

however many elements of our methods are relevant to a wider range of problems. Our

prototype task stemmed from the real-world task of classifying ovarian tumors, which we

used to evaluate our approach and demonstrate its effectiveness.

We investigated another advantage of the Bayesian approach—the additional uncer-

tainty information for predictions—in a medical classification problem. We introduced

various uncertainty measures for characterizing the Bayesian prediction. The analysis

of their correspondence with various human uncertainty assessments based on expert

errors and assessments shows their potential for characterizing the ‘‘hard cases’’.

Subsequently, we demonstrated that a classifier with rejection based on these can

exclude a certain subset to improve significantly its performance on the remaining

cases.

In future research we plan to investigate the presented prior incorporation methods for

belief networks also (as recipient models), where the expert-structure- and literature-based

priors for structures can be incorporated in the Bayesian model update beside parameter

transformation [5]. Note that, whereas the structure of the current recipient MLP model is

fixed, it has a built-in capability for joint refinement of the discretization and the structure

with reference to classification.

We conclude with the view that our hybrid methodology offers new insights and

challenges on how classification can benefit from the integration of knowledge engineering

and machine learning by formalizing, transforming, and incorporating general domain

knowledge into the learning of a specialized classifier.
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