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Local permutations of products of Bell states and entanglement distillation
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We present different algorithms for mixed-state multicopy entanglement distillation for pairs of qubits. Our
algorithms perform significantly better than the best-known algorithms. Better algorithms can be derived that
are tuned for specific initial states. These algorithms are based on a characterization of the group of all locally
realizable permutations of the 4n possible tensor products ofn Bell states.
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I. INTRODUCTION

We study mixed-state multicopy entanglement distillati
protocols for pairs of qubits. We start fromn identical copies
of a Bell-diagonal state of two qubits and end up, after lo
operations and classical communication, withm,n Bell di-
agonals~possibly statistically dependent! with higher joint
fidelity thanm copies of the original Bell-diagonal state. F
non-Bell-diagonal initial states, one can first performn sepa-
rate optimal single-copy distillation protocols to make the
Bell diagonal@1#. Our protocol can be used in a recurren
scheme followed by the hashing protocol as in Refs.@2,3#.
We propose a protocol withn54 and m51, which does
significantly better than the existing protocols. Our resu
can be used to find even better protocols for other value
n andm that are tuned for specific initial states.

We see three main reasons for studying entanglement
tillation protocols. The first and most obvious reason is t
entanglement distillation protocols are a means of obtain
states that are closer to maximally entangled pure state
needed in typical applications such as teleportation, fr
mixed states that can be reached by sending one qubit o
entangled pair through a realistic channel. A second reaso
study distillation protocols is that asymptotic protocols yie
a lower bound for ‘‘entanglement of distillation,’’ an impo
tant measure of entanglement, that is in itself a lower bo
for any sensible measure of entanglement@4#. In this context,
we also mention the upper bounds on entanglement of di
lation obtained in Ref.@5#. A third reason is that multicopy
entanglement protocols can be considered as application
entanglement, where more can be done in the presenc
entangled pairs than without. We hope that studying th
mechanisms will reveal some information on the import
problem of how exactly the presence of entanglement
ables one to do things that are impossible without.

Multicopy mixed-state entanglement distillation for qub
pairs was first studied in Refs.@2,3#. An improved variant of
the two-copy protocol in that paper was described in Ref.@6#
under the title of quantum privacy amplification. Other va
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ants appeared in Refs.@7–9#. These protocols as well as ou
start from n identical qubit pairs in a Bell-diagonal state
shared by Alice and Bob. A crucial ingredient of these p
tocols is a local unitary operation, performed by Bob a
Alice on theirn qubits, which results globally in a permuta
tion of the 4n possible tensor products of Bell states. The k
ingredient of this paper is a characterization, by means o
binary matrix group, of all possible local permutations of t
products of Bell states. This enables a search for the
protocol within this setting. In Sec. II, we study local perm
tations of products of Bell states. In Sec. III, we discuss
protocols. In Sec. IV, we discuss the combination of o
protocols with a recurrence scheme and the hashing prot
and show the strength of our protocols by computer simu
tions.

II. LOCAL PERMUTATIONS OF PRODUCTS
OF BELL STATES

In this section, we study the class of local unitary ope
tions that can be performed by Alice and Bob locally a
result in a permutation of the 4n ~tensor! products of Bell
states, wheren is the number of qubit pairs. These loc
permutations are the key ingredient of the different distil
tion protocols described in the following section.

We will code products of Bell states by binary vectors
assigning two-bit vectors to the Bell states as follows

uF1&5
1

A2
~ u00&1u11&)5uB00&,

uC1&5
1

A2
~ u01&1u10&)5uB01&,

~1!

uF2&5
1

A2
~ u00&2u11&)5uB10&,

uC2&5
1

A2
~ u01&2u10&)5uB11&.
©2003 The American Physical Society10-1
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A product of n Bell states is then described by a 2n-bit
vector, e.g.,uB001101&5uB00&uB11&uB01&5uF1&uC2&uC1&.

We will also exploit a correspondence between Bell sta
and Pauli matrices

uF1&→
1

A2
s005

1

A2
s05

1

A2
F1 0

0 1G ,
uC1&→

1

A2
s015

1

A2
sx5

1

A2
F0 1

1 0G ,
uF2&→

1

A2
s105

1

A2
sz5

1

A2
F1 0

0 21G ,
uC2&→

1

A2
s115

1

A2
sy5

1

A2
F0 2 i

i 0G .
A tensor product ofn Bell states is then described by a tens
product of Pauli matrices, e.g.,uF1&uC2&uC1&→1/A8s0

^ sy^ sx51/A8s00^ s11^ s01. We will also use longer
vector subscripts to denote such tensor products, e.g.,

s0011015s00^ s11^ s01. ~2!

In this representation of pure states of 2n qubits as 2n32n

matricesC̃, local unitary operationsuc&→(UA^ UB)uc&, in
which Alice acts on hern qubits ~jointly! with an operation
UA and Bob on his with an operationUB , are represented b

C̃→UAC̃UB
T . ~3!

We are now in a position to state the main result of t
section.

Theorem 1.~i! If a local unitary operation~3! results in a
permutation of the 4n tensor products of n Bell states, th
permutation can be represented on the binary vector re
sentations~1! as an affine operation

f:Z2
2n→Z2

2n :x→Ax1b,

with APZ2
2n32n , bPZ2

2n

and ATPA5P,

where P5diagS F0 1

1 0G , . . . ,F0 1

1 0G D . ~4!

~ii ! Conversely, any such permutation can be realized by
cal unitary operations.

Note that all multiplication and addition should be do
modulo 2. We call a matrixA satisfyingATPA5P ‘‘ P or-
thogonal.’’ The affine and linear transformations conside
are invertible and, therefore, amount to a permutation ofZ2

2n .
In the sequel we sometimes directly refer to the linear tra
formations as permutations.

Proof. We first prove part~i!. One can easily check tha
svsw;sv1w , wherev andw are binary vector indices as i
02231
s

r

s

e-

-

d
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Eq. ~2!, and the2sign means equal up to a complex pha
~in this case 1,i , 21 or 2 i ). Such a phase is irrelevant a
the Pauli matrices here are matrix representations of p
state vectors.

Assume now thatUA andUB indeed result in a permuta
tion p:Z2

2n→Z2
2n , then the null vector is mapped to som

vector v5p(0). Accordingly, UAs0UB
T;sv . Since s0 is

the identity matrix, we haveUB;svUA* where * denotes
complex conjugation. If we want to representp by x→Ax
1b, we clearly have to chooseb5v. Note that Eq.~3! now

readsC̃→UAC̃UA
†sb .

We now have to show that the permutationp8:x→p(x)

1b, which mapsC̃ to UAC̃UA
† , is a linearP-orthogonal

map p8:x→Ax. Linearity of binary maps means that sum
are mapped to sumsp8(v1w)5p8(v)1p8(w). This is
clearly true since UAsv1wUA

†;UAsvswUA
†

5UAsvUA
†UAswUA

† . Furthermore, it can be verified usin
the commutation and anticommutation laws for Pauli ma
ces thatsv andsw are commutable operators if and only
vTPw50. Sincesv and sw are commutable if and only if
UAsvUA

† and UAswUA
† are commutable, it must hold tha

vTATPAw5vTPw for all v and w, which provesATPA
5P.

To prove part~ii !, we will first considern52 and show
that all permutationsp:x→Ax with ATPA5P can be gen-

erated with the operationsfu :C̃→UuC̃Uu
† with Uu

5ei (p/4) su51/A2(I 1 isu) ~with uPZ2
4). ~This is also true

for n.2, but generators affecting more than two qubits a

time will not be needed!. Using svsw5(21)vTPwswsv , it
can be shown thatfu translated into the binary languag
results in a permutation pu :x→x1u(uTPx)5(I
1uuTP)x.

We will now show that the group of permutations gene
ated by the permutationspu is isomorphic toS6, the group
of all permutations of six elements. Next, we will show th
the group ofP-orthogonal 434 matrices contains 6!5720
elements, which proves that allP-orthogonal permutations
are generated. Since no permutation~except the identity! is
commutable with all the permutations,S6 is isomorphic to
the group of transformationsxq :S6→S6 :p→qpq21, where
p andq are permutations of six elements. Such a transform
tion xq is completely determined by specifying the images
the 15 commutationspi , j , permutations on$1,2,3,4,5,6% that
permute i and j. This holds because any permutation is
composition of such commutations andxq(p1p2)
5xq(p1)xq(p2). Note that the image underxq of a commu-
tation is again a commutation. As a result,S6 is isomorphic
to the group of permutations of 15 elements obtained
restrictingxq to the commutations. We will show that this
exactly the group of permutations generated by the gen
tors pu ~which can be considered as permutations of 15 e
ments as 0000 can be left out, being always mapped to
self!. To this end, we establish the following corresponden
between nonzero four-bit vectors and commutationsg:u
→pi , j :
0-2
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0001→p5,6, 0010→p4,6, 0011→p4,5,

0100→p2,3, 0101→p1,4, 0110→p1,5, 0111→p1,6,

1000→p1,3, 1001→p2,4, 1010→p2,5, 1011→p2,6,

1100→p1,2, 1101→p3,4, 1110→p3,5, 1111→p3,6.

It can be verified thatg@pu(x)#5xg(u)@g(x)# for all u andx.
So pu and xg(u) realize the same permutation of 15 el
ments. As a consequence, also productspu1

3 . . . 3puk
re-

alize the same permutations as productsxg(u1)3 . . .

3xg(uk) . This finally establishes the isomorphism betwe

S6 and the permutations generated by thepu .
It remains to be shown that there are 6!P-orthogonal 4

34 matrices. It follows fromATPA5P thatA is P orthogo-
nal if and only if all the pairs of columns ofA represent
commutablesai

except for the first and second or the thi
and fourth columns. Therefore, to make an arbitra
P-orthogonal matrix, the first columna1 can be chosen to b
any nonzero four-bit vector~15 choices!, the second column
should satisfya1

TPa251 ~one linear condition yielding eigh
possiblea2), the third column should be commutable wi
a1 anda2 ~two linear conditions yielding three choices aft
excluding 0000) and finally the fourth column should
commutable witha1 and a2 and noncommutable witha3
~three linear conditions, yielding two possibilities!. This re-
sults in 15383332572056! possibilities. This ends the
proof for n52.

For n.2, we turn to the matrix picture and show th
every P-orthogonal matrixA can be reduced to the identit
matrix by two-qubit operations, i.e., 434 P-orthogonal ma-
trices embedded in an identity matrix on rows and colum
2k11,2k12,2l 11,2l 12 for somek,l P$0, . . . ,n21%. We
concentrate on two columns ofA at a time, first 1 and 2, then
3 and 4, and so on and transform them to the correspon
columns of the identity matrix with two-qubit operation
Assume, without loss of generality, that we are working
columns 1 and 2, then we name K (k,l )

5A$2k11,2k12,2l 11,2l 12%,$1,2% . If the two columns ofK (k,l ) are
commutable, they can be thought of as the first and th
columns of a 434 P-orthogonal matrix and can be reduce
by a two-qubit operation to the first and third column of
identity matrix. If the two columns ofK (k,l ) are noncommut-
able, they can be reduced to the first and second column
an identity matrix. One can see that by combining such tw
qubit operations the first two columns ofA can be reduced to
the first two columns of an identity matrix. Due to the com
mutability relations between the columns ofA, as a result,
also the first two rows become the first rows of an iden
matrix. One can now proceed in a similar way with the ne
pair of columns until the whole matrix is reduced to t
identity matrix. The composition of the inverses of all tw
qubit operations that were applied yields a decomposition
A into two-qubit operations that can be realized by lo
unitary operations as shown above. This ends the proof.h

In the proof, we saw that linear transformations (b50)
correspond to operations withUB5UA* , i.e., C̃
02231
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→UAC̃UA
† . The matricesUA that under this action map ten

sor products of Pauli matrices to tensor products of Pa
matrices possibly with a minus sign are known to form t
Clifford group, studied in Refs.@10,11# in the context of
quantum error correction and quantum computation. T
P-orthogonal matrices form a group that is isomorphic to
quotient group of the Clifford group. The Clifford group i
known to be generated by controlled-NOT ~CNOT! operations
and one-qubit operations that map Pauli matrices to P
matrices. It is possible that this knowledge may be used
give other proofs for the theorem above. However, we th
that our set of generators and the isomorphism betw
P-orthogonal 434 matrices and permutations of six el
ments are worthwhile results on their own. It also follow
that the controlled-NOT operation should be decomposable
terms of our generators~at least realizing the same permut
tion of products of Pauli matrices up to signs, but the follo
ing formula gives theCNOT exactly!. One can easily verify
that CNOT5(11 i )/A2e2 i (p/4)s1000ei (p/4)s1001e2 i (p/4)s0001.
Note that the first and last operations are actually one-q
operations.

III. MIXED-STATE MULTICOPY ENTANGLEMENT
DISTILLATION FROM PAIRS OF QUBITS

The distillation protocols presented in this paper can
summarized as follows.

~1! Start fromn identical independent Bell-diagonal stat
with entanglement. This yields a mixture of 4n tensor prod-
ucts of Bell states.

~2! Apply a local permutation of these 4n products of Bell
states as described in the preceding section. As a result,n
qubit pairs get statistically dependent.

~3! Check whether the lastn2m qubit pairs are
uF&-states (uF1& or uF2&). This can be accomplished lo
cally by measuring both the qubits of each pair in theu0&,u1&
basis, and checking whether both measurements yield
same result.

~4! If all measured pairs wereuF& states, keep the firstm
pairs. This is a new mixture of 4m products of Bell states.

This is a generalization of a protocol withn52 andm
51, presented in Refs.@2,3#. In that protocol the applied
local permutation consisted of a bilateral controlled-NOT op-
eration by Alice and Bob. In our protocol, we will only con
sider linear permutations (b50) as we expect that, in gen
eral, nothing can be gained by considering affi
permutations.~For entangled states, the coefficient ofs0, . . . ,0
dominates the other coefficients. Settingb50 ensures that
this coefficient will also contribute to the obtained entang
ment after the protocol.!

In the following section, we discuss how to choose t
local permutation so as to obtain a good protocol. The m
result of this section is a formula for the resulting state ofm
pairs as a function of the permutation of Bell states p
formed in step~2! of the protocol

Theorem 2.If Alice and Bob apply the above protoco
starting from n-independent identical copies of a Bel
diagonal state p00uF1&^F1u1p01uC1&^C1u1p10uF2&
3^F2u1p11uC2&^C2u with p00>p01>p10>p11, and with
0-3
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entanglement, i.e.,p00.
1
2 , within step~2!, a local operation

by Alice and Bob that results in a permutation of products
Bell statesp:x→Ax with ATPA5P as described in the pre
ceding section, the resulting state of the remaining m qu
pairs is given by

2n2m (
yPZ2

2m S (
xPS1PATPȳ

px

(
xPS

sx
D uBy&^Byu, ~5!

whereS is the subspace spanned by the rows ofAP with
indices 2m12,2m14, . . . ,2n,

F s00

s01

s10

s11

G5F 1 1 1 1

1 1 21 21

1 21 1 21

1 21 21 1

GF p00

p01

p10

p11

G ,

ȳ is y extended with 2(n2m) zeros, and the long vecto
indices ofp ands andB behave like the indices ofs in the
preceding section, e.g.,p0011015p00p11p01.

Proof.After the permutation, and before the measureme
the state of the n qubit pairs is given by
(xPZ

2
2npxuBAx&^BAxu. The states uBAx& with

(Ax)2m12 ,(Ax)2m14 , . . . ,(Ax)2n50 yield uF& states and
will be kept. These are the statesuBAx&, for which x is com-
mutable with the rowsa2m12 , . . . ,a2n of AP. If we call the
subspace of these vectorsx, R, the success rate~probability
of keeping the firstm pairs! is (xPRpx . Among the states
that are kept, the ones with (Ax) j5yj , j 51, . . . ,2m yield
uBy& states. Together with the conditions for being ke
these are 2m1(n2m) independent linear conditions, yield
ing a coset of an (n2m)-dimensional subspace ofZ2

2n . This
subspace must beS since the latter is (n2m) dimensional
and satisfies all homogeneous conditions~with y50) by the
P orthogonality ofA. The right coset is obtained by addin
PATPȳ ~a combination of the first 2m rows of AP, deter-
mined byy). As a result, the state of the firstm pairs after
the measurement is

(
yPZ2

2m S (
xPS1PATPȳ

px

(
xPR

px
D uBy&^Byu

If all coefficients~for all y) are calculated, the denomina
tor (xPRpx can be calculated as the sum of the 22m numera-
tors. If only one coefficient is needed~for instance, if only
the fidelity of the end state is needed!, the denominator
can be calculated in a more efficient way
(xPRpx522(n2m)(xPSsx . One can easily verify tha
sv5(xPZ

2
2n(21)vTPxpx ~first verify for two bits and then

extend!. Therefore, (vPSsv5(xPZ
2
2n@(vPS(21)vTPx#px .

If x commutes with allvPS, (21)vTPx51 for all vPS
and (vPS(21)vTPx52n2m. If v¹S, one can easily show
02231
f

it

t,

,

that half the coefficients (21)vTPx are one and half are
21. Now the statesxPR are exactly the ones, for which
x is commutable with all elements ofS. Therefore,(xPSsx
52n2m(xPRpx . This concludes the proof. j

IV. RECURRENCE SCHEMES

With the above formula for the end state of the protoc
~Theorem 2!, it is possible to derive good protocols b
searching over all possible values for the relevant rows of
P-orthogonal matrixA and optimizing some quality measur
Typically this measure will depend on the fidelity of the e
state and the success rate of the protocol~the probability of
having uF& states in the measured pairs!. In that case, one
only needs the first coefficient~the fidelity! and the denomi-
nator ~the success rate! in Eq. ~5!, which both only depend
on S, a space spanned by onlyn2m rows of A. Although
this drastically limits the search space, it still grows exp
nentially with growingn.

Therefore, to come up with schemes for largen, one
needs to use the recurrence scheme, as was proposedn
52 andm51 in Refs.@2,3#. If m51, this scheme mean
that the above protocol is performedn times ~with the same
local permutation! and then identical end states are taken
the input for a new step. Of course, more than two steps
possible too. One could also envision recurrence sche
with mÞ1, for instance, combining two end states of ann
54, m52 protocol to yield the input for a second step wi
n54. In that case, however, the input for the second s
would no longer consist ofn independent pairs. Although
this only requires a minor modification of the above resu
(px and sx can no longer be interpreted as products
p00, . . . ,p11), we will not consider this case in this paper

To end up with almost pure Bell states, the recurren
scheme can best be combined with the hashing protocol a
Refs. @2,3#. The hashing protocol is the best-know
asymptotic protocol~for n→`) but can only be applied to
Bell-diagonal states with high-enough fidelity. The combin
protocol then consists of first applying a few recurrence st
and then switching to the hashing protocol.

The best-knownn52, m51 recurrence scheme is th
one of Ref.@6#. In our language it amounts to a scheme w
a 434 P-orthogonal matrix whose last line is 11 11. It ca
be proven that this scheme yields the best achievable fid
after one step~though not achieved with the best succe
rate! for initial probabilities that are orderedp00.p01>p10
>p11. For this reason, it is also best to apply a pair-per-p
transformation after each recurrence step, which reorders
probabilities of the end state if they are not ordered.~One can
easily find such one-pair transformations using the theory
Sec. II or equivalently using the local operations of Re
@2,3#. This reordering scheme was also introduced in anot
mathematical setting in Ref.@9#.!

Although, it is probably best to search for a new protoc
for every given initial state, we propose below a protoc
which we think is good if one does not have the time f
such a search. We show by computer simulations that it
forms better than then52 scheme.

Our scheme is ann54, m51 recurrence scheme com
0-4
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bined with hashing, and with as the last step possibly an
52, m51 step if this can lead to better performance. For
local permutation~determined by theP-orthogonal matrix
A), we choose a permutation that is found experimentally
often lead to the best fidelity after one step, when start
with ordered probabilities. For this reason, we also appl
reordering in between recurrence steps as discussed fo
n52 protocol above. The chosen local permutation cor
sponds to an 838 P-orthogonal matrixA whose fourth,
sixth, and eighth rows span the space spanned
$10 11 11 10,01 10 11 00, 11 10 10 11%. This can be achieved
by the operations

UA5UB* 5eip/4s10 01 00 00eip/4s01 00 00 01

3eip/4s10 00 11 00eip/4s00 01 10 00. ~6!

In this realization, the first and second rows of t
P-orthogonal matrix A are 01 10 00 10 and 10 10 10 10
These rows are needed to compute the reordering opera
between the steps, for although the three values ofp018 , p108 ,
andp118 after one step of the protocol are fixed, their order
not. ~The three cosets ofS in R in Eq. ~5! are fixed but not
their order.!

This realization was found by exhaustive search over
operations that can be realized by four consecutive elem
tary two-qubit operations. If, for protocols with largern for
instance, no such simple realization can be found in a
sonable amount of time, one can always find a realiza
using the theory of Sec. II but this can increase the to
amount of work for executing the distillation protocol. Th
was also one of the reasons for choosingn54 in the pro-
posed protocol.

As a performance measure, we have chosen the expe
number of input pairs needed per output Bell state in
asymptotic protocol~the inverse of the asymptotic yield!.
The number of recurrence steps was also chosen as to
mize this measure. Figures 1 and 2 show the performanc

FIG. 1. Comparison of 10-logarithm of inverse asymptotic yie
L for input Werner states with fidelityF for proposed protocol~full
line! and existing recurrence-hashing protocol~dashed line!.
02231
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our method (n54, m51 recurrence with the local permuta
tion realized byUA as in Eq.~6!, with reordering between
the steps, possibly one lastn52, m51 step, and optimal
switching to hashing protocol! and the method of Ref.@6#
with reordering between the steps and optimal switching
the Hashing protocol. Figure 1 shows the results for Wer
states ~with p005F. 1

2 and p015p105p115c(12F)/3).
Figure 2 shows the average performance of~for each value
of the input fidelity! 100 random non-Werner states.

To do better than this protocol for a specific initial Be
diagonal state, one can do several things depending on
amount of computing time available. One can try recurren
schemes with highern and even higherm, but the amount of
time needed increases fast with increasingn. There is, of
course, no obligation to take the same local permutation
consecutive recurrence steps. One can also consider dist
more than one end state at once. Making two states with
n54, m51 protocols is just a special case of a nonoptim
n58, m52 protocol. One can, of course, search for bet
ones if one has the time. In this case, the two obtained B
states will not be independent but as the fidelity goes to
their dependence will vanish. Also two consecutive rec
rence steps, say twon52, m51 steps, can be considered
one bigger nonoptimal step, in this case withn54, m51.
So if one has the time, he can in theory always go for a o
shot protocol~no recurrence!, but if one combines with the
recurrence scheme, he can always afford lower initial
tanglement with the same amount of computing time.

V. CONCLUSION

We have derived different protocols for distillation of e
tanglement from mixed states of two qubits. The protoc
were based on a characterization of the group of all loca
realizable permutations of the 4n possible tensor products o
n Bell states. Our protocols perform significantly better th

FIG. 2. Comparison of 10-logarithm of inverse asymptotic yie
L averaged over 100 random non-Werner input states with fidelitF
for proposed protocol~full line! and existing recurrence or hashin
protocol ~dashed line!.
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existing protocols as was shown by computer simulation.
also indicated how to derive even better protocols for s
cific initial states.
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