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Abstract. This paper is an updated and extended version of the paper “The QR Decomposition and
the Singular Value Decomposition in the Symmetrized Max-Plus Algebra” (B. De Schutter
and B. De Moor, SIAM J. Matriz Anal. Appl., 19 (1998), pp. 378-406). The max-plus
algebra, which has maximization and addition as its basic operations, can be used to de-
scribe and analyze certain classes of discrete-event systems, such as flexible manufacturing
systems, railway networks, and parallel processor systems. In contrast to conventional
algebra and conventional (linear) system theory, the max-plus algebra and the max-plus-
algebraic system theory for discrete-event systems are at present far from fully developed,
and many fundamental problems still have to be solved. Currently, much research is going
on to deal with these problems and to further extend the max-plus algebra and to develop
a complete max-plus-algebraic system theory for discrete-event systems.

In this paper we address one of the remaining gaps in the max-plus algebra by con-
sidering matrix decompositions in the symmetrized max-plus algebra. The symmetrized
max-plus algebra is an extension of the max-plus algebra obtained by introducing a max-
plus-algebraic analogue of the —-operator. We show that we can use well-known linear
algebra algorithms to prove the existence of max-plus-algebraic analogues of basic ma-
trix decompositions from linear algebra such as the QR decomposition, the singular value
decomposition, the Hessenberg decomposition, the LU decomposition, and so on. These
max-plus-algebraic matrix decompositions could play an important role in the max-plus-
algebraic system theory for discrete-event systems.
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I. Introduction. In recent years both industry and the academic world have
become more and more interested in techniques to model, analyze, and control com-
plex systems such as flexible manufacturing systems, telecommunication networks,
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multiprocessor operating systems, railway networks, traffic control systems, logistic
systems, intelligent transportation systems, computer networks, multilevel monitor-
ing and control systems, and so on. These systems are typical examples of discrete-
event systems, the subject of an emerging discipline in system and control theory.
The class of the discrete-event systems essentially contains man-made systems that
consist of a finite number of resources (e.g., machines, communications channels, or
processors) that are shared by several users (e.g., product types, information pack-
ets, or jobs), all of which contribute to the achievement of some common goal (e.g.,
the assembly of products, the end-to-end transmission of a set of information pack-
ets, or a parallel computation) [1]. There exist many different modeling and anal-
ysis frameworks for discrete-event systems such as Petri nets, finite state machines,
queuing networks, automata, semi-Markov processes, max-plus algebra, formal lan-
guages, temporal logic, perturbation analysis, process algebra, and computer models
[1, 5, 24, 37, 38, 39, 57, 64].

Although in general discrete-event systems lead to a nonlinear description in con-
ventional algebra, there exists a subclass of discrete-event systems for which this model
becomes “linear” when we formulate it in the max-plus algebra [1, 8, 10], which has
maximization and addition as its basic operations. Discrete-event systems in which
only synchronization and no concurrency or choice occur can be modeled using the
operations maximization (corresponding to synchronization: a new operation starts
as soon as all preceding operations have been finished) and addition (correspond-
ing to durations: the finishing time of an operation equals the starting time plus
the duration). This leads to a description that is “linear” in the max-plus algebra.
Therefore, discrete-event systems with synchronization but no concurrency are called
max-plus-linear discrete-event systems.

There exists a remarkable analogy between the basic operations of the max-
plus algebra (maximization and addition) on the one hand, and the basic opera-
tions of conventional algebra (addition and multiplication) on the other hand. As
a consequence, many concepts and properties of conventional algebra (such as the
Cayley—Hamilton theorem, eigenvectors, eigenvalues, and Cramer’s rule) also have a
max-plus-algebraic analogue [1, 10, 25, 55]. This analogy also allows us to translate
many concepts, properties, and techniques from conventional linear system theory
to system theory for max-plus-linear discrete-event systems. However, there are
also some major differences that prevent a straightforward translation of proper-
ties, concepts, and algorithms from conventional linear algebra and linear system
theory to max-plus algebra and max-plus-algebraic system theory for discrete-event
systems.

Compared to linear algebra and linear system theory, the max-plus algebra and
the max-plus-algebraic system theory for discrete-event systems is at present far from
fully developed, and much research on this topic is still needed in order to get a com-
plete system theory. The main goal of this paper is to fill one of the gaps in the theory
of the max-plus algebra by showing that there exist max-plus-algebraic analogues of
many fundamental matrix decompositions from linear algebra such as the QR de-
composition and the singular value decomposition. These matrix decompositions are
important tools in many linear algebra algorithms (see [31, 40, 41, 59] and the ref-
erences cited therein) and in many contemporary algorithms for the identification of
linear systems (see [44, 45, 50, 60, 61, 62, 63] and the references cited therein). We
conjecture that the max-plus-algebraic analogues of these decompositions will also
play an important role in the max-plus-algebraic system theory for discrete-event sys-



THE MAX-PLUS-ALGEBRAIC QRD AND SVD REVISITED 419

tems. For an overview of ongoing work in connection with the max-plus algebra and
with modeling, identification, and control of max-plus-linear discrete-event systems in
particular, we refer the interested reader to [1, 3, 4, 9, 22, 25, 26, 27, 28, 29, 35, 36, 46]
and the references therein.

In [55], Olsder and Roos used asymptotic equivalences to show that every matrix
has at least one max-plus-algebraic eigenvalue and to prove max-plus-algebraic ver-
sions of Cramer’s rule and of the Cayley—Hamilton theorem. We shall use an extended
and formalized version of their technique to prove the existence of the QR decom-
position and the singular value decomposition in the symmetrized max-plus algebra.
The symmetrized max-plus algebra is an extension of the max-plus algebra obtained
by introducing a max-plus-algebraic analogue of the —operator (see section 3.2). In
our existence proof we shall use algorithms from linear algebra. This proof technique
can easily be adapted to prove the existence of max-plus-algebraic analogues of many
other matrix decompositions from linear algebra such as the Hessenberg decomposi-
tion, the LU decomposition, the eigenvalue decomposition, the Schur decomposition,
and so on.

This paper is an updated and extended version of [19]. To make the paper more
accessible, we have added extra examples and included some additional background
material and references to the (recent) literature. Furthermore, some recent results
in connection with algorithms to compute max-plus-algebraic matrix factorizations
have been added.

The paper is organized as follows. After introducing some concepts and defi-
nitions in section 2, we give a short introduction to the max-plus algebra and the
symmetrized max-plus algebra in section 3. Next, we establish a link between a ring
of real functions (with conventional addition and multiplication as basic operations)
and the symmetrized max-plus algebra. In section 5 we use this link to define the QR
decomposition and the singular value decomposition of a matrix in the symmetrized
max-plus algebra and to prove the existence of these decompositions. In section 6
we discuss some methods to compute max-plus-algebraic matrix decompositions. We
conclude with a worked example.

2. Notations and Definitions. In this section we give some definitions that will
be needed in the following sections.

2.1. Matrices and Vectors. The set of all reals except for 0 is represented by R
(Rg =R\ {0}). The set of the nonnegative real numbers is denoted by RT, and the
set of the nonpositive real numbers is denoted by R~. We have R{ = R* \ {0}. The
set of the integers is denoted by Z and the set of the nonnegative integers by N. We
have Ng = N\ {0}.

We shall use “vector” as a synonym for “n-tuple.” Furthermore, all vectors are
assumed to be column vectors. If a is a vector, then a; is the ith component of a. If
A is a matrix, then a;; or (A);; is the entry on the ith row and the jth column of
A. The transpose of the matrix A is denoted by AT. The n by n identity matrix is
denoted by I,, and the m by n zero matrix is denoted by O, xn-

The matrix A € R™*" is called orthogonal if AT A = I,,. The Frobenius norm of
the matrix A € R™*" is represented by

”

1Alle =
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The 2-norm of the vector a is defined by ||al|, = VaTa, and the 2-norm of the matrix
A is defined by

[Ally = max [[Az], .
Hw 2=

THEOREM 2.1 (QR decomposition). If A € R™*™ then there exist an orthogonal
matriz Q@ € R™*™ and an upper triangular matriz R € R™*" such that A = QR.
We say that QR is a QR decomposition (QRD) of A.

THEOREM 2.2 (singular value decomposition). Let A € R™*" and let r =
min(m, n). Then there exist a diagonal matriz ¥ € R™*™ and two orthogonal matrices
UeR™™ gnd V € R"™™ such that

(1) A=UxVvT

with o1 > 09 > -+ > 0, > 0, where 0; = (X)4; fori=1,2,...,r. Factorization (1) is
called a singular value decomposition (SVD) of A.

Let UXVT be an SVD of the matrix A € R™*". The diagonal entries of ¥ are
the singular values of A. We have 1 = ||A||,. The columns of U are the left singular
vectors of A and the columns of V' are the right singular vectors of A. For more
information on the QRD and the SVD the interested reader is referred to [31, 40, 41,
58, 59].

2.2. Functions. We use f, f(-), or  — f(x) to represent a function. The domain
of definition of the function f is denoted by dom f, and the value of f at € dom f
is denoted by f(x).

DEFINITION 2.3 (analytic function). Let f be a real function and let a« € R be an
interior point of dom f. Then f is analytic in « if the Taylor series of f with center
« exists and if there is a neighborhood of a where this Taylor series converges to f.

A real function f is analytic in an interval [o, §] C dom f if it is analytic in every
point of that interval.

A real matriz-valued function F is analytic in [a, 8] C dom F if all its entries are
analytic in [a, O].

DEFINITION 2.4 (asymptotic equivalence in the neighborhood of co). Let f and
g be real functions such that oo is an accumulation point of dom f and domg. If
there is no real number K such that g is identically zero in [K,00), then we say that

f is asymptotically equivalent to g in the neighborhood of oo, denoted by f(x) ~
fl=) _ 4
9(z) ’
If there exists a real number L such that both f and g are identically zero in

[L,00), then we also say that f(x) ~ g(z), © — oo.

Let F and G be real m by n matriz-valued functions such that co is an ac-
cumulation point of dom F and dom G. Then F(z) ~ G(x), & — oo, if f”(x) ~
Gij(x), z w oo fori=1,2,... mandj=1,2,...,n.

The main difference between this definition and the conventional definition of
asymptotic equivalence is that Definition 2.4 also allows us to say that a function is
asymptotically equivalent to 0 in the neighborhood of co: f(x) ~ 0, z — oo, if there
exists a real number L such that f(z) =0 for all x > L.

g(x), x = 00, if lim, o

3. The Max-Plus Algebra and the Symmetrized Max-Plus Algebra. In this
section we give a short introduction to the max-plus algebra and the symmetrized max-
plus algebra. A complete overview of the max-plus algebra can be found in [1, 10, 25].
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Table 3.1 Some analogies between conventional algebra and the max-plus algebra.
Conventional algebra Max-plus algebra
+ “~ @ (=max)
x o ® (=+)
0 ~ e (=—o0)
1 > 0

3.1. The Max-Plus Algebra. The basic max-plus-algebraic operations are defined

as follows:
(2) x @y = max (z,y),
(3) TRYy=1+y

for z,y € RU {—o0} with, by definition, max(z, —00) = z and x 4+ (—oc0) = —oo for
all z € RU {—o0}. The reason for using the symbols @ and ® to represent maxi-
mization and addition is that there is a remarkable analogy between & and addition,
and between ® and multiplication: many concepts and properties from conventional
linear algebra (such as the Cayley—Hamilton theorem, eigenvectors, eigenvalues, and
Cramer’s rule) can be translated to the (symmetrized) max-plus algebra by replacing
+ by @ and x by ® (see also section 4 and Table 3.1). Therefore, we also call &
the max-plus-algebraic addition. Likewise, we call ® the max-plus-algebraic multi-
plication. The resulting algebraic structure Rp.x = (RU{—00}, ®,®) is called the

max-plus algebra.

Define R, = RU{—o00}. The zero element for & in R, is represented by ¢ .

Sox@e=ax=c@a for all z € R.. Let r € R. The rth max-plus-algebraic power
T
of x € R is denoted by z® and corresponds to rx in conventional algebra. If z € R,

then 2°° = 0 and the inverse element of z with respect to (w.r.t.) ® is 2 = g
There is no inverse element for € since ¢ is absorbing for ®. If » > 0, then e =e If
r <0, then £®" is not defined.

The rules for the order of evaluation of the max-plus-algebraic operators are
similar to those of conventional algebra. So max-plus-algebraic power has the highest
priority, and max-plus-algebraic multiplication has a higher priority than max-plus-
algebraic addition.

ExamMpPLE 3.1. We have

2® 3 =max(2,3) =3,
2®3=24+3=05,
2° — 3.2,
2@ e =max(2, —00) = 2,
2@e=2+(—0)=—-c0 =¢,
3 (-)e2e=03(-1)e(2®e¢),
=B+ (1)) e,
=2de,
=2.
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Consider the finite sequence ay, as, ..., a, with a; € R, for all .. We define
n
@ai:al ®a2@~~®an

The matrix E, is the n by n max-plus-algebraic identity matrix:
(Fn)ii=0 fori=1,2,...,n
(Ep)ij =€ fori=1,2,....,nand j=1,2,...,n with i # j.
The m by n max-plus-algebraic zero matrix is represented by €, xn:

(Emxn)ij =€ for all 7,7 .

The off-diagonal entries of a max-plus-algebraic diagonal matrix D € R]"*™ are equal
to e: di; = e for all 4,7 with i # j. A matrix R € RI"™" is a max-plus-algebraic
upper triangular matrix if r;; = € for all 4, j with ¢ > j. If we permute the rows or the
columns of the max-plus-algebraic identity matrix, we obtain a max-plus-algebraic

permutation matrix.

The operations @ and ® are extended to matrices as follows. If & € R., A, B €

R, and C € RI*P, then we have
(a®@A)ij=a®a;; =a+a; fori=1,2,...,mand j=1,2,...,n
(A@B)Z]:a”@b” :max(aij,bij) for i = 1,2,...,m andj: ].,2,...,’)7,

and
(A® C);; @azk®ckj— max {azk—i—ckj} fore=1,...,mand j=1,...,

ExAMPLE 3.2. Consider

3 2 -1 ¢
A{O E}and B{ - 4].

Note that B is a maz-plus-algebraic diagonal matrixz. We have
[2®3 22 ] [2+3 2+2]| [5 4
| 2®0 2®e | | 2+0 ¢ 2 e |’

aep=[350 200 mas, b matz o] _[3 2],

20A=

A®B— 3 (-1)P2®e 3Rcp2®4
1 0@(-1)ee®e 0Rede®4
[ 2@ e®@6] [ 2 6
| -1®e e®we | | -1 e |
The matrix

1 2 3 4 5 6 1 2

P | 4 5 6
7 8 9
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3.2. The Symmetrized Max-Plus Algebra. One of the major differences be-
tween conventional algebra and the max-plus algebra is that there exist no inverse
elements w.r.t. @ in R.: if x € R., then there does not exist an element y, € R, such
that © ® y, = ¢ = y, ® x, except when z is equal to . So (R.,®) is not a group.
Therefore, we now introduce Spax [1, 25, 49], which is a kind of symmetrization of the
max-plus algebra. This can be compared with the extension of (N, +, X) to (Z, +, x).
In section 4 we shall show that R, corresponds to a set of nonnegative real functions
with addition and multiplication as basic operations and that S, corresponds to a
set of real functions with addition and multiplication as basic operations. Since the
@ operation is idempotent, we cannot use the conventional symmetrization technique
since every idempotent group reduces to a trivial group [1, 49]. Nevertheless, it is
possible to adapt the method of the construction of Z from N to obtain “balancing”
elements rather than inverse elements.

We shall restrict ourselves to a short introduction to the most important features
of Spax. This introduction is based on [1, 25, 49].

3.2.1. The Algebra of Pairs. We consider the set of ordered pairs P def R, xR,
with operations @& and ® that are defined as follows:

(4) (z,9) & (w, 2) = (S w, y & 2),

(5) ()@ (w,2) =TRQWdYRz2 rQ2zHY QW)

for (z,y), (w, z) € P, where the operations @ and ® on the right-hand side correspond
to maximization and addition as defined in (2) and (3). The reason for also using @

and ® on the left-hand side is that these operations correspond to @ and ® as defined
in Ryax. Indeed, if z,y € R,, then we have

(:U, —00) @ (ya _OO) =(z Dy, _00)7

(z,—00) @ (y, —00) = (x @y, —00).
So the operations @ and ® of the algebra of pairs as defined by (4)—(5) correspond to
the operations @ and ® of the max-plus algebra as defined by (2)—(3).

It is easy to verify that in P. the @ operation is associative, commutative, and
idempotent, and its zero element is (¢,¢); that the ® operation is associative, com-
mutative, and distributive w.r.t. @; that the identity element of ® is (0,¢); and that
the zero element (e, ) is absorbing for ®. We call the structure (Pr, ®, ®) the algebra
of pairs.

EXAMPLE 3.3. We have

(3,008 (2,5) =(3®2,085) = (3,5),
(3,00 ®(2,5) = (3@200©5,3050002) = (5@5,802) = (5,8).

If u = (z,y) € P, then we define the max-plus-absolute value of u as |u|, =z Dy
and we introduce two unary operators: & (the max-plus-algebraic minus operator) and
(-)° (the balance operator) such that Gu = (y,z) and u® = u ® (Gu) = (Jul, , |ul,).
We have
(6) (9u)° = ( ).7
(7) w@ vt = (

(8) o(eu) =u
(9) S(udv) = (cu) & ( v),
(10) O(u®v) = (

e
®
S
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for all u,v € P.. The last three properties allow us to write u © v instead of u ® (Ew).
Since the properties (8)—(10) resemble properties of the —-operator in conventional
algebra, we could say that the S-operator of the algebra of pairs can be considered as
the analogue of the —-operator of conventional algebra (see also section 4). As for the
order of evaluation of the max-plus-algebraic operators, the max-plus-algebraic minus
operator has the same, i.e., the lowest, priority as the max-plus-algebraic addition
operator.
EXAMPLE 3.4. We have

5(3,0) = (0,3),
1(3,0)], =3®0=3,
(3,0)° = (3,3).

Furthermore, as an illustration of (9), we have

o((3,0) @ (2,5)) =o(3,5) = (5,3) = (085,38 2) = (0,3) & (5,2)
= (©(3,0)) @ (©(2,5)).

In conventional algebra we have x —x = 0 for all x € R, but in the algebra of
pairs we have uSu = u ® (Su) = u® # (g,¢) for all u € P. unless u is equal to (g,¢),
the zero element for @ in P.. Therefore, we introduce the following new relation.

DEFINITION 3.5 (balance relation). Consider v = (z,y), v = (w,2) € P.. We
say that u balances v, denoted by uVwv, if t ®z =y S w.

We have u © u = u® = (|ul, ,|ul,) V (g,¢) for all u € P.. The balance relation is
reflexive and symmetric, but it is not transitive, as is shown by the following example.

EXAMPLE 3.6. We have (3,0)V (3,3) since 3@ 3 =3 = 0@ 3. Furthermore,
(3,3)V (1,3). However, (3,0)V(1,3) since3®3=3#1=0 1.

So the balance relation is not an equivalence relation and we cannot use it to define
the quotient set of P. by V (as opposed to conventional algebra, where (N x N)/=
yields Z). Therefore, we introduce another relation that is closely related to the
balance relation and that is defined as follows: if (z,y), (w,z) € P, then

w0 {ERTED A

Note that, referring to Example 3.6, we have (3,0) 8 (3,3) and (3,3) B (1,3). If
u € P., then u © u B (g,¢) unless u is equal to (g,¢). It is easy to verify that B is an
equivalence relation that is compatible with & and ®, with the balance relation V,
and with the ©, |-|_, and (-)* operators. We can distinguish among three kinds of
equivalence classes generated by B:
1. (w,—00) = {(w,z) € P. |z < w}, called max-plus-positive;
2. (—oo,w) = { (z,w) € P |z < w}, called max-plus-negative;

3. (w,w) = { (w,w) € P. }, called balanced.

The class (e,¢) is called the max-plus-zero class.

3.2.2. The Symmetrized Max-Plus Algebra. Let us now define the quotient
set S = P./B. The algebraic structure Spax = (S,®,®) is called the symmetrized
maz-plus algebra. By associating (w, —oco) with w € R., we can identify R, with
the set of max-plus-positive or max-plus-zero classes denoted by S®. The set of
max-plus-negative or max-plus-zero classes will be denoted by S®, and the set of
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Table 3.2 Some analogies between conventional algebra and the symmetrized maz-plus algebra.

Conventional algebra Symmetrized max-plus algebra
+ “ 2]
X > ®
“ ©
= > v
0 “~ a® (a € R.)
Rt YRS s®
R™ YRS S

balanced classes will be represented by S®. This results in the following decomposition:
S = S® US® US®. Note that the max-plus-zero class (e,¢) corresponds to €. The
max-plus-positive elements, the max-plus-negative elements, and ¢ are called signed.
Define S¥ = S® US®. Note that S* NS NS®* = {(c,¢) } and ¢ = G = €*. Some
analogies between conventional algebra and the symmetrized max-plus algebra are
represented in Table 3.2.

EXAMPLE 3.7. We have (3,0) € (3,—00) and (2,5) € (—00,5). In Example 3.3 we
have shown that (3,0)®(2,5) = (3,5) € (—00,5). Furthermore, it is easy to verify that

for any (z,y) € (3,—00) and any (w, z) € (—00,5) we have (z,y) ® (w, z) € (—0,5).
Hence, we can write (3, —00) & (—00,5) = (—00,5), or 3 @& (65) = &5 for short,
since the classes (3,—00) and (—o00,5) can be associated with 3 and ©5, respectively.
Similarly, we can write 3 ® (65) = &8 since (3,0) ® (2,5) = (5,8) € (—x, 8).

In general, if z,y € R,, then we have

(11) xd (ey) =x ifx >y,
(12) @ (oy) =0y ifz<y,
(13) x @ (6x) =1°".

In addition, (6)—(10) also hold for u,v € R..

Now we give some extra properties of balances that will be used in the next
sections. An element with a ©-sign can be transferred to the other side of a balance
as follows.

ProOPOSITION 3.8. For all a,b,c€S:aecVb if and only ifaVba c.

If both sides of a balance are signed, we may replace the balance by an equality.

PROPOSITION 3.9. For all a,b€SY :aVb = a=0b.

Let a € S. The max-plus-positive part a® and the max-plus-negative part a® of
a are defined as follows.

e if a € S%, then a® = a and a® = ¢,

e if a € S°, then a® = ¢ and a® = ©a,

e if a € S°, then there exists a number € R, such that a = z* and then

a® = a® = .

So a =a® ©a® and a®,a° € R.. Note that a decomposition of the form a =z Sy
with x, y € R, is unique if it is required that either z # e and y = ¢, x = ¢ and y # ¢,
or r = y. Hence, the decomposition a = a® © a® is unique. Note that |a[ = a® © a®
for all a € S. We say that a € S is finite if |a|, € R. If [a|, = ¢, then we say that a
is infinite. Definition 3.5 can now be reformulated as follows.
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PROPOSITION 3.10. For all a,b€S: aVb if and only if a® @ b° = a® & b®.

EXAMPLE 3.11. We have 3% = 3, 3° = ¢, and (3°)® = (3°)° = 3. Hence,
3V4® since3° @ (4°)° =304 =4=c04 =3¢ (4*)®. We have 3V &4 since
3P (ed)°=3@d=4#£c=chec=3°F (04)°.

ExaMpPLE 3.12. Consider the balance x® 3V ©4. From Proposition 3.8 it follows
that this balance can be rewritten as x V 0463 or £ V 64 since 9463 = ©(483) = 64
by (9).

If we want a signed solution, the balance x VS4 becomes an equality by Proposi-
tion 3.9. This yields v = &4.

To determine the balanced solutions of xV &4 we first rewrite x as x = t* with
t € R.. We have t*V ©4 or equivalently t ® 4 =t if and only if t > 4.

So the solution set of t ® 3VS4 is given by {4} U{t* |t e R, t >4}.

The balance relation is extended to matrices in the usual way: if A, B € S™*",
then AV B ifa;;Vb;; fori=1,...,mand j =1,...,n. Propositions 3.8 and 3.9 can
be extended to the matrix case as follows.

PrROPOSITION 3.13. For all A, B,C € S™*" : A6CV B if and only if AV B&C.

PROPOSITION 3.14. For all A,B € (SV)™*": AVB = A=DB.

Finally, we define the norm of a vector and a matrix in the symmetrized max-
plus-algebra.

DEFINITION 3.15 (max-plus-algebraic norm). Leta € S™. The max-plus-algebraic
norm of a is defined by

n
lall, = D lail., -
i=1

The maz-plus-algebraic norm of the matrix A € S™*"™ is defined by
m n
1Al = EP B laijl, -
i=1 j=1

The max-plus-algebraic vector norm corresponds to the p-norms from linear al-
gebra since

S

n ®
lall, = (@ |ai|@®p> for every a € S™ and every p € Ny.
i=1

Indeed, we have

=

n ® n n
P 1 p 1
Bii) =L (D) =2 (Do,
i=1 Po\iS Po\iS
_b é eal
= ( |ai|®> (since’ p > 0)
P\

=D lail, = lall, -

f o, 8 € Re and p € R, then p-a @ p- B = max(pa, p8) = pmax(a, 8) = p- (a @ B).
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Similarly, we can show that the max-plus-algebraic matrix norm corresponds to both
the Frobenius norm and the p-norms from linear algebra since

1
® 2

m n
2
IAll, = @ @ |aij\®® for every A € S™*" |

i=1 j=1

and also [|Al|, = max,)_=o |4 ® 2|/, (the maximum is reached for & = Oy x1).
EXAMPLE 3.16. Let

We have |la||, = |3|, © |©5], @ [4*], =3© 504 =5.

4. A Link between Conventional Algebra and the Symmetrized Max-Plus
Algebra. In [55] Olsder and Roos used a kind of link between conventional algebra and
the max-plus algebra based on asymptotic equivalences to show that every matrix has
at least one max-plus-algebraic eigenvalue and to prove max-plus-algebraic versions
of Cramer’s rule and of the Cayley-Hamilton theorem. In [17] we extended and
formalized this link. Now we recapitulate the reasoning of [17] but in a slightly
different form that is mathematically more rigorous.

In the next section we shall encounter functions that are asymptotically equivalent
to an exponential of the form ve®® for s — co. Since we want to allow exponents that
are equal to e, we set e*® equal to O for all positive real values of s by definition. We
also define the following classes of functions:

n
R;‘:{f:Rg'%R""f(s):Zmez"s with n € N,
i=0

i ER(J{, and z; € R, for alli}7

Re

{f:R3—>R’f(s)=Zyie“”S with n € N,
i=0
v; € Rg, and z; € R, for all 4 } .

It is easy to verify that (R, +, X) is a ring.
For all z,y, 2 € R, we have

(14) rdy=2z & e +e¥ ~ (140,)e", s— oo,
(15) rTRQy=z <& €. =e* for all s € R,

where 6, = 0 if z # y and d,y = 1 if © = y. The relations (14) and (15) show
that there exists a connection between the operations @ and ® performed on the real
numbers and —oo, and the operations + and x performed on exponentials. We shall
extend this link between (RY, +, X) and Ry,ax that was used in [51, 52, 53, 54, 55]—
and under a slightly different form in [11]—to Spax.
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We define a mapping F with domain of definition S x Ry x R and with

Fla, p,8) = |ule?® if a € S%,
Fla,pm,s) = —|plelle if a € S°,
Fla, p, s) = peltles ifa €S°,

where a € S, p € Rp, and s € Rg.

In the remainder of this paper the first two arguments of F will most of the time
be fixed and we shall only consider F as a function of the third argument; i.e., for a
given a € S and p € Ry we consider the function F(a, ). Note that if x € R, and
€ Ry, then we have

F(z,p,8) = |ule”,
]:(@xuu’as) = _|M‘61ES,
F(x®,p,s) = pe™

for all s € R(J{. Furthermore, F (e, u,-) = 0 for all u € Rg since e*®* =0 for all s € Rar,
by definition.

For a given u € Ry the number a € S will be mapped by F to an exponential
function s — vel®e® where v = |u|, v = —|u|, or v = p depending on the max-plus-
algebraic sign of a. In order to reverse this process, we define the mapping R, which
we shall call the reverse mapping and which will map a function that is asymptotically
equivalent to an exponential function s — veldle® in the neighborhood of co to the
number |a| or ©lal,, depending on the sign of v. More specifically, if f is a real
function, if x € R,, and if u € Ry, then we have

f(s) ~ |pule™ s 500 = R(f) =z,
f(s) ~ —lple™ ;s 500 = R(f) = o

Note that R will always map a function that is asymptotically equivalent to an ex-
ponential function in the neighborhood of co to a signed number and never to a
balanced number that is different from . Furthermore, for a fixed u € Ry the map-
pings a — F(a, i, ) and R are not each other’s inverse since these mappings are not
bijections, as is shown by the following example.

EXAMPLE 4.1. Let p = 2. We have F(3,p,s) = 2€3* and F(3°%, p,s) = 2€3° for
all s € RE. So R(F(3%,p,+)) = 3 # 3°.

Consider the real functions f and g defined by f(s) = 2e3* and g(s) = 2€3* + e®.
We have f(s) ~ g(s) ~ 2e3%, s — oco. Hence, R(f) = R(g) = 3. So F(R(g),u,) =
f#y.

Let € Rg. It is easy to verify that in general we have R(F(a,p,-)) = a if
a € S*US®, R(F(a,p,-)) = lal, if a € S* and p > 0, and R(F(a,p,-)) = ©lal, if
a € S®* and p < 0. Furthermore, if f is a real function that is asymptotically equivalent
to an exponential function in the neighborhood of oo, then we have F(R(f), 1, s) ~
f(s), s — o0.

Let us now extend (14)—(15) from R, to S. For all a,b,c € S we have

Jpta, b, e € Rg such that

(16) a®b=c = { F(a, pra,8) + F (b, i, ) ~ F(c, pre, 5) § = 00,

Jpta, b, he € R such that

(17) F(a, g, s) + F(b, pp, 8) ~ F(c, e, s) , 8 — 00

} = a®bVe,
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Jptas o, he € R such that

(18) a®b=c = { F(a, fta, s) - F(b, iy, 8) = F(c, pie, ) for all s € RY,

Ipea, o, e € Rg such that

(19) F(a, fia,s) - F(b, iy, 8) = F(c, pie,s) for all s € R }

= a®bVe

As a consequence, we could say that the mapping F provides a link between the struc-
ture (R, +, x) and Rpax = (R, ®,®) and a link between the structure (R, +, X)
and Spax = (S, 8, ®).

REMARK 4.2. The balance in (17) results from the fact that we can have cancel-
lation of equal terms with opposite sign in (RF,+, X), whereas this is in general not
possible in the symmetrized maz-plus algebra since for alla € S\ {e}:aSa#e. We
have, e.g., F(3,1,8) + F(©3,1,5) = 3 — 3 = 0 = e = F(e,1,5) for all s € R.
S0 3® (93) Ve, but clearly 3® (©3) = 3°® #e.

The following example shows that the balance on the right-hand side of (19) is
also necessary: we have F(3,1,8) - F(3,1,5) = 3% - €3* = €5 = F(6°,1,s) for all
seRE, but 3@ 3 =6 # 6°.

The equality signs in the left-hand sides of (16) and (18) cannot be replaced by
a balance sign, as is shown by the following example. We have 3 ® (64) = 64V 5°.
However, there do not exist real numbers py, po, us € Ry such that

-7'—(37N175)+-7:(@47N275) ~ f(5.7.u375)a § — 00,
or equivalently
ual€® — |ugle®® ~ pge® s — o0,

This implies that in general (16) does not hold any more if we replace the equality on
the left-hand side by a balance.

In a similar way we can show that in general a @ bV ¢ with a,b,c, € S does not
imply that there exist real numbers g, 1y, pe € Ro such that F(a, piq, s) - F(b, up, s) =
Fle, e, s) for all s € R

We extend the mapping F to matrices as follows. If A € S"™*™ and if M € R}"*",
then A = F(A, M,-) is a real m by n matrix-valued function with domain of definition
Ry and with a;;(s) = F(a;;,mij, s) for all i,j. Note that the mapping is performed
entrywise. The reverse mapping R is extended to matrices in a similar way: if A is
a real matrix-valued function with entries that are asymptotically equivalent to an
exponential in the neighborhood of oo, then (R(A));; = R(a;) for all i, ;.

If A, B, and C are matrices with entries in S, we have

200 AGB=C = { 3M 4, Mp, M such that

F(A7MA7S)+'7-(B’MB?S)NF(CyMCaS)7 § — 00,

dM 4, Mg, M such that

f(A7MA75)+f(B,MB,5) ~ f(C,MC,S)7 S — 00 } = AEBBVC,

dM 4, M, Mc such that

(22) AR B=C = { F(A,Ma,s) - F(B,Mg,s) ~ F(C,M¢g,s), s — o0,

dM 4, M, Mc such that

f(A7MA78)'F(B7MB,S) ~ \¢.(C’7]\4C78)7 s — 00 } = A®BVC.
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EXAMPLE 4.3. Let

S) 2¢

Hence,
Ao B— 30021 (81) 3 (E(-3)d22°
0®ide®(0l) 60 ((e(-3)de2®
[ 3®(e3) eo@4t ] 3* 4
| e0ee -3®e | | 60 -3

Let M, N, and P € R%“. In general, we have

P = [ Iml e
) ) —‘77121‘ 0 ’
[ Inul —|naafe
f(B,N,S)— 7|n21|65 n22€2s ’
r 3s 4s
F(A@ B.P,s)— | P11° P12 6_38 }
L —[p21] |p22] €

for all s € Ra". Furthermore,
F(A,M,s)-F(B,N,s)

(Imail 11| — [maz|[na1l) e —[mas| [n12] + [mag| nggets ]
—|ma1||n11] |ma1]|niz| e3¢

3s

for all s € R

If Ima1| In11| — |mazl|nei| # 0 and if we take
p11 = [ma1||nu| — [mazl [n21],  pi2 = |miz|ne2,
P21 = \m21| |n11| s D22 = |m21| |n12|,

then we have p;; # 0 for all i,j € {1,2} and
F(A,M,s)-F(B,N,s) ~ F(A® B,P,s), §— 00.
If we take m;; = ni; =1 for all i,7, we get

0 645

-1 6735

F(A,s) F(B,s) ~ [

€
0
Taking mi; = n;; = —(i + j) for all i,j leads to

The reverse mapping results in C' = R(C) = [ 73 ] Note that A BV C.

F(A,s)- F(B,s) = { (2-2-3-3)¢* —2.3_3.4_643}

—-3-2 3-3-e73%
—5e3%  —12e* | det =~
~ { 6 9e—35 = D(s), s — 0.
The reverse mapping results in D = R(D) = [ gg ?g ] and again we have A ®

BVD.
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5. The QRD and the SVD in the Symmetrized Max-Plus Algebra. In [17] we
used the mapping from S,,.x to (Re, 4, X) and the reverse mapping R to prove the
existence of a kind of SVD in Syax. The proof of [17] is based on the analytic SVD. In
this section we present an alternative proof for the existence theorem of the max-plus-
algebraic SVD. The major advantage of the new proof technique that will be developed
in this section over that of [17] is that it can be easily extended to prove the existence
of many other matrix decompositions in the symmetrized max-plus algebra such as
the max-plus-algebraic QRD, the max-plus-algebraic LU decomposition, the max-
plus-algebraic eigenvalue decomposition (for symmetric matrices), and so on. This
proof technique consists of transforming a matrix with entries in S to a matrix-valued
function with exponential entries (using the mapping F), applying an algorithm from
linear algebra, and transforming the result back to the symmetrized max-plus algebra
(using the mapping R).

5.1. Sums and Series of Exponentials. The entries of the matrices that are used
in the existence proofs for the max-plus-algebraic QRD and the max-plus-algebraic
SVD that will be presented in this section are sums or series of exponentials. There-
fore, we first study some properties of this kind of function.

DEFINITION 5.1 (sum or series of exponentials). Let S, be the set of real func-
tions that are analytic and that can be written as a (possibly infinite, but absolutely
convergent) sum of exponentials in a neighborhood of co:

SC:{f:A%R‘AgR, 3K € R} such that [K,00) C A and

f is analytic in [K,00) and either
(24) for all x> K : f(x) = Z a;e®®
i=0
with n € N, a; € Ry, a; € R, for all i and ag > a1 > -+ > ap ; or
(25) for all x> K : f(x) = Z o e®®
i=0
with a; € Ry, a; € R, a; > a;q1 for all i, lim a; = ¢, and
1— 00

where the series converges absolutely for every x > K }

If f € S, then the largest exponent in the sum or the series of exponentials that
corresponds to f is called the dominant exponent of f.

Recall that by definition we have e** = 0 for all s € R{. Since we allow exponents
that are equal to € = —oco in the definition of S, the zero function also belongs to
Se. Since we require the sequence of the exponents that appear in (24) or (25) to be
decreasing and since the coefficients cannot be equal to 0, any sum of exponentials
of the form (24) or (25) that corresponds to the zero function consists of exactly one
term, e.g., 1-e*%.

If f € S is a series of the form (25), then the set {a;|i = 0,1,...,00} has no
finite accumulation point since the sequence {a;};°, is decreasing and unbounded
from below. Note that series of the form (25) are related to (generalized) Dirichlet
series [47].

The behavior of the functions in S, in the neighborhood of oo is given by the
following property.
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LEMMA 5.2. Every function f € S, is asymptotically equivalent to an exponential
in the neighborhood of co:

fese = f(xr) ~ ape™?, z— oo,

for some ag € Ry and some ag € R..

Proof. See Appendix A. 0

The set S, is closed under elementary operations such as additions, multiplica-
tions, subtractions, divisions, square roots, and absolute values.

PROPOSITION 5.3. If f and g belong to Se, then pf, f+g, f—g, fg, f, and | f|
also belong to S, for any p € R and any | € N.

Furthermore, if there exists a real number P such that f(z) # 0 for all x > P,
then the functions % and % restricted to [P,00) also belong to Se.

If there exists a real number Q such that f(x) > 0 for all x > Q, then the function
\/7 restricted to [Q,00) also belongs to Se.

Proof. See Appendix B. ]

5.2. The Max-Plus-Algebraic QR Decomposition. Let A and R be real m by
n matrix-valued functions, and let Q be a real m by m matrix-valued function. Sup-
pose that these matrix-valued functions are defined in J C R. If Q(s) R(s) = A(s),
Q7 (s)Q(s) = I, and R(s) is an upper triangular matrix for all s € J, then we say
that QR is a path of QRDs of A on J. A path of SVDs is defined in a similar way.

Note that if QR is a path of QRDs of A on J, then we have ||R(s)||p = | A(s)]|p
for all s € J. Now we prove that for a matrix with entries in S,, there exists a path
of QRDs with entries that also belong to S.. Next, we use this result to prove the
existence of a max-plus-algebraic analogue of the QRD.

PROPOSITION 5.4. If A € SI*™ then there exists a path of QRDs QR of A for
which the entries of Q and R belong to Se.

Proof. To compute the QRD of a matrix with real entries we can use the Givens
QR algorithm (see [31]). The operations used in this algorithm are additions, mul-
tiplications, subtractions, divisions, and square roots. Furthermore, the number of
operations used in this algorithm is finite.

So if we apply this algorithm to a matrix-valued function A with entries in S,
then the entries of the resulting matrix-valued functions Q and R will also belong to
Se by Proposition 5.3. 0

THEOREM 5.5 (max-plus-algebraic QR decomposition). If A € S™*™  then there
exist a matriz Q € (SY)™X™ and a max-plus-algebraic upper triangular matriz R €
(SV)™>™ such that

(26) AVQ®R

with QT ® Q V Ey, and ||R|, = || All, .

Every decomposition of the form (26) that satisfies the above conditions is called
a max-plus-algebraic QRD of A.

Proof. If A € S™*™ has entries that are not signed, we can always define a matrix
A € (SY)™*™ such that

. aij if a;; is signed,
aij = : : .
£ |aijl, if ai; is not signed

for all 4, 5. Since |a;;], = |as;|, for all 4, j, we have ||AH® = ||Al,. Moreover, we have

foralla,beS: aVb = a® Vb,
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which means that if A V Q ® R, then also A V Q ® R. Therefore, it is sufficient to
prove this theorem for signed matrices A.

So from now on we assume that A is signed. We construct A = F(A, M, -), where
M e R"™*™ with m;; = 1 for all ¢,j. Hence, a;;(s) = ~;;€%7® for all s € Rar and for
all i,j with v;; € {—1,1} and ¢;; = |a;;|, € R for all 7, j. Note that the entries of A
belong to S,. By Proposition 5.4 there exists a path of QRDs of A. So there exist a
positive real number L and matrix-valued functions Q and R with entries in S, such
that

(27) A(s) = Q(s) R(s) for all s > L,
(28) QT (5)Q(s) = Im for all s > L,
(29) IRl = IA(s)lp  forall s > L.

The entries of Q and R belong to S, and are thus asymptotically equivalent to an
exponential in the neighborhood of oo by Lemma 5.2.

If we define Q = R(Q) and R = R(R), then @ and R have signed entries. If we
apply the reverse mapping R to (27)—(29), we get

AVQ®R, Q"®@QV E,, and |R|,=[4],. O

If QR is a QRD of a matrix A € R™*"™ in conventional linear algebra, then we
always have ||R||z = || 4|, since @ is an orthogonal matrix. However, the following
example shows that this property does not always hold in the symmetrized max-plus
algebra; i.e., AVQ ® R and QT ® QV E,, do not always imply that | R, = [|A]|,.

EXAMPLE 5.6. Consider

ol 11 ©0 0 0 1 ¢ p
A= 1 1 1|, Q= 0 a0 0|, and R(p=|e 1 p
1 1 1 0 0 ©0 | E € p
with p € R,. We have
0 0° 0° [0 ¢ ¢
QT®Q=10"0 0°|V|e 0 ¢|=E;
0* 0* O e ¢ 0
and
ol 1 p*
Q@eR(p)=| 1 o1 p°
1 1 p®

So without the condition | R||, = ||All,, Q®R(p) would have been a maz-plus-algebraic
QRD of A for any p > 1. However, since ||R(p)||, = p if p > 1 and since ||A]|, =1,
we do not have |R||, = [|All, if p> 1.

This example explains why we have included the condition ||R[|, = [|A]|, in the
definition of the max-plus-algebraic QRD.

Now we explain why we really need the symmetrized max-plus algebra Sp,.x to
define the max-plus-algebraic QRD: we shall show that the class of matrices with
entries in R, that have max-plus-algebraic QRDs for which the entries of Q and R
belong to R. is rather limited. Let A € RI"*™ and let Q ® R be a max-plus-algebraic
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QRD of A for which the entries of @ and R belong to R.. Since the entries of A,
@, and R are signed, it follows from Proposition 3.14 that the balances A V Q ® R
and QT @ Q V E,, result in A = Q® R and QT ® Q = E,,. It is easy to verify
that we can only have Q7 ® Q = E,, if every column and every row of @ contain
exactly one entry that is equal to 0 and if all the other entries of @@ are equal to €.
Hence, @ is a max-plus-algebraic permutation matrix. As a consequence, A has to be
a row-permuted max-plus-algebraic upper triangular matrix.

So only row-permuted max-plus-algebraic upper triangular matrices with entries
in R, have a max-plus-algebraic QRD with entries in R.. This could be compared with
the class of real matrices in linear algebra that have a QRD with only nonnegative
entries; using an analogous reasoning one can prove that this class coincides with the
set of the real row-permuted upper triangular matrices. Furthermore, it is obvious
that every QRD in R,y is also a QRD in S;.x.

5.3. The Max-Plus-Algebraic SVD. In [17] we used the mappings F and R to
prove the existence of a kind of SVD in the symmetrized max-plus algebra. The
proof of [17] was based on the analytic SVD. Now we give an alternative proof for
the existence theorem of the max-plus-algebraic SVD that makes use of a linear al-
gebra algorithm. More specifically, we shall use Kogbetliantz’s SVD algorithm [43],
which can be considered as an extension of Jacobi’s method for the computation of
the eigenvalue decomposition of a real symmetric matrix. We now state the main
properties of this algorithm. The explanation below is mainly based on [7] and [34].

A Givens matrix is a square matrix of the form

r1 0 --- 0 0 0 0
0 1 --- 0 0 0 0
0 0 --- cos(@) -+ sind) --- 0 0
0 0 --- —sin(@) --- cos(d) --- 0 O
00 - 0 0 10

00 - 0 0 ;e 001

The off-norm of the matrix A € R™*" is defined by

n n
1Allog = | D D aiy

i=1 =1, j#i

where the empty sum is equal to 0 by definition (so if A is a 1 by 1 matrix, then
we have ||A|| g = 0). Let A € R™*". Since USVT is an SVD of A if and only if
VSTUT is an SVD of AT, we may assume without loss of generality that m > n.
Before applying Kogbetliantz’s SVD algorithm we compute a QRD of A:

R
A= ,
Q[ O(m—n)xn }

where R is an n by n upper triangular matrix.
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Now we apply Kogbetliantz’s SVD algorithm to R. In this algorithm a sequence
of matrices is generated as follows:

UO:Ina ‘/():Iny SOZRa
Uk = Uk71Gk, Vk = Vk71Hk, Sk = GfSk,lHk for k = 1,2,3, e

such that ||.Sy|| ¢ decreases monotonously as & increases. So Sy, tends more and more
to a diagonal matrix as the iteration process progresses. The absolute values of the
diagonal entries of Sj converge to the singular values of R as k goes to oc.

The matrices G, and Hj, are Givens matrices that are chosen such that (Sk)i,j, =
(Sk)jrir = 0 for some ordered pair of indices (ix, ji). As a result we have

2 2
ISkl = I1Sk—1llog — (Sk—1)75, — (Sk—1)%i,-
Since the matrices Gy and Hy are orthogonal for all k € Ny, we have
(30) 1Skllp = |1Rlp, R=UiSiVil, UlUp=1I,, and V'V, =1,

for all k£ € N.

We shall use the row-cyclic version of Kogbetliantz’s SVD algorithm: in each cycle
the indices i, and j; are chosen such that the entries in the strictly upper triangular
part of the Si’s are selected row by row. This yields the following sequence for the
ordered pairs of indices (ix, jx):

(1,2)—»(1,3) »---—=(1,n) = (2,3) > (2,4) = --- = (n—1,n).

A full ¢ycle (1,2) — -+ = (n—1,n) is called a sweep. Note that a sweep corresponds
to N = w iterations. Sweeps are repeated until S, becomes diagonal. If we have
an upper triangular matrix at the beginning of a sweep, then we shall have a lower
triangular matrix after the sweep and vice versa.

For triangular matrices the row-cyclic Kogbetliantz algorithm is globally conver-
gent [23, 34]. Furthermore, for triangular matrices the convergence of this algorithm
is quadratic if k is large enough [2, 6, 32, 33, 56]:

(31) IK € N such that for all k> K : ||[Seanllog < 7 1Sk 26

for some constant « that does not depend on k, under the assumption that diagonal
entries that correspond to the same singular value or that are affiliated with the same
cluster of singular values occupy successive positions on the diagonal. This assumption
is not restrictive since we can always reorder the diagonal entries of Sy by inserting an
extra step in which we select a permutation matrix P € R"™" guch that the diagonal
entries of Sgy1 = PT Sy P exhibit the required ordering. Note that [|Ski1lp = ||k
If we define Ugy1 = U P and Vi1 = ka), then Uy, and Vi1 are orthogonal since
PTP = I,,. We also have

Up1Skp1 Vi, = (UkP) (PTSkP) (PTVkT) = U,SW VT = R.

Furthermore, once the diagonal entries have the required ordering, they hold it pro-
vided that k is sufficiently large [32].
If we define
S=1lim Sy, U= lim Uy, and V = lim Vj,
k— o0 k— o0 k— o0
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then S is a diagonal matrix, U and V are orthogonal matrices, and USVT = R. We
make all the diagonal entries of S nonnegative by multiplying S with an appropriate
diagonal matrix D. Next we construct a permutation matrix P such that the diagonal
entries of PTSDP are arranged in descending order. If we define Ur = UP, Sk =
PTSDP, and Vg = VD~ 'P, then Ugr and Vg are orthogonal, the diagonal entries of
SR are nonnegative and ordered, and

UrSrVE = (UP) (PTSDP) (P"D™'VT) =USVT = R.

Hence, URSRVRT is an SVD of R. If we define

UA :Q UR Onx(mfn) :|’ SA _ |:O( SR :| 7 and VA _ VR;

O(mfn)xn m—n m—n)Xn

then UAS’AVAT is an SVD of A.

THEOREM 5.7 (max-plus-algebraic SVD). Let A € S™*" and let r = min(m,n).
Then there exist a maz-plus-algebraic diagonal matriz ¥ € RI"™ and matrices U €
(SV)ym>m and V € (SY)"*™ such that

(32) AVURSeVT

withUT@U V E,,, VI @V V E,,, and |All, =01 > 02> > 0., where o; = (X)y;
fori=1,2,... 7.

Every decomposition of the form (32) that satisfies the above conditions is called
a max-plus-algebraic SVD of A.

Proof. Using a reasoning that is similar to the one that was used at the beginning
of the proof of Theorem 5.5, we can show that it is sufficient to prove this theorem
for signed matrices A. So from now on we assume that A is signed.

Define ¢ = [|A|,. If ¢ = ¢, then A = E,,xn. If we take U = Ey,, ¥ = Epxn,
and V = E,, we have A = UXe V!, UTeU = E,, VI®V = E,, and
op=0y=--=0,=¢c=||A],. SoU®X®V" is a max-plus-algebraic SVD of A.

From now on we assume that ¢ # . We may assume without loss of generality that
m > n: if m < n, we can apply the subsequent reasoning to A7 since AVU@X V7T
ifand only if ATVV @XT@UT. SoU®X® VT is a max-plus-algebraic SVD of A
if and only if V @ X7 ® UT is a max-plus-algebraic SVD of AT

Now we distinguish between two different situations depending on whether or not
all the a;;’s are finite. In Remark 5.8 we shall explain why this distinction is necessary.

Case 1. All the a;;’s are finite.

We construct A = F(A, M,-) where M € R™*" with m;; = 1 for all ,j. The
entries of A belong to Se. In order to determine a path of SVDs of A, we first compute
a path of QRDs of A on Rg:

(33) A:@[O( & }

m—n)xXn

where R is an n by n upper triangular matrix-valued function. By Proposition 5.4
the entries of Q and R belong to Se.

Now we use the row-cyclic Kogbetliantz algorithm to compute a path of SVDs of
R. The operations used in this algorithm are additions, multiplications, subtractions,
divisions, square roots, and absolute values. So if we apply this algorithm to a matrix
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with entries in S, the entries of all the matrices generated during the iteration process
also belong to S, by Proposition 5.3.

In theory we should run the row-cyclic Kogbetliantz algorithm forever in order
to produce a path of exact SVDs of A. However, since we are only interested in the
asymptotic behavior of the singular values and the entries of the singular vectors of
A, we may stop the iteration process after a finite number of sweeps, as will be shown
next. Let Sy, Uy, and Vj, be the matrix-valued functions that are computed in the
kth iteration step of the algorithm. Let Ap be the diagonal matrix-valued function
obtained at the end of the pth sweep by removing the off-diagonal entries of S},N

(where N = % is the number of iterations per sweep), making all diagonal entries
nonnegative and arranging them in descending order, and adding m — n zero rows
(cf. the transformations used to go from S to S4 in the explanation of Kogbetliantz’s
algorithm given above). Let )~( and 17 be the matrix-valued functions obtained by
applying the correspondlng transformatlons to Up ~ and Vp N, respectively. If we define
a matrix-valued function C’p = X A , we have a path of ezact SVDs of C’ on some
interval [L, 00). This means that we may stop the iteration process as soon as

(34) F(A,N,s) ~ Cp(s), s — 00

for some N € R"*". Note that eventually this condition will always be satisfied due to
the fact that Kogbetliantz’s SVD algorithm is globally convergent and, for triangular
matrices,? also ‘quadratically convergent if p is large enough, and due to the fact that
the entries of A, to which the entries of C should converge, are not identically zero
since they have a finite dominant exponent (since in Case 1 we assume that all the
entries of A are finite).

Let USVT be a path of approximate SVDs of A on some interval [L, 00) that was
obtained by the procedure given above. Since we have performed a finite number of
elementary operations on the entries of A, the entries of U, S, and V belong to Se.

We have

(35) F(A,N,s) ~ U(s)2(s) VT(s), 5 — 00,
for some N € R}"*". Furthermore,

(36) UT(s)U(s) = In for all s > L,

(37) VIs)V(s)=1 for all s > L.

The diagonal entries of ¥ and the entries of U and V belong to S, and are thus
asymptotically equivalent to an exponential in the neighborhood of co by Lemma 5.2.
Define 6; = 3;; for i = 1,2,...,r

Now we apply the reverse mapping R in order to obtain a max-plus-algebraic
SVD of A. If we define

Y =R(), U=R({U), V=R(V), and o; = (X); = R(6;) for all i,

then ¥ is a max-plus-algebraic diagonal matrix and U and V have signed entries. If
we apply the reverse mapping R to (35)—(37), we get

AVULeVT, UT@UVE, and VI @V V E,.

2Recall that we are applying Kogbetliantz’s SVD algorithm to the upper triangular matrix-valued
function R (cf. (33)).
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The &;’s are nonnegative in [L,00) and therefore we have o; € R, for all i. Since
the ;’s are ordered in [L,00), their dominant exponents are also ordered. Hence,
01>09 2+ 2> 0p.

We have ||A(s)||p ~ 7€, s — oo, for some v > 0 since ¢ = | Al is the largest
exponent that appears in the entries of A. Hence, R(||A|p) = ¢ = Al -

If P € R™*" then ﬁ IPllg < |IPll, < ||P|lp- As a consequence, we have

1 - . _
— Allp < I1Afl, < Al foralls> L.

N

Since 71(s) ~ [|A(s)y, s — 0o, and since the mapping R preserves the order, this
leads to [|A]l, < o1 < ||A]l, and, consequently, o1 = [|A][ .

Case 2. Not all the a;;’s are finite.

First we construct a sequence {4;};°; of m by n matrices such that

S

[All, =1 if Jagl, =€

for all 4,j. So the entries of the matrices A; are finite and [[A|, = [ Al for all
l € Ng. Furthermore, lim;_,,, A; = A.

Now we construct the sequence {fll}[’il with A; = F(A;, M, Jforl=1,2,3,...,
where M € R™*™ and m;; = 1 for all 4, j. We compute a path of approximate SVDs
U, f/lT of each A4, using the method of Case 1 of this proof.

In general, it is possible that for some of the entries of the U;’s and the V;’s the
sequence of the dominant exponents and the sequence of the corresponding coeflicients
have more than one accumulation point (since if two or more singular values coincide,
the corresponding left and right singular vectors are not uniquely defined). However,
since we use a fixed computation scheme (the row-cyclic Kogbetliantz algorithm), all
the sequences will have exactly one accumulation point. So some of the dominant
exponents will reach a finite limit as [ goes to oo, while the other dominant exponents
will tend to —oo. If we take the reverse mapping R, we get a sequence of max-
plus-algebraic SVDs {U; ® ¥; ® VZT}?;, where some of the entries, viz. those that
correspond to dominant exponents that tend to —oo, tend to € as [ goes to oc.

If we define

U=lim U;, ¥=lim ¥;, and V = lim V],
l—00 l—o00 l—o0
then we have
AVUeXLeVY, UT@UVE,, and VI @V V E,.

Since the diagonal entries of all the ¥;’s belong to R, and are ordered, the diagonal
entries of ¥ also belong to R, and are also ordered. Furthermore, (¥)11 = [|A[| since
(Z1)11 = [|All,, for all I. Hence, U@ X ® V" is a max-plus-algebraic SVD of A. ad

REMARK 5.8. Now we explain why we have distinguished between two different
cases in the proof of Theorem 5.7.

If there exist indices i and j such that a;; = €, then a;;(s) = 0 for all s € R{,
which means that we cannot guarantee that condition (34) will be satisfied after a finite
number of sweeps. This is why we make a distinction between the case where all the
entries of A are finite and the case where at least one entry of A is equal to €.
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Let us now show that this problem is not an issue for the singular value functions
0 that should converge to 0; i.e., we show that we do not have to take special precau-
tions szl has singular values that are identically zero in the neighborhood of co. If T
is a real matriz-valued function that is analytic in some interval J C R, then the rank
of\il is constant in J except in some isolated points where the rank drops [30]. If the
rank of\i/(s) is equal to p for all s € J except for some isolated points, then we say that
the generic rank of ¥ in J is equal to p. The entries of all the matriz-valued functions
created in the row-cyclic Kogbetliantz algorithm when applied to A are real and ana-
lytic in some interval [L*,00). Furthermore, for a fized value of s, the matrices fl(s),
R(s), Si(s), Sa(s), ... all have the same rank since they are related by orthogonal
transformations. So if p is the generic rank of A in [L*,00), then the generic rank
of R, S1, Sy, ... in [L*,00) is also equal to p. If p < n, then the n — p smallest
singular values of R will be identically zero in [L*,00). Since R, Sy, Son, ... are
triangular matrices, they have at least n — p diagonal entries that are identically zero
in [L*, 00) since otherwise their generic rank would be greater than p. In fact, this also
holds for S1, Sa, ... since these matriz-valued functions are hierarchically triangular,
i.e., block triangular such that the diagonal blocks are again block triangular, etc. [34].
Furthermore, if k is large enough, diagonal entries do not change their affiliation any
more; i.e., if a diagonal entry corresponds to a specific singular value in the kth iter-
ation, then it will also correspond to that singular value in all subsequent iterations.
Since the diagonal entries of Sy, are asymptotically equivalent to an exponential in
the neighborhood of co, this means that at least n — p diagonal entries (with a fixed
position) of Sy, Sk41, ... will be identically zero in some interval [L, o) C [L*,00) if
k is large enough. Hence, we do not have to take special precautions szl has singular
values that are identically zero in the neighborhood of oo since convergence to these
singular values in a finite number of iteration steps is guaranteed.

For inner products of two different columns of U, there are no problems either:
these inner products are equal to 0 by construction since the matriz-valued function
U is orthogonal on [L,0) for all k € N. This also holds for inner products of two
different columns of V.

If USVT is an SVD of a matrix A € R™*™ in conventional linear algebra, then
we have o1 = (X)1; = [|Al|,. However, in the symmetrized max-plus algebra the
balances AVU @ X @ VT, UT @ UV E,,, and VT ® V'V E,,, where ¥ is a diagonal
matrix with entries in R, and where the entries of U and V are signed, do not always
imply that (¥)11 = [[A],, as is shown by Example 5.9 below; in general, this may
occur when A does not have at least one signed entry that is equal to [|Al[ in max-
plus-absolute value [17]. Therefore, we have included the extra condition oy = || Al|
in the definition of the max-plus-algebraic SVD.

ExampLE 5.9. Consider

1% e e | p o€
A—{E 1,],U—V—E2—[EO},and E(p)—{gp}

with p € Re. Note that [|A|, =1 but that A has no signed entry that is equal to 1 in
maz-plus-absolute value. We have UT @U = VT @V = Ey, and U (p)@VT = (p)
and o1(p) = (Z11(p)) = p for all p. Clearly, U @ %(p) @ VT ¥V A for any p < 1. So
without the condition o1 = || A, U®X(p)@VT would have been a maz-plus-algebraic
SVD of A for any p < 1.

Using a reasoning that is similar to the one that has been used at the end of
section 5.2 we can show that only permuted max-plus-algebraic diagonal matrices
with entries in R, have a max-plus-algebraic SVD with entries in R, [12, 17].
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For properties of the max-plus-algebraic SVD the interested reader is referred
to [12, 17]. In [12] we also proposed some possible extensions of the definitions of the
max-plus-algebraic QRD and the max-plus-algebraic SVD.

The QRD and the SVD are used in many contemporary algorithms for the identi-
fication of conventional linear systems [44, 45, 50, 60, 61, 62, 63]. We conjecture that
the max-plus-algebraic QRD and SVD can play a similar role in the identification
of max-plus-linear discrete-event systems. We could, e.g., use the max-plus-algebraic
QRD and SVD to define a max-plus-algebraic matrix rank; this rank could then be
used to get an estimate of the system order (i.e., the number of state variables) of
a max-plus-linear discrete event system starting from measured input—output data
sequences (see also [12, 17]).

REMARK 5.10. If f, g, and h belong to Se, then they are asymptotically equivalent
to an exponential in the neighborhood of co by Lemma 5.2. So if L is large enough,
then f(L) > 0 and g(L) > h(L) imply that f(s) > 0 and g(s) > h(s) for all s € [L,00).
This fact and the fact that Se is closed under some elementary algebraic operations
(cf. Proposition 5.3) explain why many algorithms from linear algebra, such as the
Givens QR algorithm and Kogbetliantz’s SVD algorithm, also work for matrices with
entries that belong to Se instead of R. If we apply an algorithm from linear algebra to
a matriz-valued function A with entries in Se that is defined on some interval [L, 00),
we are in fact applying this algorithm on the (constant) matriz fl(s) for every value
of s € [L,00) in parallel.

5.4. Other Max-Plus-Algebraic Matrix Decompositions. The proof technique
that has been used in this section essentially consists of applying an algorithm from
linear algebra to a matrix with entries in S,, where we make use of the fact that S,
is closed for (finite (nested) compositions of) elementary operations such as addition,
multiplication, subtraction, division, square root, and absolute value. This implies
that we can consider conventional linear algebra algorithms for the eigenvalue decom-
position, the LU decomposition, the Schur decomposition, etc. (see [31, 40]), to prove
the existence of the max-plus-algebraic analogues of these matrix decompositions. So
the proof technique of this paper can easily be adapted to prove the existence of a max-
plus-algebraic eigenvalue decomposition for symmetric matrices (by using the Jacobi
algorithm for the computation of the eigenvalue decomposition of a real symmet-
ric matrix), a max-plus-algebraic LU decomposition, a max-plus-algebraic Cholesky
decomposition, a max-plus-algebraic Schur decomposition, a max-plus-algebraic Hes-
senberg decomposition, and so on.

6. Computational Methods. There are several ways to compute a max-plus-
algebraic matrix factorization of a given matrix A € S™*":
1. via symbolic computation using linear algebra algorithms,
2. via numerical computation using linear algebra algorithms,
3. via the extended linear complementarity problem (ELCP).
In the following sections we shall discuss these methods in more detail.

6.1. Symbolic Computation Using Linear Algebra Algorithms. Let A € S™*".
To compute a max-plus-algebraic SVD of A, we first select a matrix M € R{"™" and
construct the matrix-valued function F(A, M, -). Next, we use the constructive proof
technique of section 5 and we apply a linear algebra algorithm, corresponding to the
matrix decomposition that we want to compute, to F(A, M,-). Finally, we trans-
form the result back to the symmetrized max-plus algebra via the mapping R. This
approach will be illustrated in the worked examples of section 7.
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The main disadvantage of this approach is that it requires symbolic calculation,
which may be computationally intensive.

6.2. Numerical Computation Using Linear Algebra Algorithms. In this sec-
tion we shall focus on the max-plus-algebraic SVD. Note, however, that the numerical
computation method can also be used to compute the other max-plus-algebraic matrix
decompositions.

Let A € S™*™. Just as for the symbolic computation, we first select a matrix
M € R}™™. Next, we define an increasing sequence of points s, s1,...,sx € Ry, and
we numerically compute the (constant) SVD of F(A, M, si) for k =0,1,..., K. This
yields a sequence of SVDs U(sg) B(sy) V7 (si) of F(A, M, s;) for k=0,1,...,K. By
taking the logarithm and dividing by s (see the worked example of section 7) we can
now determine the dominant exponents of the entries of the matrix-valued functions
U, 3, and V of the path of SVDs UXVT of F(A,M,-). If we take the signs of
the entries of U and V into account and apply the reverse mapping R, we obtain a
max-plus-algebraic SVD of A. This method will be illustrated in section 7.

The main disadvantage of this approach is that we can run into numerical prob-
lems due to very large or almost zero numerical values of entries of F(A, M,-) for
large values of s.

6.3. ELCP Approach. In this section we shall focus on the max-plus-algebraic
QRD. Note, however, that the ELCP method can also be used to compute the other
max-plus-algebraic matrix decompositions.

We shall show that the max-plus-algebraic QRD of a matrix A € S™*" can also
be computed by solving an ELCP, which is a kind of mathematical programming
problem. Although it would lead us too far off to explain this procedure in detail, we
shall now give a brief outline of how the equations that appear in the definition of
the max-plus-algebraic QRD can be transformed into a system of multivariate max-
plus-algebraic polynomial equalities. For the sake of simplicity we assume that all the
entries of A are finite. If this were not the case, we could apply a limit argument?
similar to the one used in Case 2 of the proof of Theorem 5.7.

Consider the equation AV Q ® R. If we extract the max-plus-positive and the
max-plus-negative parts of each matrix, we obtain

A6 A%V (@ Q) ® (RO R%)
or
A6 A° VQRP®R*°60Q°®R°0Q°®RY®Q° ® R°.
By Proposition 3.13 this can be rewritten as
A°DQR°QR°ODQRPRR® V A° P QR° R R® ®Q° ® R°.

Both sides of this balance are signed. So by Proposition 3.14 we may replace the
balance by an equality. If we introduce a matrix T' of auxiliary variables, we obtain

(38) A*DQ°@R°®Q° @ R® =T,
(39) A°DQRQ°RR*®Q°®@ R° =T.

3In practice, since the @-operator causes large numbers to mask smaller numbers, a limit argu-
ment is usually not required, and a “large-number” argument is already sufficient. Loosely speaking,
this means that we replace all infinite entries of A by a large negative real number —¢ with £ > 1, we
perform the computations, and afterward we replace all entries in the resulting max-plus-algebraic
QRD decomposition that have the same order of magnitude as —& by € (see [12] for more information
on this topic).
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Since we have assumed that all entries of A are finite, the entries of T will also be
finite and, as a consequence, they will be max-plus-invertible. So if we write out the
max-plus-algebraic matrix multiplications in (38) and if we transfer the entries of T'
to the opposite side, we get

-1
ai @t;® @

—1
52 S ..®
i Qi @ Ty D i

P+

=~
Il

1

—1
@@y ®t;® =0 foralli,j .

P+

(40) ®

b
Il
—

Equation (39) can be rewritten in a similar way. The condition QT ® QV E,,, also
leads to similar equations.
The condition that the entries of Q and R should be signed can be written as?

(41) 4 ®q; =¢ for all 1, j,

(42) ri;@r=¢  foralli,j.

The condition || R, = [|A][, is equivalent to

(43) PP o) =141, forali,j.
i=1 j=1

So if we combine all equations of the form (40)—(43), we obtain a system of multivariate
max-plus-algebraic polynomial equalities of the following form:

Given [ integers my, ma, ..., m; € Ny and real numbers ay;, by,

and cp; for k=1,2,...,0, i =1,2,...,my, and j = 1,2,...,r, find

x € R] such that

my T
P ario@,*" =, fork=1,2,....1,
i=1 j=1

or show that no such x exists,
where the vector z contains the max-plus-positive and the max-plus-negative parts of
the entries of @ and R and the auxiliary variables.
In conventional algebra this problem can be rewritten as follows:
Given [ integers mi, ma, ..., m; € Ny and real numbers ag;, b,
and cyi; for K =1,2,...,1, i =1,2,...,m;, and j = 1,2,...,r, find
x € R] such that

_MAX Qg+ Crir 1+ Chiz@2 + o Crir Ty = by fork=1,2,...,1,
1=1,...,mmy
or show that no such z exists.
In [12, 16] we showed that this problem can in its turn be rewritten as a mathe-
matical programming problem of the following form®:

4Since we want the resulting ELCP to have finite data entries, we shall also apply a limit or
large-number argument (cf. footnote 3) for the right-hand sides of (41)—(42).

5Basically, the proof boils down to the fact that for «, 8,7 € R the equation max(a,8) = v is
equivalent to the system oo <, 8 <7, (v —a)(y—8) =0.
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Given two matrices A € RP*" B € R9*" two vectors ¢ € RP, d € RY,
and s subsets ¢1, ¢, ..., ¢s of {1,2,...,p}, find z € R” such that

(44) S J[Az-ei=0

j=1lice;

subject to Az > ¢ and Bx = d, or show that no such x exists.
This problem is called the extended linear complementarity problem (ELCP). The
ELCP arose from our research on discrete-event systems, hybrid systems, and traffic
signal control [13, 15, 16, 18, 22].

Condition (44) represents the complementarity condition of the ELCP and can
be interpreted as follows. Since Az > ¢, all the terms in (44) are nonnegative. Hence,
(44) is equivalent to [ ];c,, (Az—c); = 0for j =1,2,...,s. Soforeachj € {1,2,...,s}
we should have (Az — ¢); = 0 for some index ¢ € ¢;. Hence, each set ¢; corresponds
to a group of inequalities in Az > ¢, and in each group at least one inequality should
hold with equality (i.e., the corresponding surplus variable is equal to 0).

In general, the solution set of the ELCP consists of the union of a subset of the
faces of the polyhedron defined by the system of linear equalities and inequalities
Az > ¢, Bx = d. In [14] we developed an algorithm to find a parametric represen-
tation of the entire solution set of an ELCP. However, the execution time of this
algorithm increases exponentially as the number of equations and variables of the
ELCP increases. Recently, we developed a new algorithm for the ELCP that is based
on mixed integer programming [20, 21]. However, although this new approach allows
us to solve a much larger instance of the ELCP (see [20]), the general ELCP is in-
trinsically hard to solve due to the fact that it is an NP-hard problem [12, 14]. As
a consequence, the ELCP approach can only be used to compute max-plus-algebraic
QRDs of small-sized matrices. So there certainly is a need for efficient algorithms
to compute max-plus-algebraic QRDs and max-plus-algebraic other matrix decom-
positions. This will be an important topic for further research. Another question is
whether we can develop efficient algorithms for special classes of matrices; e.g., is it
possible to come up with more efficient algorithms by making use of the structure
(sparse, banded, triangular, etc.) of the matrix?

For an illustration of the use of the ELCP approach to compute the max-plus-
algebraic SVD of a matrix, we refer to [12].

7. A Worked Example of the Max-Plus-Algebraic QRD and the Max-Plus-
Algebraic SVD. Now we give an example of the computation of a max-plus-algebraic
QRD and a max-plus-algebraic SVD of a matrix using the mapping F.

Consider the matrix

e

Let us first compute a max-plus-algebraic QRD of A using the mapping F. Let
M=[1 ] 7]anddefine A= F(A,M,). So

- —e% et —1 +
(45) A(s) = =35 (0 e-25 for all s e R{.
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If we use the Givens QR algorithm, we get a path of QRDs QR of A with

1 _6—88

Q(s) B \/1 + ¢—16s \/1 4+ e—16s
e 8 -1 ’
,/1_’_6—168 ’/1+€_165
s —10s
6534/1+€_16s —¢ lL+e
V1te16s /1416
R(S) = —T7s —2s —8s
—e —e +e

0
\/1+€_168 \/1+e—16s

- |: 655 e 1 :|
, s — 00.

If we define @ = R(Q) and R = R(R), we obtain

o0 [ ?g @(@—08) } and R= [ i @(@_17) @(22)

We have
| ©5 1 a0
Qon=[% L. N]va

QT eQ = { (_8(;. <_83. } V B,

and ||, = 5 = | All- )
Let us now compute a max-plus-algebraic SVD of A. Since A is a 2 by 3 matrix-

valued function, we can compute a path of SVDs ULV of A analytically, e.g., via

the eigenvalue decomposition of AT A (see [31, 59]). This yields®

- —1 —6_85
U(S) ~ |: 6785 1 :| ) § — 00,
& e’ 0 0
Z(S) ~ |: 0 6725 0 ’ § — 00,
) 1 6755 _6743
V(s) ~ | —e7% —e75 -1 , s — 00.
6—53 -1 6—53

6We have used the symbolic computation tool Maple to compute a path of SVDs USVT of A.
However, since the full expressions for the entries of U, S, and V are too long and too intricate to

display here, we give only the dominant exponentials.
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If we apply the reverse mapping R, we get a max-plus-algebraic SVD U@ X ® V7 of
A with

U=R({U)= [ ?2 @(@})8) } ,
) 0 -5 o(-9)
V=RV)=| o(-4) o(-5) o0
-5 0 -5
We have
U®Z®VT—[63 (7%. @g}VA,

and 01 =5 = [|A]|, > —2 = 02

Although in the example above, the () matrix of the max-plus-algebraic QRD of
A is equal to the U matrix of the max-plus-algebraic SVD of A, this does not hold
in general (see, e.g., the example of [19]). Furthermore, even if @ and U are equal,
this does not necessarily imply that R = S ® V7T or even RV S ® V7T, since for the
example above we have (S ® V7)y = —7, whereas (R)2; = €.

Finally, we illustrate the numerical computation approach of section 6.2 for the
computation of the SVD of A. Consider A = F(A, M,-) as defined in (45). We
have numerically computed the constant SVD of A in a set {s0,81,-.+,8100} of
equidistant, discrete points with s = 0.1 4+ 0.15k. This yields a sequence of SVDs
Ul(sg) X(sx) VT (sg) of F(A, M, sy) for k = 0,1,..., K. The dominant exponents of
the corresponding path of SVDs ULV of A can now be determined as follows. In
Figure 7.1 we have plotted the functions iog,i, Ulog,ij, and vieg ;; defined by
(46)  Orog.i(s) = logdi(s) | Ulog.ij(5) = loglai;(s)| , Viog.ij(5) = log [93(s)|

S S S
for all s € R(J{. From these plots we can clearly determine the dominant exponents of
the singular value functions &; and the components of U and V. For s > s; the signs

of the components of U and V are given by
~ _ _"_ _ + _ _
sign(U(s)) = { 4+ o+ ] and sign(V(s))=| — + -
+ + +

If we take the limit of the functions ieg,i, Uiog,ij, and Vieg,i; for the argument s going
to oo, and if we take the signs of the functions ;; and ¥;; into account”’—in other

"These signs determine the max-plus-algebraic sign of the corresponding entries of the matrices
U and V of the max-plus-algebraic SVD of A.
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Fig. 7.1 The functions Glog,i, Ulog,ij, and Vieg; defined by (46) show the dominant exponents of
the entries of U, S, and V.

words, if we apply the reverse mapping R—we get the following max-plus-algebraic
SVD of A:

T
- 0 o(-5) o(-4)
U®Z®VT{?2 2}@{? L 5}@ o(-4) -5 o0
-5 0 -5

[ &b 1 0
_{—3 (-7)°* -2

Other examples of the computation of the max-plus-algebraic QRD and SVD can
be found in [12, 17, 19].

8. Conclusions and Future Research. In this paper we have tried to fill one of
the gaps in the theory of the (symmetrized) max-plus algebra by showing that there
exist max-plus-algebraic analogues of many fundamental matrix decompositions from
linear algebra.

We have established a link between a ring of real functions (with addition and
multiplication as basic operations) and the symmetrized max-plus algebra. Next, we
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have introduced a class of functions that are analytic and that can be written as a
sum or a series of exponentials in a neighborhood of co. This class is closed under
basic operations such as addition, subtraction, multiplication, division, power, square
root, and absolute value. This fact has then been used to prove the existence of
a QR decomposition (QRD) and a singular value decomposition (SVD) of a matrix
in the symmetrized max-plus algebra. These decompositions are max-plus-algebraic
analogues of basic matrix decompositions from linear algebra. The proof technique
used to prove the existence of the max-plus-algebraic QRD and SVD consists of ap-
plying an exponential mapping to a max-plus-algebraic matrix, using an algorithm
from conventional linear algebra for the resulting matrix-valued function, and after-
wards transforming the result back to the symmetrized max-plus algebra. In addition
to proving the existence of the max-plus-algebraic QRD and the max-plus-algebraic
SVD, this approach can also be used to prove the existence of max-plus-algebraic
analogues of many other real matrix decompositions from linear algebra such as the
LU decomposition, the Hessenberg decomposition, the eigenvalue decomposition (for
symmetric matrices), the Schur decomposition, and so on.

We have also discussed three possible methods for computing max-plus-algebraic
matrix decompositions: via symbolic computation using linear algebra algorithms,
via numerical computation and linear algebra algorithms, and via the extended linear
complementarity problems. However, none of these methods can be considered to be
efficient, especially for large-size matrices. So the development of efficient algorithms
to compute max-plus-algebraic matrix decompositions will be an important issue for
further research. One way to address this issue is to make use of the special structure
of the matrices appearing in the max-plus-algebraic matrix decompositions and in
the corresponding ELCPs. In addition, in view of the fact that the general ELCP is
an NP-hard problem, the computational complexity of computing max-plus-algebraic
matrix decompositions (in general and for special classes of matrices) should also be
investigated.

In [12, 17] we introduced a further extension of the symmetrized max-plus alge-
bra: the max-plus-complex structure T,.x, which corresponds to a ring of complex
functions (with addition and multiplication as basic operations). We could also de-
fine max-plus-algebraic matrix decompositions in Ty,ax. These decompositions would
then be analogues of matrix decompositions from linear algebra for complex matrices
(such as the eigenvalue decomposition or the Jordan decomposition).

Other important topics for future research are further investigation of the prop-
erties of the max-plus-algebraic matrix decompositions that have been introduced in
this paper and application of the max-plus-algebraic QRD, the max-plus-algebraic
SVD, and other max-plus-algebraic matrix decompositions in the system theory for
max-plus-linear discrete-event systems.

Appendix A. Proof of Lemmma 5.2. In this appendix we show that functions
that belong to the class S, are asymptotically equivalent to an exponential in the
neighborhood of co. We shall use the following lemma.

LeEMMA A.1. If f € S, is a series with a nonpositive dominant exponent, i.e., if
there exists a positive real number K such that f(z) = Y .o, a;e®® for all x > K
with a; € R, a9 < 0, a;41 < a; for all i, lim; o a; = €, and where the series
converges absolutely for every x > K, then the series Z?io ;e converges uniformly
in [K,00).

Proof. If > K, then we have e < e%¥ for all i € N since a; < 0 for all 3.
Hence, |a;e®®| < |a;e®X| for all z > K and for all i € N. We already know that
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Yoo laie® | converges. Now we can apply the Weierstrass M-test (see [42, 48]). As
a consequence, the series Y ;o a;e®® converges uniformly in [K, c0). d

Proof of Lemma 5.2. If f € S, then there exists a positive real number K such
that f(z) = >0, oye®® for all 2 > K with n € NU {oo}, a; € Ro, and a; € R, for
all 4. If n = oo, then f is a series that converges absolutely in [K, 00).

If ag = €, then there exists a real number K such that f(z) = 0 for all x > K
and then we have f(z) ~ 0=1:¢** | x — 00, by Definition 2.4.

If n =1, then f(z) = ape®® and thus f(z) ~ ape®*, z — oo, with ay € Ry and
ag € R..

From now on we assume that n > 1 and ag # . Then we can rewrite f(x) as

F(2) = age®" (1 Db ()> = age™* (14 p(z))

with p(z) = Y1, vie®®, where v; = 24 € Rg and ¢; = a; —ag < 0 for all i. Note that

o
p € S and that p has a negative dominant exponent. Since ¢; < 0 for all 7, we have

an - Jimple) = Jlin, (Zv ) =3 (Jim e ) <o

i=1

If n = oo, then the series > v;e* converges uniformly in [K, co) by Lemma A.1.
As a consequence, we may also interchange the summation and the limit in (47) if
n = oo (cf. [42]).

So we have
aoT (1
lim f(@) = lim —°° (1 +p(x)) = lim (1+p(z) =1
z—00 (peto® T—00 apeo® T—00
and thus f(z) ~ ape®™®, x — oo, where ap € Ry and a¢ € R. a

Appendix B. Proof of Proposition 5.3. In this appendix we show that S, is closed
under elementary operations such as addition, multiplication, subtraction, division,
square root, and absolute value.

Proof of Proposition 5.3. If f and g belong to S, then we may assume without loss
of generality that the domains of definition of f and g coincide, since we can always
restrict the functions f and g to dom f Ndom g and since the restricted functions also
belong to Se.

Since f and g belong to S, there exists a positive real number K such that

n

m
f(x) = Z a;e®® and g(z) = Z ﬁjebﬂ forall z > K
j=0

i=0

with m,n € NU {oo}, a;,8; € Ry, and a;,b; € R, for all ¢,5. If m or n is equal to
00, then the corresponding series converges absolutely in [K, o).

We may assume without loss of generality that both m and n are equal to oco. If
m or n are finite, then we can always add dummy terms of the form 0 - e** to f(x)
or g(x). Afterwards we can remove terms of the form re®® with » € R to obtain an
expression with nonzero coefficients and decreasing exponents. So from now on we
assume that both f and g are absolute convergent series of exponentials. Now we
show that under the conditions stated in Proposition 5.3 the functions |f|, pf, f + ¢,

f—ug, fg, f, %, %, and 1/ f belong to S, for any p € R and any [ € N.
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|f] € Se. If ag = ¢, then we have f(x) = 0 for all z > K, which means that
|f(z)| =0 for all z > K. So if ag = ¢, then |f| belongs to Se.

If ag # €, then there exists a real number L > K such that either f(z) > 0 or
f(z) <0 for all x > L since f(z) ~ wpe™® , x — oo, with ey # 0 by Lemma 5.2.
Hence, either |f(x)| = f(z) or |f(z)| = —f(z) for all z > L. So in this case |f| also
belongs to Se.

Since f and g are analytic in [K, 00), the functions pf, f +g, f —g, f-g, and f!
are also analytic in [K,00) for any p € R and any [ € N. So in order to prove that
these functions belong to S., now we only have to prove that they can be written as
a sum of exponentials or as an absolutely convergent series of exponentials.

pf € Se. Consider an arbitrary p € R. If p = 0, then pf(xz) = 0 for all z > K
and thus pf € Se. If p # 0, then we have pf(z) = Y ;2 (pa;)e®®. The series
Yoo o(pai)e®® also converges absolutely in [K,o0) and has the same exponents as
f(x). Hence, pf € S..

f+9,f —g € Sc. The sum function f + g is a series of exponentials since
o0 oo
f@)+g(@) =) ae™ + Y fieh”.
i=0 §=0

Furthermore, this series converges absolutely for every x > K. Therefore, the sum
of the series does not change if we rearrange the terms [42]. So f(z) + g(z) can be
written in the form of Definition 5.1 by reordering the terms, adding up terms with
equal exponents, and removing terms of the form re®* with r € R, if there are any.
If the result is a series, then the sequence of exponents is decreasing and unbounded
from below. So f + g € Se.

Since f — g = f + (—1)g, the function f — g also belongs to Se.

fg € Se. The series corresponding to f and g converge absolutely for every
x > K. Therefore, their Cauchy product will also converge absolutely for every
x > K and it will be equal to fg [42]:

f(x)g(z) = Z Z a;Bi—jelstbizs)e forall x > K.

i=0 j=0

Using the same procedure as for f + g, we can also write this product in the form
(24) or (25). So fg € S..

fl € Se.Let l€N. Ifl =0, then f'! =0€ S,, and if | = 1, then f! = f € S,. If
[ > 1, we can make repeated use of the fact that fg € S, if f,g € S to prove that f!
also belongs to Se.

%, % € Se. If there exists a real number P such that f(z) # 0 for all z > P,
then % and % are defined and analytic in [P, c0). Note that we may assume without
loss of generality that P > K. Furthermore, since the function f restricted to the
interval [P, 00) also belongs to S, we may assume without loss of generality that the

domain of definition of f is [P, 00).
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If f(x) # 0 for all x > P, then we have ag # . As a consequence, we can rewrite

f(x) as

:Z:Oaieam = qge®® <1+Z - (alfao ) :aoeaox(1+p(l,))

=1

with p(z) = Z;’il ~v;e%% where 7y; = 2‘0 € Rg and ¢; = a; — ag < 0 for all i. Note
that p is defined in [P, o), that p € S,, and that p has a negative dominant exponent.

If ¢; = ¢, then p(z) = 0 and % = ie_’“ﬂ for all z > P. Hence, l €S..

Now assume that ¢; # e. Since {¢;};2; is a nonincreasing sequence of negative
numbers with lim; ;oo c; = € = —0 and since p converges uniformly in [P, 00) by
Lemma A.1, we have lim,_, p(m) =0 (cf. (47)). So | p(x) | will be less than 1 if z is
large enough, say if x > M. If we use the Taylor series expansion of ﬁ, we obtain

(48) — L S ) i) <1

l+p(z) =

We already know that p € S.. Hence, p* € S, for all k € N. We have |p(z)| < 1
for all > M. Moreover, for any k € N the highest exponent in p”* is equal to ke,
which implies that the dominant exponent of p* tends to —co as k tends to co. As a
consequence, the coefficients and the exponents of increasingly successive terms of the
partial sum function s, which is defined by s, (z) = >__,(—1)*p*(z) for z € [M, c0),
will no longer change as n becomes larger and larger. Therefore, the series on the
right-hand side of (48) also is a sum of exponentials:

1 > o0 -
T+4plx) Z (Z% ) :kz:%die& for all z > M .

k=0

Note that the set of exponents of this series will have no finite accumulation point
since the highest exponent in p* is equal to kc;. Let us now prove that this series
also converges absolutely. Define p*(z) = > .2, |yile“” for all z > P. Since the
terms of the series p* are the absolute values of the terms of the series p and since p
converges absolutely in [P, 00), p* also converges absolutely in [P, 00). By Lemma A.1
the series p* also converges uniformly in [P,00). Furthermore, {c;}:2; is a non-
increasing and unbounded sequence of negative numbers. As a consequence, we have
lim, 00 p*(x) = 0 (cf. (47)). So | p*(z)| will be less than 1 if z is large enough, say if
x > N. Therefore, we have

Z )]c forallz > N.

1+p o

This series converges absolutely in [N, c0). Since

o0 o0 o0 k o0
S ldile < 3 (Z |%|eM> MAGI
k=0 k=0 =1 k=0

the series > oo d;e%® also converges absolutely for any = € [N, o). Since the series
>orco d;e%® converges absolutely, we can reorder its terms. After reordering the
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terms, adding up terms with the same exponents, and removing terms of the form re**
with r € R if necessary, the sequence of exponents will be decreasing and unbounded
from below.

This implies that ﬁ € S, and thus also % € S.. As a consequence, it follows

from the above results that % = g% also belongs to Se.

\/? € 8S.. If there exists a real number @ such that f(x) > 0 for all x > @, then
the function \/7 is defined and analytic in [@, c0). We may assume without loss of
generality that @ > K and that the domain of definition of f is [@, 00).

If ap = ¢, then we have v/ f(z) =0 for all z > @ and thus \/]T € S..

If ap # €, then ag > 0 and then we can rewrite \/ f(z) as

VI@) = vao e /T5 p(a).

Now we can use the Taylor series expansion of v/ 1+ x. This leads to

> 3
VIHp) =Y Ff” P i@l <1,
k=0 2

— k) Kl

1

m7 we find

where I' is the gamma function. If we apply the same reasoning as for

that \/1+p € S, and thus also \/f € S.. 0
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