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1 abstract

This review describes an overview on how to analyze black/white experiments based on recent
methodologies. A black/white experiment is a conmmonly used design to compare relative mRNA
abundance between two different samples. The reason to focus on black/white experiments is
multiple. Firstly, most biologists start off with such straightforward experiments to have a rough
screening for differentially expressed genes in their biological system before relying on a more
complex experimental design. Secondly, statistical techniques are hetter develaped for such simple
designs. The analysis flow of black/white experiments consists of two major steps: (1} data
preprocessing to remove consistent sources of variation and (2) determination of genes that were
significantly differentially expressed. For the data preprocessing step we described two approaches,
« first one based on a slide by slide normalization/ratio approach and a second one hused on
ANOVA statistics. For the identification of differentially expressed genes fowr methods were
described: a fold test, a t-test {Long et al., 2001}, SAM (Tusher et al., 2001) and an ANOVA-based
hootstrap method (Kerr and Churchill, 2001).

2 Introduction

Microarray experiments measure the expression levels of many genes simultaneously and can be
considercd as upscaled Northern-blot analyses. Fach spot on an array represents a distinet coding
sequence of the genome of interest. The spots typically consist of 60-70 mere oligos or (1.5-2.5 kb
cPNA fragments. During a udcroarray experiment, mRNA of a reference and induced sample is
isolated and each labeled with a distinet fluorescent dye. Subsequently, both Jabeled samples are
hybridized simultaneously to the array. Fluorescent signals of both channels are measured and
used for further analysis (for more extensive reviews on microarrays we refer to {3, 2, 17]).
Distinet sources of variation consistently influence microarray measureitents and circumvent
direct comparison of replicate measurements not assessed under exactly similar conditions (f.e. not
measured on the same array, not labeled with the same dye etc.) [16, 21]. Preprocessing methods
aim at removing these additional sources of variation such that for each gene the measured value
reflects the mere expression level as caused by the condition tested. A first set of effects prohibiting
direet comparison between measurements are the condition and dye effects, reflecting differences
in mRNA isolation and labeling efficiencies between samples. These effects result in an overall
lLigher measured intensity for certain conditions as compared to others. For genes expressed in an
equal amount in both the reference and test sample, condition and dye effects result in a deviation
of the expected ratio test/reference from 1. For statistical testing (e.g. t-test see below) such
deviation is undesired. The mathematical transformation that compensates for these effects is



alled normalization. A second source of variation is related to the imperfections of Lthe spotting
device nsed to produce the array. Small variations in pin geometry, target volume and target
purity cause spot-dependent variations in the amount of cDNA present on the array. Since the
observed signal intensity does not only reflect differences in the mRNA population present in the
sample but, also the amount of spotted ¢DNA, direct comparison of the absolute expression levels
is unreliable. This problem can be alleviated by comparison of the relative expression levels (ratio
of the test and reference intensities) instead of the absolute levels. Indeed reference and test have
heen meastired on the same spot. and by dividing the measured intensities, spot effects cancel out.

When performing multiple experiments (i.e. by using more arrays), arrays are not necessarily
treated identically. Differences in hybridization efficiency can result in global differences i inten-
sities between slides, making measurements derived from different slides mutually incomparable.
This effect is generally ealled the array effect. In this review two distinct approaches, here re-
ferred to as the ratio approach and the ANOVA (analysis of variance) approach, to preprocess and
identify differentially expressed genes in a black/white experiment will be described. The ratio
approac is a multistep procedure comprising log transformation, data {iltering, normmalization
and identification of differentially expressed genes by using a test statistic. The ANOVA approach
consists of a log transformation, data filtering, linearization and identification of differentially ex-
pressed gones based on bootstrap analysis. The initial preprocessing steps are shinilar for hoth
approaches and will be discussed in paragraph 3 and 4.

3  Mathematical transformation of the raw data: need for a
log transformation

A log transformetion of the data is the initial step in the preprocessing data analysis flow. The
necessity of this transformation is clear from Fig 1. In Fig. 1A the expression levels of all genes
measured in the test sample were plotted against the corresponding measurements in the reference
sample. By assuming that only a restricted number of genes alters its expression level, measure-
ments of the reference nd the test sample can for most genes be considered as replicates. The
residual scatlering as observed in Fig. IA therefore reflects the measurement error. When consid-
ering untransformed raw data {(with raw data we refer to background corrected intensity values),
the increase of the residual scattering with increasing signal intensities clearly reflects the multi-
plicative effects (see Table 1), Multiplicative errors cause signal-dependent variance of residual
seattering. This is deteriorating for most statistical tests as will be further illustrated by c.g. the
underlying assumption of ANOVA models. Removal of multiplicative errors by transforming the
data is therefore essential. The effects of a logarithimic data transformation are shown in Fig. 1B:
residuals were constant over a long range of high signal intensities. The log transformation has
imerensed however, the scattering of the residuals at low expression levels. This shows the pres-
ence of an additional additive exror in the original data. Conclusively, the ervor in the data is a
superposition of a multiplicative error and an additive error and log transforming the data will
compensate for the nultiplicative error but will increase the additive error at low expression levels.
Though, an increase of the measurement error with decreasing signal intensities as present in the
{ransformed data is intuitively plausible. Indeed low expression levels are generally considered less
reliable than high levels. In most cases log transformation of raw data is advisable [1, 12].

Using a log transformation of the data has an additional advantage. By log transforming
the data, statistical relevant differences in expression level are caleulated based on the difference
in expression level between the two chanvels (log(test} — log(reference)) (see below statistical
testings). This comes down to taking the log of the ratio test/reference which allows bringing
levels of under- and overexpression to the same scale: values of underexpression are no longer
squashed between (0 and L.



A) untransformed raw data B} log2 transformed raw data
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Pigure 1: JHustration of the influence of log2 transformation on the multiplicative and additive
errors. panel A: representation of untransformed raw data. X axis: intensity measured in the
ved channel, Y axis: intensily measured in the green channel. panel B: representation of log2
transformed raw data. X axis: intensity measured in the red channel (log2 value), Y axis: intensity
measured in the green chamnel (log2 value}. Assuming that only a small number of the genes will
alter their expression level under the different conditions tested, for most genes the measurement
in the green channel can be considered as a replica of the measurement i the red channel.

4 Filtering data

Often approaches have heen used to remove unreliable measurements (c.g. discarding all expres-
sion levels that are below two standard deviations of the background intensity). Such {ihering
procedures depend merely on the choice of an arbitrary threshold. Since in our experiments the
Cy5 and Cy3 channel displayed different gensitivities in the low expression level range (non-linear
dye effect, sce 6.), the approaches illustrated in this overview do avoid the use of such an arbitrary
threshold [8].

Zero values result in undefined values {c.g. when dividing by zero values or taking the log
of a zero value) and therefore are automatically discarded for farther analysis. However, in a
black/white experiment. consistent zero values in one particular condition might correspond to
genes differentially switched off. Therefore instead of rejecting genes with zero values, genes for
which o least one measurement contained a zero value were treated separately. Genes containing
A zero value often resulted in inconsistencies. Inconsistency indicates that genes seemingly uncer-
expressed (when labeled I red) on one array are overexpressed (when labeled in green) on the
othier array. ‘This points towards a strange dye effect: seemingly, if no mRNA is present neither
in the reference sample nor in the test sample, the green dye sticks aspecifieally to the spotted
¢DNA resulting in a high intensity signal. Use of a color flip therefore is mandatory to remove
such Talse positives. This has also been observed in other studies,

5 Ratio approach

The ratio approach uses the loga(ratio) = (loga(test) — logy(re ference)) as an estimate of the
relative expression. Using ratios (relative expression levels) instead of absolute expression levels
allows intrinsiec compensation for spat effects. Alter the initial data transformation and filtering
steps, the ratio approach comprises data normalization and identification of ditferentially expressed
genes by using a test statistic.



Table 1: Definitions of statistical terms.

Residual

Residuals are the deviations of observed values from their estimated or fitted values. A
residual may be regarded as the observed error, in distinction to the actual unknown ervor
of the fitted model.

Additive error

The ahsolute error on a measurenient is independent of the measured expression level.
Consequently, the relative error is inversely proportional to the nieasured intensity and is
high for measurements of low intensity. When replicate measurements are plotted against
each other, additive errors result in a constant residual scattering.

Multiplicative error

The absolute error on the measurement increases with the measured intensity. The relative
error s constant but the variance between replicate measurements increases with the mean
expression value. Multiplicative errors cause signal-dependent variance of residuals.

t-test

A t-test can be defined as a hypothesis test that assumes that the observations are drawn
at random from a normal population and that employs a Student t-distributed test statistic
for confidence interval estimation. The t-distribution deseribes the distribution of a normal
vartable, standardized with the sample variance sy as opposed to the population variance
#g. It is used for hypothesis testing of normally distributed variables when the population
variance sy is unknown, in which case the sample variance s, is used as an estimator of s5.
Paired t-test

The paired t-test is a special case of the two-sample t-tests of hypotheses that oceurs
when the observations on the two populations of interests are collected in pairs (in a
clINA microarray experiment, measurements of the reference and test for a particular gene,
assessed on the same array and the same spot are paired). The difference with an unpaired
two-sample t-test is that both variables are presumed to be dependent. This translates into
the incorporation of the covariance belween both variables in the test statistic. As a result, a
positive correlation within the pairs can cause the unpaired two-sample t-test to considerably
understate the signiticance of the data if it is incorrectly applied to paired samples.

Power

The power of a statistical test (computed as 1-4, with 3 the probability of a type I error) is
the probability of rejecting the null hypothesis /o when the aiternative hypothesis is true. It
can be interpreted as the probability of correctly rejecting a false null hypothesis. Power iz
a very doescriplive and concise measure of the sensitivity of a statistical test, i.e. the ability
of the test to detect differences.

Correction for multiple testing

When considering a family of tests, the level of significance and power are not the same
as those for an individual test, For instance, a significance of o = 0.01 for individual gene
expression indicates a probability of 1% of finding a ratio similar to the measured ratio
under the mill hypothesis {no differential expression present)., This means that for every
1000 genes tested (a funily of 1000 tests), 10 would be expected to pass the test though not
differentially expressed. Fo limit this munber of false positives in a multiple test, a correction
is needed (e.g. Bonferonni correction).

Heteroscedasticity

The condition of the error variance nol being constant over all cases.




5.1 Normalization

Normalization methods as described in Lhis paragraph aim at removing consistent condition and
dye effects (see above)., Alihough the use of spikes (vontrol spots, external control) and house-
keeping genes (genes expected not to alter their expression level under the conditions tested) have
heen described, global normalization is customarily used [20]. Global normalization assumes that
only a small fraction of the total number of genes on the array alters its expression level and that
symmetry exists in the number of genes that is upregulated versus downregulated. Under this
assumption the average intensity of the test genes should be equal to the average intensities of
the reference genes. Based on the hypothesis of global normalization, for the bulk of the genes
the loga(test/reference) ratio should equal 0. Regardless of the procedure used, all normalized
log-ratios therefore will be centered around zero. The assumption of global normalization applies
only Lo micrearrays thal contain a random set of genes and not. lo dedicated arrays. In Table 2 dif-
ferent procedures to perform global normalization are summarized. By performing normalization
of the log-ratios, array effects are intrinsically compensated.

Table 2: Overview of recently described methods for normalization

Normalisation  Tormula Assumptions
Linear fit [4] tog (1) = B log(() Constant linear relationship ¢
between red and green dye
Lowess fit [20]  log R/G — log(R/C) — ¢;(A) Nonlinear Intensity dependent relationship
M =log R — log ¢/ between red and green dye

A= lop, B4loe &

2
¢;(A) is the lowess fit of M vs A

u http://afge.stanford. edu/~finkel/talk . htm

Linear normalization asswmes a linear relationship Letween the measturements in both condi-
tions (test and reference). A common choice for the constant transformation factor is the mean or
median of the log intensity ratios for a given gene set. Chen et ol [4] use an iterative method to
ostimate the constant normalization factor. Allernatively the constant normalization factor can
be delermined hy Hnear regression of the Cyb signal versus the Cy3 signal. The regression factor
determines the rescaling factor Lhat should Le used to trausforim the measurements in one channel
in order Lo obtain an average ratio of 0 (in log scale) (i.e. shifting the center of the distribution of
the log-ratios to zero).

As shown in Fig. 2, most often assutning a linear relationship between the measurements in
hoth conditions is an oversimplification. The relationship between dyes depends on the measured
mtensity and therefore is not linear. These nonlinearities are most pronounced at extreme intensi-
ties (either high or low). As suggested by Yang et al. [5]., intensity-dependent patierns are hetter
visnalized using a plot of M (log{test/reference) versus A {the nverage expression level in log
seale} i5]. From Pig. 2 it is clear Lhat in a certain range of average intensities A, the log ratio M
approximates a certain constant level. In this range a constant normalization factor can be used.
However as the average expression value (A) decreases, the log ratio (M) deviates from a constant
level and an itensity-dependent rescaling factor needs to be calculated. Yang el ol described
the nse of o robust scatter plot smoother, Lowess that performs locally linear fits. The results
of this fit can be used to simultaneously linearize and normalize the data ({20, 5] see Table 2).
After normalization using Lowess there is a clear compensation for the indensity-dependent. effects
i.e. lincarization of the data (Fig. 2). Note, however thal Lowess does not cope with the additive
error at low intensities. Another drawback of the Lowess it is that it depends on the choice of a
parameter (span parameter). When chosen Loo small, data will be overfitied leading to decreasing
signals of differentially expressed genes [9]. Shift log normalization was propesed by Kerr et al.
2001 as an alternative to cope with intensity-dependent dye effects, Prior to normalization, a scale




A) Prior to normalization B) After normalization
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Pigure 2: Hlustration of the influence of an intensity-dependent normalization Panel A: represen-
Lation of the logratio M = log2(R/(Y) versus the mean log intensity A = {log2(R) + log2(G))/2.
At low average intensities the ratio becomes negative indicating that the green dye is consistently
wmore intense as compared to the intensity of the red dye This phenomena is referred to as the
non-tinear dye effect. Either the sensitivity of the red signal is lower than the one of the green sig-
1l ar the basal noise level on the green signal is more pronounced. Solid line represent the Lowess
fit with fvalue of 0.02. (R = red; G= green) panel B: Representation of the ratio M = log2(/C)
versus the mean log intensity 4 = (log2(R)} + log2((7))/2 alter performing a normalization and
linearization based on the Lowess fit. Solid line represent the new Lowess fit with { value of 0.02
on the normalized data. (R = red; G= green).

transformation of the raw fluorescent inlensities is performed such that the relationship between
tlhe color channels beeomes linear with additive errors that are independent of the absolute sig-
nal intensity. 'The idea behind this approach is that an additive error (i.e. independent of the
absolute signal intensity), present in the measured intensities, creates a non-linear trend after log-
{ransformation. Compensating for this additive error should then result in a linear relationship
hetween hoth the color chanmels. Advantage of this method is that results are nol dependent on
the choice of a smoothing parameter. We tried this procedure but results were not satisfactory
(data not shown)?7,

‘Phe procedure as described above is a slide-dependent Lowess normalization. This means that
all gentes on the slide are used to calculate the intensity-dependent fit. Other approaches have
heen described that subdivide a slide in individual print tip groups that are separately normalized
[20]. These approaches theoretically perform betler in removing position-dependent within slide
variations. The drawback, however, is that the number of measurements to wleulate the fit is
reduced, a pitfall that can be overcome by the use of ANOVA (sce further).

5.2 Identification of differentially expressed genes

When preprocessed properly, consistent sources of variation have been removed and the different
ratio estimates of a particular gene can be combined to find out whether a gene is differentially
exprossed. In this paragraph distinet methods to perform this analysis are described.

The fold test is a non-statistical selection procedure that makes use of an arbitrary chosen
threshold, For each gene an average ratio is calenlated based on the different ratio estimates
(logratio = log(lest) — log(reference)). Average ratios of which the expression ratio exceeds a
threshold (usually twofold) are retained. The fold test is based on the intuition that a larger
observed fold change can be more confidently interpreted as a stronger response to the environ-
mental signal tlan smailer observed changes. This approach is an extreme oversimplification of
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the problem. A fold test indeed discards all information ohtained from replicates [1].

A plethora of novel methods to calculate a test statistic and the corresponding significance
level have recently been proposed provided replicates are available (see Table 3). Distinct classes
of models can be discerned, differing from each other in the way the test statistic is calculated,
the null hypothesis is modeled and in their underlying assumptions (Table 3). Tor an exhaustive
comparison between the individual performances of each of these methods we refer to Pan [14] and
for the technical details we refer to the individual references (see Table 3). As examples we used
the method described by Baldi and Long [1] and the SAM method of Tusher et al. [19] because
to our opinion, though quite advanced, these methods are still most inbuitive and straightforward
to understand for non-expert users.

A t-test (sce Table 1) is more appropriate to make statistical inference about the differential
expression of a gene than a simple fold test since it does not only take into account how much
a gene is differentially expressed but also the consislency of the individual measuroments, used
to assess the average dilferential expression fevel. The non-paired t-test evaluates if the average
expression level of a gene in the test condition is significantly different from its average expression
Jevel in the reference condition. The Hy hypothesis states that the expression level of the test and
reference are equal. The fornmla to compute the test statistic is depicted in Table 3. To calculate
the within sample variance of a regular non-pairved t-test, the four observations of the test are
used to estimate the mean expression level of the gene in the test condition. In the same way the
four measurenents of the reference are considered as a single group. The within group variances
(i1, 8;2) are computed based on the deviation of the different measurements of a group from their
respective group means (yir, yiz) (Table 3). Of course when the within variance is caleulated in
such a way it intrinsically contains the consistent variations due to array and spot effects {the
absolute expression values instead of the ratios are used to caleulate an estimate of the average
differential expression level). This problem can be overcome by using a paired t-test. Indeed, in a
¢DNA array the reference and test measurements for the same gene, assessed on the same array
and the same spot can be treated as paired observations. In Table 3 is outlined how a paired
t-lest. (Table §) for ¢cDNAs is calculated. For computation ol the variance, a pair of observatlions
is considered as a new variable (log(test) — log(reference)}. The within group variation, as
calculated by a paired t-test evaluates the deviation of this new variable from the mean of that
variable (i.e. the vartation between the log(test/reference}). As such a paired t-test, in contrast
to & regular non-paired t-test intrinsically compensates for the variation over spots and arrays.
The lower within group variation increases the power of a paired t-test as compared to a regular
t-test. Therefore, whenever possible use of a paired t-test is highly recommended. Note that when
performed on the log transformed data, the t-test approach can be considered as the counterpart
of the ratio-based fold test (calculating log(test) — log(reference) = log(test freference)). The
theoretical advantage of a (paired) t-test is that smaller fold changes ave considered significant
for genes whose expression levels are measured with great accuracy (high consistency) and large
fold changes are considered non-significant if expression levels were not measured accurately (low
consislency). Usually a t-test is combined with a correction for multiple testing {see Table 1). The
implementation of Baldi and Long (Cyber-T) uses a Bonferonni correction [1]. The single step
adinsted p-values, as implemented in the Cyber-1 soflware are too eonservative, decreasing the
power of the statistical Lest (ability to detect real positives). Moreover, the choice of the Bonferonni
correction factor is quite arbitrary. To handle these pitfalls, other corrections for multiple testing
have been proposed recently [5]. The nuntber of replicates is usually too small for a t-test to be
reliable. Long et al. 2001 suggested the use of a Bayesian t-test to cope with the low number
of replicates. The population variance, used in the t-test is estimated by a posterior variance
consisting of a contribution of the measured vartance and a prior variance. The introduction of
a prior variance avoids the need for many replicates. Indeed, based on the assumption that the
variance of a pene depends on its average signal intensity only (i.c. variance is intensity dependent),
it enn be estimated based on the measurements of other genes with similar expression levels. This
is exactly how the prior variance is ealeulated. The influence of the prior variance becomes more
pronmmeed as the mumber of replicates decreases. This Bayesian estimate is an intriguing and
intuitively easy comprehensible approach. However, it applies to t-tests on absolute levels only
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and the extension to paired t-tests on ratios is less trivial. Indeed, the variation on the ratio is the
result of the variation on the absclute measurements in each channel separately used to caleulate
the ratio, information that is discarded in the ratio approach. Tor more information on this topic
we refer to Long et af. [13].

SAM (Significance Analysis of Microarrays) is another method for the analysis of paired or
unpaired black/white experiments [19]. Instead of calenlating a #(i)-value, SAM caleulates for
cach gene a modified $(7) value, called relative difference en referred to as d{i) (see Table 3). The
difterence between £(i} and d(i) caleutated by SAM is the constant term sq, used to compensate for
the dependency of the distribution of d(7) on the measured expression level. After caleulating for
each gene the corresponding d(i) value, genes are ranked according to their d(i) value. The higher
the d{Z) value (in absolute vahie}, the more likely that the gene will be differentially expressed.
Instead of calculating a p-value using a student t-distribution, genes called differentially expressed
are identified by performing a permutation analysis. New random datasets are gencrated by
permuting the original data. In such permutated datasets none of the genes is differentially
expressed. The d(i) values in these randomized datasets arve calculated, ranked and subsequently
used to infer the expected differences t.e. the d{i) value that can be expected if a gene is not
differentially expressed. By using a secatterplot (Fig. 3), ranked d(i} values of the experimental
dataset are compared 1o ranked expected d(i) values. The delta value, a user-specified parameter
determines the number of significantly expressed genes, it expresses how mueh the measured d(i)
vile should exceed the expected d(7) value in order to consider a gene significantly oxpressed (delta
measured as a displacement of the d(f) value from the d{i) = dpypectea{?) line). The number of
false positives can be estimated as the number of genes present in the permuted dataset for which
the d(i) value exceeds the lowest d{i) value that was considered significant based on a given setting
of the delta slider. Permutation analysis overcomes the need of a high number of replicates and
is used as an alternative to correction for multiple testing. The setting of the delta slider allows
choosing a tradeofl between the number of false positives (type T error) and the number of false
negatives {type I error). The lower the number of false positives, the more stringent the test and
the lower the number of genes withheld as significant. The SAM software outputs a listing of the
riiimber of geries withheld and the possible number of false positives for each different value of the
deltaslider.

6 ANOVA (analysis of variance)

ANOVA can be used as an alternative of the ratio approach. It theoretically avoids the use of
ratios and the need for a high number of replicates [11]. ANOVA can be viewed as a special case
of nultiple Hnear regression where the explanatory varinbles are entirely qualitative, ANOVA
madlels the measurved expression level of each gene as a linear combination of the explanatory
variables that reflect, in Lhe context of this study, the major sources of variation in a microarray
experiment. Several explanatory variabies repregenting the condition, dye and array effects (see
ahove) and combinations (2, 3 and 4 level combinations) of these effects are taken into account
in the models (see Fig. 4). One of the combined effects, the Gene-Condition (GC) effect, reflects
the expression of a gene merely depending on the tested condition (i.e. the condition-specific
expression). Since this is the effect in which biologists are interested it is referred to as the factor
of interest. Similarly the difference between the GO effects of two conditions reliects the differential
expression and is called the contrast of interest. Of the other combined effects only those having
a physical meaning in the process to be modeled arve retained. Reliable use of an ANOVA maodel
therefore requires a good insight into this process.

ANOVA requires at first: that the data are adequately described by the linear ANOVA model
and secondly that the observations are normally distributed with constant, within group vari-
ances equal for all groups. If bolh these assumptions are satisfied, the major advantage of the
ANOVA approach over the slide by slide/ratio npproach consists of its ability to assess the differ-
ent. sources of variation across the entire experiment {i.e. the entire set of arvays). In contrast to
the shide by slide/ratio approach, all measurements are combined during statistical inference. If
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Figare 3: Result of a SAM analysis on the preprocessed dataset. Ior this representation the data
were log transformed, genes containing at least 1 zero value were removed and data were Lowess
normalized. The following parameter settings were used: paired test, permutation analysis: 1000
iterations, delta value = 1.2, threshold = 0.

both requirements mentioned above are satisfied, the maodel errors (as estimated by the residuals
of the fit) should be independently and normally distributed random variables with zero mean
and constant variance. The behavior of the residuals can be observed by visual inspection of the
residual plots {Fig. 4). If hoth assumptions are satistied, the residual plots of the fit should be
structureless. If the data can not he fit by a linear model (nol satisfying the first assumption),
residual plots show a non-linear behavior which can best be observed by plotting the residuals
againsl the estimated values for the individual combinations of effects. Not satisfying the second
assumption results in heteroscedasticity (Table 1), indicated by an abserved wedge-shaped trend
in the residuat plot. When both assumptions are satisfled and the residual distribution shows
only slight deviations from nornality (so that the actual errors, estimated by the residuals can he
assumed to be normally distributed) significantly ditferentially expressed genes can be identified
by constructing confidence intervals on the difference in GC effect. These confidence intervals are
then based on normal assumptions, If the distribution of the residuals shows serious deviations
from nortnality, confidence interval construction can still be done but boatstrap analysis should
be used as an alternative. In bootstrap analysis, similar to the permutation analysis of SAM no
explicit assumption on the distribution of the errors is made but confidence intervals are estimated
basedl o novel in silico generated datasets, The only assumption is that the errors are identically
and independently distributed ie. assuming a constant error variance (iid}. Fitting the ANOVA
model results in a set of residuals §. Adding a residual, randomly sampled-with-replacement from
the available set of residuals to the estimated expression values, thousands of novel bootstrapped
datasets can be generated. In each of the novel dataset the difference in GC effect belween two
conditions is caleulated, as a measure for the differential expression. Based on these thousands of
estimates of the difference in GC effect, a bootstrap confidence inderval can be calenlated [10]. A
workable implementation of ANOVA is, however, not as straightforward as it might seem at a first
plimpse. So far, interactions are included in or exciuded from the models on a somehow arbitrary
hasis. Secondly, the assumption of a constant residual variance is obviously an oversimplification
viewing the nonlinear trends in the daia and the additivity of the error in the low expression range
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Figure 4: Results of three different ANOVA models tested on the partially preprocessed data.
Data were partially preprocessed: data were log transformed, genes containing at least 1 zero
value were removed, but ne normalization by Lowess was performed. ANOVA models used: M:
overall mean of the expression levels, A: arvay effect, Dt dye effect, G gene effect, C: condition
effect, GiC: effect of interest, R: replicate effect, AG: combined effect representing a spot effect.
i: number of genes, j: number of conditions, k: number of arrays, l: number of dies, m: number
of replicates. ANOVA lables: represent for each effect in the corresponding ANOVA modetl its
contribution to the total variance (8$ = sum of squares error). The residual S8, represented by
Error is the variation in the dataset that could not be explained by any of the effects. The lotal
variation in the dataset represented by Corrected Total. DI degree of freedom, MS: mean square
error.  Corresponding residual plols: represent for cach ANOVA model the plot of the model
errors (residuals) versus the estimated expression measurements (jf) values. If the assumptions
underlying an ANOVA model are satistied residual plots should be structureless. The possible
causes for the ohbserved heteroscedasticity observed in the residual plots of model 2 and 3 are
explained in the text.
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(for a more detailed overview on this topic we refer to Internal report [6].

7 Software availability

A userfriendly publicly available implementation of a t-test, t-test adapted for paired samples,
{-test for samples with O-level in one channel and Bayesian t-test with correction for multiple
testing is available in Cyber-T software http://genomics. biochem.uci.edu/genex/cybert / [1].

The SAM software was downloaded from http://www-stat.stanforcLedu/ tibs/SAM/ and used
as a plug in excel [19]. The ANOVA models were implemented in Matlab G.1 (the MathWork Inc.,
Natick, Mass) and are available on request {kathleen.marchal@esat.kulenven.ac.be).
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