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ABSTRACT

Canonical correlation analysis {CCA) is a widespread sig-
nal processing technique. In this paper, by elucidating the
parallel between CCA and least squares regression {LSR),
we will show how regularization of CCA can be performed
and interpreted in the same spirit as ridge regression (RR).

Furthermore, the results presented in this paper have an
impact on the practical use of regularized CCA (RCCA).
More specifically, a relevant cross validation cost funciion
for training the regularization parameter, naturally follows
from the derivations.

1. INTRODUCTION

In this paper, we present a unifying approach to CCA [2}
and RR [1] from the viewpoint of estimation, and from the
viewpoint of regularization in order to deal with noise.

Regularization can be seen as a way to deal with nu-
merical_problems, due to finite sample sizes leading to in-
accurate estimates of the process parameters used for the
estimation problem.

Another point of view, and probably more relevant, fo-
cuses on the fact that learning is subject to overfitting, if
the number of degrees of freedom is too large. A learned hy-
pothesis can only be generalizing towards new examples, if
the hypothesis space is small enough, so that each hypoth-
esis can be falsified easily enough. This is often achieved
by imposing a Bayesian prior on the solution, thus reducing
the effective number of degrees of freedom.

A third way to approach it, is by considering the ob-
served data as data corrupted by noise, and performing the
estimation problem in a robust way, so that the influence of
noise is as small as possible in a specific way. In a first sec-
tion, we will show how this viewpoint gives rise to a natural
interpretation of the regularization of LSR towards RR.

Given this interpretation of RR, elucidating the parallel
between LSR and CCA will lead to a new interpretation of
RCUCA as described in {5}, [6] and [7]. This is done in a
following section.

A fundamental property of the approach we adopt, is
the fact that we assume an underlying generative model for
the data. However, this does not restrict the applicabil-
ity of CCA, but rather gives an aiternative interpretation,
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complementary to the usual interpretation in geometrical
terms like correlation properties.

General notation. Matrices will be denoted by cap-
ital letters. Row and column wvectors are represented by
lower case letters. Indexed lower case letters represent co-
lumns of the capital case equivalent. Capital greek letters
are diegonal matrices. Indexed lower case greek letters rep-
resent the diagonal elements of their capital case equivalent.
With I, we denote an identity matrix.

2. FROM LEAST SQUARES REGRESSION TO
RIDGE REGRESSION

Based on a very simple linear model, with two noise sources,
we will review how it s possible to derive the least squares
estimator as a maximum likelihood estimator {and thus the
maximizer of the log likelihood). Subsequently, we will show
how RR {1] naturally follows as a maximizer of the expected
log likelihood. The expectation is carried out over all possi-
ble values of a noise source. An interpretation of the results
will be provided.

Notation. X, D € R"™* contain k& d-dimensional sam-
ples i, d;. The row vectors y,n € R'** contain k sam-
ples of the scalars yi;,ni. The vector w € R¥™! is a d-
dimensional weight vector. The sample covariance matrices

T T
Cx and Cxy ave defined as Cx = £ and Cx, = £,

2.1. Least squares as a maximum likelihood estima-
tor

We will briefly restate the following well known result on
[ineay regression:

Theorem 1 The mazimum likelihood estimator of w given
X and y and the model

y = wX+4n (1)

whereTn. is gaussian noise with zero mean and variance
E{8} = 07, is given by the least squares estimator
w = Cy'Cx, 2
Proof. The probability to observe the data, given w, is
(- wTX)y —wX)
202

P(X, y|w) :\/2;? exp
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In order to maximize this with respect to w, we can mini-
mize minus two times the log likelihood as well. Differen-
tiating this with respect to w and equating to zero leads
the optimality conditions on w (often called normal equa-
tions). Sinee X X7 is positive definite, the optimum wpg
corresponds to the maximum of the likelihood:
2XXTwrs —2Xy" = 0

and thus

wrs = (XXT) N (Xy") =

This completes the proof.

Cx'Cxy

2.2. Ridge regression as the maximizer of the ex-
pected log likelihood

In the model underlying the LSR solution, we included noise
on y. But of course, in practice, the measurements X are
not noise free either. If we do include it, the madel becomes

y o= w (X -—D)+n (3)
where D is the noise on the measurements X. Suppose we

know however the covariance matrix of D, assuming fur-
thermore that D is gaussianly distributed:

. T
E{DD"} _ .,
k
1 bpT

Minus two times the log likelihood, is then equal to (up to
a constant term):

P'2I(‘\’: yiw=D) = -2 log(P(Xr ylw’D))
(y —wT(X — D)) (y —wl(X - D})T
202

The maximizer of the likelihood is equal to the minimizer
of this quantity. Note that —2I(X, y|w, D) is equal to the
square loss corresponding to the weight vector w.

Since we don’t know the noise D, this minimization of
the squared loss can not be carried out in an exact way.
However, we are able to average the log likelihood with
respect to D. This leads to

L(X, ylw) “)
= Ep{-21(X, y|lw, D)}

—wiiX - y—w (XD r
_ /D(y ( D))2§;f ( ) P(DYID

gt +wT XX Tw+ M wTw - 2y X w
x Cy— 2w Cxy+w’ (Cx + AT

Differentiating this equation with respect 1o w and equating
to zero, leads to the optimal value for wpn

(Cx + XD 7'0Oxy {5)

Note again that C'x + A%7 is positive definite, therefore the
optimality conditions correspond to a minimum of L{X, y|w).
We have thus proven the following:

wrr =

Theorem 2 The estimator of w that mazimizes the ex-
pected log likelihood of the date, given model (3), is given
by the ridge regression estimate of w = (Cx + A2 7" 'Cxy.

2.3. Interpretation

As a first remark, we note that it is well known that by
application of Jensen’s inequality [3], the expected log like-
lihood is proved to be never larger than the log likelihood
of the expectation:

L(X:ylw) < IOg(ED{P(leler)})

log {P{X, y|w})

Optimizing this last quantity would lead to the maximum
likelihood estimator of w in the presence of noise. Thus in
fact, we are optimizing a lower bound on the log likelihood.

T'or reference, in appendix we add a derivation of the
maximmn Hkelihood estimator for w given the proposed
model. The calculations are much more cumbersome. How-
ever, it is clear that it is not guarauteed that the maximum
likeliltood estimator will yield the best performance, where
performance is measured in terms of expected squared error
{the quantity optimized by the ridge regression estimator).

Therefore, as a second remark, note that the sample
expectation over the (X,y) samples and the expectation
over D (as given in equation (4)) of the squared error is
the best estimate for the expected squared error over the
distributions over X, y and D. {This is due to a standard
property of the sample mean of a random variable, namely
that it is the best estimate of the population mean. Fur-
thermore, the law of large numbers guarantees convergence.
Note however we assume that X, y and D are iid distributed
and that there is no prior on the distributions of X and y.)
Therefore, the RR estimator is the minimum least squares
error estimator for this type of linear systems with noise.

As a third remark, we would like to point out that it
is a standard result that maxirmnn likelihood estimators
are unbiased. Since the RR estimator is not a maxhnum
likelihood estimator, we can conclude that it is a biased
estimator.

If

2.4, Practical aspects

In general, A will not be known. The standard approach to
estimating this hyperparameter is applying cross validation.
The eross validation score is then the squared error of the
test set, evaluated for a w obtained using a training set.
So far our treatment of RR. Note that these ideas are
no more than a reformulation of ideas existing in literature.
We provided them for reference, and in order to motivate
the development of thoughts in the next section on CCA.

3. FROM CANONICAL CORRELATION
ANALYSIS TO ITS REGULARIZED VERSION

In contrast to regression, CCA should be catalogued un-
der the denominator of multivariate statistics,. While in
regression, one searches for a direction in the X space that
predicts the y space as good as possible, in doing CCA, one
searches for a direction in the X space and one in the ¥
space (that is multidimensional as well) so that order the
correlation between the projections on these directions is
maximal. One can still go further, and look for directions
uncorrelated with the previous ones, that, under this addi-
tional constraint, maximize the correlation between the X
and the ¥ space. And so on.




The classical approach to CCA is using these geometri-
cal arguments {2]. However, in this paper, we will approach
CCA as an estimator of a linear systein underlying the data
X and V.,

For conciseness and ease of notation, we will assume
that the dimensions of X and ¥ are both equal to d. How-
ever, most of the results are easy to extend towards different
dimensions for X and Y.

Notation. In contrast to the previous section, we will
not work with a one-dimenstonal y, but with ¥ ¢ RI*F,
Also, C' € R7*¥*, The sample covariance matrices Cy and
Cxy = CFy are defined as Cy = ¥ and Cxy = X}_’T.
My, My € R are square mixing matrices. Furthermore,
Wy = J\J‘;T and Wy = J\J‘TT. These matrices coutain d-
dimensional weight vectors wx,; and wy,; in their columns,
Analogously, vy, and vy,; are the d-dimensional columns
of Vx, Vi € R¥**, The diagonal elements of the diagona!l
matrices 5, %, Ax, Ay € R are &, 04, Ax,i and Ay,

Most of the results can be generalized towards different
dimensions dx x k and dy x & for X and Y, however, due
to space limitations we will not do this in this paper.

3.1. Standard geometrical approach to canonical cor-
relation analysis

CCA solves the following optimization problem:

T vy ,rT
U}",!’z\ Y Vy,i

{
Ei= MaXyy .y Vi j — ~ (6)
B Vg i XX Tux ol YY Tuy,
X, g
. T vyl
s.t. Vg <d v, XX vx,; =0

T
U,lr:,jYY vy, =0

where vy, ov: E R and i=1,...,d.
One can show this problem reduces to solving the fol-
lowing generalized eigenvalue problem:

0 Cxv [
(o %) - () o
_.{ Cx © UX,i
=& 0 Cy Vy,i

The generalized eigenvectors vx,; with vy; are the corre-
sponding canonical components in both spaces, and & is
the canonical correlation corresponding to vx,; aud vy,;.

3.2. Canonical correlation analysis as a maximum
likelihood estimator

Now, assume the following model underlying the data

X = Mx(CH+ Ny) (8)
¥ = My(C+ Ny)

and thus
WIX = C+ANx %)
WYY = O+ Ny

where we assume that Ny and Ny are gaussianly distribu-
ted with covariance matrices
E{NxNY{} 52 _ E{NyN{}
k k

where for each i < 7, o7 > o7 > 0. Furthermore, without
loss of generality, we assume that the covariance matrix of
C is equal to the identity.

We are now ready to state the following theorem:

Theorem 3 The generalized eigenvectors Vy and Vy given
by the generelized cigenvalue problem solved by CCA (if
properly normalized) and (27! — 1) where &; are the canoni-
cal correlations, correspond to e stalionary point of the like-
lihood function with variables Wx, Wy and ¥ respectively,
parameters in the model (8), given the data X and Y.

That this stationary point corresponds to a maximum, ie
that the CCA solution is a maximum likelihood estimator
of the parameters of (8), will be left as a conjecture in this
paper.
Proof. The probability of X and Y given Wy, Wy, &
and € is given by
PX,Y|Wx, Wy, B,
= P{X{Wx,1,C)P(Y|Wy,%,C)
where
P(X|Wx,%,C) (10)
exp ( ~ str[(WEX —O) = (WwIx C)T])
V 2m det(Wx Z-1TIWT) -1
and  P{Y|Wy,5,C) (11)
exp ( — t{(WEY — Oy (WY — C}T])

V2m det (W 21w T)-1
After some tedious but straightforward caleulations, one
can thus show that the evidence P(X,Y|Wx, Wy, A) is
equal to
P(X,Y|Wx, Wy, L) (12)
= /P(X,Ylw,C)P(C)dC
c
o Jdet(f +28-1).

Vdet((Wx 2 TW D (W 5 1WE)) -

exp (— %tr [(W,?X)TE”(E'V;X)

+(WE V) E TN W Y)
~DTHWEIX + WiV (r+2m7h)

(WX -+ Wi 1’)2‘1])

In order to maximize the likelihood, we can as well minimize
inus 2 times the log likelihood:

—20(X, Y |Wx, Wy) (13)
= —logdet{l 425"

~logdet{(Wx 27" W) (WyZ ')

Hr [ (WIXYTET (WEX)




HWEVYT R (W Y)
(WX +Wry)T m Y Tyem Yy et
(WEX + !V;‘:‘Y)] -+ a constant

Differentiating this with respect to the matrix Wy and
equating to zero, gives

—awgT
F0xWx[BT - nTH 4287y e
—2WxyWy RN+ 287 Y

= 0

After multiplication on the right with Z2(f 4251 )(7+£) !
aud on the left with W¥, this leads to

WECxWx — WxCxyWy (I +5)7!
= (I+) -+t (14)
Similarly, we can derive an analogous equation by equating
the derivative with respect to Wy to zero.
Wy Cy Wy — Wiy Cy x W (1 + 27
= (I+D) -+ (15)
Furthermore, differentiating this with respect to 7!
(taking the diagonality of ¥ into aceount), leads to
— 2Ar+2nhHt_am {16)
+  diag[WxCx Wy + Wi Cy Wy
- AWECOxWx + WOy Wy + WECKy Wy
Y Oy x W )BT I+ 57T+ 22 Y F =0
Now,. one. can. see-that- these equations {14},- (15} and
(16} hold for the CCA solution, if the colums of Vx and
Vy are properly normalized, so that i{{Cxl{\- =I+%,
V,{»ﬁC’,\' Vy =T+ % and with 2 = {I + 2)71. We can see

this since, if we multiply the CCA generalized eigenvalue
equation by ( vi oW ) on the left hand side, we obtain:

VECxVxE
WOy W2

VECxyW =
VyCyxVx =

Filling everything out completes the proof.

3.3. Regularized CCA as the maximizer of the ex-
pected log likelihood

In general, however, we will not only encounter noise on
the latent variables €, but there will be measurement noise
on X and on Y as well. Therefore, we adopt the following
model

Wi(X —Dyx) = C-—Nx (17)
WE{Y —Dy) = € —Ny
We will assume the noise terms Dy and Dy are gaussianly

distributed, with covariance matrices equal to A% and A%.
We are now ready for the main theorem of the paper:

Theorem 4 The estimates of Wx, Wy and T for the gen-
erative model {17) given by the requiarized canonical corre-
lation (RCCA) estimate defined by the following generalized
eigenvalue decomposition

0 Cxv Wai
(one %) - (i) oo

g Cx + A% o ) Wi
o 0 Cy + A} Wy

correspond to a stetionary point of the expected log likeli-
hooed, if they are properly normalized. The ezpectation is
carried out over the distributions of Dx and Dy .

That this stationary point corresponds to a maximum, will
be left as a conjecture in this paper,

Proof, The outline of the proof is clear, given the max-
imum likelihood derivation of ordinary CCA, and the RR
derivation. We will thus only state some intermediate re-
sults of the proof, for conciseness.

The probability of X and ¥ given Wy, Wy, £, C and
Dx and Dy is given by

P(X,Y|Wx, Wy, 5,C, Dx, Dy}
= P(X|Wx,Z,C Dx)P(Y|Wy, 5,C, Dy)
P(X ~ Dx|Wx,Z,C, Dx)P(Y ~ Dy|Wy, 5, C, Dy)
Each of these factors can be expressed in the same way as
equations (10} and (11}, where X and ¥ have to be replaced
by X - Dx and ¥ — Dy.

We can again take the expectation of {19) over €, lead-
ing to the analogon to equation (12}, with the same replace-
ments. Taking the logarithm multiplied by minus two, and
subsequently averaging with respect to Dy and Dy, leads
to minus two times the average log likelihood

—2L(X,Y|Wx, Wy)
= Bpy,py {{{X,¥{Wx, Wy, Dx, Dy)}
to be equal to a sum of two terms, the first one of which is
equal equation (13), and the second one of which is

tr {):“”%-t{%f\ipvxg—l/?
+ 8—1/2 ;\V"{’Ag’ Wy 2——1/2
(+28 ) PR WA W T (T 2

(I +20 ) Pe WAL W T (1 + 22"1)“1/21

!

By simply writing out the equations, this can be shown
xxT

to be equal to (13), with every Ox = £2— and Cy =

sy T T a1t

T replaced by Cx = S5 + A% and Oy = XX £ A7
T

The cross product terms in Cxy = L?;-— = CTx remain

unchanged,

Now, we can differentiate this cost function with respect
to Wx and Wy again, leading to optimality conditions that
are fulfilled by the regularized CCA solution, given that Wy
and Wy are normalized so that W§(Cx +AX )Wy = T+ X,
WICx +A%)Wx =T+ ZandwithE={J + ) ..

This completes the outline of the proof.

Note that it is straightforward to extend the theorem
to general covariance matrices for Dx and Dy.




3.4, Interpretation

We can interpret this in a similar way as RR. The expected
log likelihood is a lower bound of the log of the expectation.
Therefore, the maximum of the expected log likelihood is
a lower bound on the likelihood, Dx and Dy taken into
account.

Again, this does not represent an unbiased estimator,
since it is not the maximum likelihood cstimator. Neither
is it the least squares estimator, as it was in the RR case.
However, instead of least squares, another measure is ap-
propriate, namely the log likelihood (in the RR case, least
squares was equivalent with log likelihood).

3.5. Practical aspects

The result is mainly theoretical. However, there is an im-
portant practical aspect.

In general, the noise covariance matrices Ax and Ay
are not known. Thus, they have to be estimated using cross
validation, or by some other method. H we use cross vali-
dation, we need a cost function to be optimized. For this,
based on the analogy with RR, it has now been made ac-
ceptable to use the log likelihood given the data (equation
(13)). Thus, for each of the regularization parameters, we
solve the generalized eigenvalue problem making use of the
training set. The regularization parameter for which the
log likelihood of the test set is maximal, can be taken as
the estimate for the noise covariance.

4, CONCLUSIONS

LSR and RR are well established regression methods. By
analogy to a derivation of LSR, we propose an interpreta-
tion of CCA in terms of a maximum likelihood esthimator.
Extending the result along the same lines as the extension
of LSR towards RRR, we derived a regularized version CCA,
that is around for quite some time already, however, was
not entirely understood.

Apart from theoretical results mostly concerning the in-
terpretation of regularization of CCA, we made clear how
to train the regularization parameter using cross validation.
This was not known before, and at hoc techniques were ap-
plied up till now.

An important fact that is not pointed out yet, is the
similarity between the model underlying CCA, and the in-
dependent component analysis (ICA) model (for an intro-
duction to ICA, see [8]). Where the identification for ICA
is possible thanks to supposed independencies among the
components of C (and this is basically exploited using high-
er order information), CCA only uses second order informa-
tion to identify essentially the same model. An important
consequence of this is that CCA and the regularized version
are easily kernelizable and can thus be made nonlinear {[7],
[13], [12], {11]; for an intraduction to kernel methods, see

[8)-
5. ACKNOWLEDGEMENTS

Tijl De Bie is a Research Assistant with the Fund for Sei-
entific Research - Flanders (F.W.O.-Viaanderen). Dr. Bart

De Moor is a full professor at the Katholieke Universiteit
Leuven, Belgium. Our research is supported by:

Research Council KUL: GOA-Mefisto 666, IDO (10TA
Oncology, Genetic networks);

Flemish Government: FIWO: projects G.0115.01 (mi-
croarrays [ oncology), G.0407.02 (support vector machines),
G.0240.95 (multilinear algebra}, G.0413.03 (inference in bioi),
G.0388.03 {microarrays for clinical use), research commu-
nities (ICCoS, ANMMNMIY); IWT: STWW-Genprom (gene
promotor prediction), GBOU-McKnow (Knowledge man-
agement algorithms), GBOU-ANA (biosensors);

Belgian Federal Government: DWTC {(IUAP IV-(2
(1996-2001) and IUAP V-22 (2002-2006);

EU: CAGE; ERNSI;

Furthermore, sincere thanks go to Lieven De Lathauwer,
Nello Cristianini and Michael Jordan for very helpful dis-
cussions and suggestions, and to Laurent El Ghaoui and
Gert Lanckriet for inviting Tijl De Bie to visit the SALSA
group, EECS Department, U.C.Berkeley, where part of this
work has been completed.

6. REFERENCES

{1) A.E. Hoerl and R.W, Kennard, "Ridge regression: Bi-

ased estimation for nonorthogonal problems”, Techno-

metrics, 12{3):55-67, 1970,

H. Hotelling, "Relations between two sets of variates”,

Biometrica, 28, 321-377, 1935.

[3] T.M. Cover, J.A. Thomas, "Elements of information
theory”, Wiley-interscience, 1991.

(4] A.N. Tikhonov and V.Y. Arsenin, "Solutions of IH-
Posed Problems”, Winston, Washington, 1977,

[5] H.D. Vinod, "Canonical Ridge and Econometrics of
Joint Production”, J. Econometrics, 4:147-166, 1976.

[6] F.A. Nielsen, L.K. Hansen, 5.C. Strother, »Canoni-

cal ridge analysis with ridge parameter optimization”,

Neurolmage 7: 5758, 1998.

I’. Bach, M. Jordan, "Kernel Independent component

Analysis”, Journal of Machine Learning Research, 3,

1-48, 2002.

[8] A. Hyvérinen, J. Karhunen, E. Oja, ”Independent
Component Analysis”, Wiley-interscience, 2001.

[2

{7

[9) N. Cristianini, J. Shawe-Taylor, "An Introduction
to Support Vector Machines”, Cambridge University
Press, 2000.

[10} B. De Moor, J. David,” Total least squares and the alge-
braic Riccati equation”, Systems and Control Letters,
vol.18, no.5, May 1992, pp. 329-337.

[11] T. Van Gestel, "From linear to kernel based methods
in classification, modelling and prediction”, PhD the-
sis, Faculty of Engincering, K.U.Leuven (Leuven, Bel-
gium), May, 2002, 286 p. 01-24

[12] T. Van Gestel, J. Suykens, J. De Brabanter, B. Pe
Moor, J. Vandewaile, "Kernel canonical correlation
analysis and least squares support vector machines”, in
Proc. of the International Conference on Artificial Neu-
ral Networks (ICANN 2001), Vienna, Austria, Aug.
2001, pp. 381-386.




{13] JAXK. Suykens, T. Van Gestel, J. Vandewalle, B. De
Moor, " A support vector machine formulation to PCA
analysis and its kernel version ”, Internal Report 02-68,
ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2002.
Accepted for publication in IEEE Transactions on Neu-
ral Networks.

7. APPENDIX - A MAXIMUM LIKELIHOOD
ESTIMATOR FOR THE RIDGE REGRESSION
MODEL

RR is the maximizer of the expected log likelihood, if the
identity matrix multiplied by a coustant, added to Cx is
equal to the noise covariance,

However, it is possible to write an analytical solution
for the maximum likelihood estimator for w. Interesting
to note is that the solution takes the same form, however,
the identity matrix added to Cx then is multiplied with a
different constant, which can be negative or positive.

Theorem 5 The mazimum likelihood estimator wasr for
w, given model 3, is equal to

ware = (Cx + 4D 7' Cxy (19)
where
v o= AT 1/{(y~ wfj\}bx)(&;— wig X)T ~1)(20)
k o2 + A%wl, wars

Important to note is that this equation is implicit. An iter-
ative procedure to compute warz is however suggested by
the theorem. In this paper, we will not go into the con-
vergence properties of this iteration. Furthermore, we will
only prove that the given solution represents a stationary
point of the likelihood, and leave as a conjecture that this
stationary point corresponds to a maximum,

Proof, We want to maximize the probability of the
data X andy given the parametersw,y; o, with respect to
.

P(‘Y) ] I'w;’Y: 0)

fP(XI ylw, Ty &y D)P(Dlw’V)g)dD
D

= [ e (= gy (X = Dy w76 - D7)

N SN .1
W e:-.p( 2A2tr{DD ]) \/mdD

1
v det(Fo? + wwT A2}

1 - wT XYy —wTX
-exp _51;1.((31 w )02(9' w X)

o2 A2 o? a2

(- X)T (L + ww"")* (w(y — w™ X)) }

Taking the logarithm and multiplying with -2, leads to
(y —w" X)(y—w"X)"
o2

log det(fa” + wwT A%y +
tr[(m(y — wTX))T(L wa),l {wly - wTX)}}

+
a? A2 o2 o2

We will derive this with respect to w, and equate it to 0,
in order to find the optimum. Thereby, we will use the
following equality (due to the matrix inversion lemma):

f I ww? \
W (ﬁ*“aT

the derivative with respect to w of which is

2wAia?
(0% + A2wTw)?

Furthermore, we need the derivative of the logdet term with
respect to w, it turns out to be equal to

—1
I ww’ 2wA?
2l =+ — = e 21
(A2+ a2 ) v o2+ NwTw (1)
Combining all these results leads to the proof of the theo-
reHl.
Although this theorem provides only an implicit formula

for wary, it allows some intuitive interpretation: 4 £ 0 leads
to a correction on C'x that has the following properties:

MotwTw

w = ._.—',,,,,_—
ATy + o2

¢ for ¢ — oo, all the noise will be attributed to n, since
this will have a negligible effect on the likelihood as
compared to noise attributed to . The result is that

2
T - 5,;—, meaning that for large samples size £, it is
assumed that the estimate of Cx is probably correct

(since the noise D = 0).

¢ for ¢ — 0 on the other hand, all the noise will be
attributed to the high variance noise [, since this
will lead to the highest likelihood. The result is that
_ (y—w{” ,\')(yfwziLX)T .
¥ kw}}r‘ WAL
unimportant in the seuse that it quickly disappears
as the sample size increases. The first term has the
squared error in the numerator. This will be assumed
to be due to D only, since this doesn’t lower the like-
lihood. Thus, v converges to a sample estimate of
2 w, pp? warr . .
—A%, namely to — L.t ML Ry gubtracting this
wAILwAfL
estimated sample noise covariance from Cyx, one re-

moves the noise influence in an optimal way.

2 .
’“T. ‘The second term is

» for intermediate values of o, the noise can be seen as
attributed proportionally to both noise terms. The
parameter <y is then an estimate of minus the variance
A? of the noise in this sample that is due to D.

Note the similarities with total least squares (TLS) [10):
asymptotically for large sample sizes &, TLS yields the same
solution, since the sample estimate of A? will converge to
its true value. In TLS, one always takes v = —A%. In other
words: whereas TLS assumes that A? is the sample covari-
ance of D, the ML estimator given in this paper provides
an optimat esthinate for this sample covariance, given the
data and the population covariances,

A simple analogous derivation of a maximum likelihood
estimator of the model (17) is clearly not possible. However,
note that we do not necessarily want a maximum likelihood
estimate. Most of the time, we are not interested in estimat-
ing the weight vector w, but rather in a w that most likely
gives good estimates for y given yet unobserved samples X
This is precisely what RR does.




