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Normal forms and entanglement measures for multipartite quantum states
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A general mathematical framework is presented to describe local equivalence classes of multipartite quan-
tum states under the action of local unitary and local filtering operations. This yields multipartite generaliza-
tions of the singular value decomposition. The analysis naturally leads to the introduction of entanglement
measures quantifying the multipartite entanglement~as generalizations of the concurrence for two qubits and
the 3-tangle for three qubits!, and the optimal local filtering operations maximizing these entanglement mono-
tones are obtained. Moreover, a natural extension of the definition of Greenberger-Horne-Zeilinger states to,
e.g., 2323N systems is obtained.
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I. INTRODUCTION

One of the major challenges in the field of quantum
formation theory is to get a deep understanding of how lo
operations assisted by classical communication~LOCC! per-
formed on a multipartite quantum system can affect the
tanglement between the spatially separated systems. In
paper, we investigate this problem in the case where o
operations on one copy of the system are allowed. Thi
different from the general setup of entanglement distillati
where global operations on a large~infinite! number of cop-
ies are performed to concentrate the entanglement in a
copies. The main motivation of this work was to character
the optimal filtering operations~SLOCC! to be performed on
one copy of a multipartite system such that, with a nonz
chance, a state with maximal possible entanglement is
tained. In other words, we want to design the optimal filt
ing operations for a given state, such that with a cert
chance we prepare the optimal attainable one. Of course,
leads to the introduction of local equivalence classes.

In the case of a pure state of two qubits, this optim
filtering procedure is commonly known as the Procruste
method@1#. Following the work of Gisin@2#, Horodecki@3#,
Linden et al. @4#, and Kentet al. @5,6#, the optimal filtering
procedure for mixed states of two qubits was recently
rived in Ref.@7#. In this paper, we extend these ideas to p
and mixed multipartite systems of qudits of an arbitrary
mension.

The optimal filtering operations in Ref.@7# were derived
by proving the existence of a decomposition of a mixed s
of two qubits as a unique Bell diagonal state multiplied l
and right by a tensor product representing local operation
Bell diagonal state is special in the sense that one party a
cannot acquire any information at all about the state;
local-density operator is equal to the identity. This c
readily be generalized to multipartite systems of arbitr
dimensions, and the existence of local operations transfo
ing a generic state to a unique state with all local-den
operators equal to the identity will be proved. In the case
pure states, this decomposition leads to a transparent me
of deriving essentially different states such as Greenber
Horne-Zeiliger~GHZ! andW states@8#.
1050-2947/2003/68~1!/012103~7!/$20.00 68 0121
-
l

-
his
ly
is
,

w
e

o
b-
-
n
his

l
n

-
e
-

te
t
A
ne
s

y
-

y
f
od
r-

We then proceed to show that all quantities exhibiti
some kind of invariance under the considered SLOCC op
tions are entanglement monotones@9#. It is shown that the
concurrence for two qubits and the 3-tangle for three qub
introduced by Wootterset al. @10,11#, belong to this class of
entanglement measures. Therefore, a natural generaliz
of these measures is obtained to systems of arbitrary dim
sions and an arbitrary number of parties.

A subsequent part of the paper is concerned with find
of the optimal filtering operations for a given multiparti
state. It is shown that the SLOCC operations bringing a s
into its unique normal form maximize all the introduced e
tanglement monotones. This was expected in the light of
work by Nielsen about majorization@12#; the notion of local
disorder is intimately connected to the existence of entan
ment.

Finally, the Appendix presents some results on the ch
acterization of local unitary equivalence classes, yieldin
natural and constructive but nonunique generalization of
singular value decomposition into the multilinear setting.

II. NORMAL FORMS UNDER SLOCC OPERATIONS

Let us first consider the case of pure states. The main g
is to study equivalence classes under general local trans
mations of the kinduc8&5A1^ •••^ Anuc& with $Ai% being
arbitrary matrices. These kind of transformations are ca
SLOCC transformations@8# ~from stochastic local operation
assisted by classical communication!, and are also called lo
cal filtering operations. It will turn out very useful to restric
ourselves to SLOCC transformations where all$Ai% are full
rank ~remark that entanglement is lost whenever anAi is not
full rank!. For convenience, we will consider all$Ai% to be-
long to SL(n,C), the group of square complex matrices ha
ing determinant equal to 1, and consider unnormalized sta

Let us formulate the following central theorem.
Theorem 1.Consider anN13N23•••3Np pure multi-

partite state~or tensor!. Then this state~tensor! can construc-
tively be transformed into a normal form by determinant
SLOCC operations. The local-density operators of the n
mal form are all proportional to the identity and the norm
form is unique up to local unitory transformations. Mor
©2003 The American Physical Society03-1
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over, the state connected to the original one by determina
SLOCC operations with the minimal possible norm~i.e.,
trace of the unnormalized density operator! is in normal
form.

Proof. We will give a constructive proof of this theorem
that can directly be translated into matlab code. The ide
that the local determinant 1 operatorsAi bringing c into its
normal form can be iteratively determined by a procedu
where at each step the trace ofuc&^cu5r is minimized by a
local filtering operation of one party. Consider therefore
partial tracer15Tr2, . . . ,p(r). If r1 is full rank, there exists
an operatorX with determinant 1 such thatr185Xr1X†

;I N1
. Indeed,X5udet(r1)u1/2N1(Ar1)21 does the job@18#,

and we haver185det(r1)1/N1I N1
. We also have the relation

Tr~r8!5N1det~r1!1/N1<Tr~r1!, ~1!

wherer85(X^ I 3•••^ I )uc&^cu(X^ I 3•••^ I )†. This in-
equality follows from the fact that the geometric mean
always smaller than the arithmetic mean, with equality if a
only if ~iff ! r1 is proportional to the identity. Therefore, th
trace ofr decreases after this operation. We can now rep
this procedure with the other parties, and then repeat ev
thing iteratively over and over again. After each iteration,
trace ofr will decrease unless all partial traces are equa
the identity. Because the trace of a positive definite oper
is bounded from below, we know that the decrements
come arbitrarily small and following Eq.~1! this implies that
all partial traces converge to operators arbitrarily close to
identity.

We still have to consider the case where we encounterr i
that is not full rank. Then, there exists a series ofX whose
norm tends to infinity but has determinant 1 such t
Xr iX

†50, leading to a normal form identical to zero, clear
the positive operator with minimal possible trace. This en
the proof of the existence of the normal form.

Consider now a state that is in normal form; then due
the construction of the proof, the trace can always be
creased by determinant 1 SLOCC operations, unless the
is in normal form. As pointed out by Briand, Luque, an
Thibon @13#, the normal form is unique up to local unitarie
the Kemp-Ness criterion proves the result in the case o
closed orbit, and there is always a unique closed orbit in
closure of an arbitrary orbit@19#. j

Let us now return to the general Theorem 1. This theor
is very fundamental in that it states that each pure multip
tite state can be transformed into a unique state with
property that all local-density operators are proportional
the identity. States in the normal form are clearly expected
be maximally entangled states. As we will argue later,
normal form is the state with the maximal amount of e
tanglement that can be created locally and probabilistic
from the original state.

Let us next prove that the normal form is continuous w
respect to perturbations of the entries of the original den
matrix r. First of all, note that the nonuniqueness due to
local unitaries can be circumvented by imposing allAi to be
01210
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hermitian. The following lemma shows that the normal for
is robust against perturbations or noise.

Lemma 1.If the SLOCC operations bringing the state in
the normal form introduced in Theorem 1 are chosen to
Hermitian, and if they turn out to be finite, then the norm
form is continuous with respect to the entries of the state

Proof. Let us considerr5(A1^ •••^ Ap)s(A1^ •••

^ Ap)† and a perturbationṙ resulting in $Ȧi% and ṡ. The
following formula is readily verified:

~A1^ •••^ Ap!21ṙ~A1^ •••^ Ap!2†

5ṡ1(
i 51

p

@~ I ^ •••3Ai
21Ai̇3•••^ I !s1H.c.#.

As all $Ai% are Hermitian and have determinant 1, allAi
21Ȧi

are skew Hermitian and the second term is in another s
spaceS2 than the first termṡ that is in subspaceS1 . ṡ can
therefore be obtained by projecting the left-hand side para
to S2 onto S1. As ṙ is finite and all$Ai% have determinant 1
and are finite, this projection is, of course, also finite. T
proofs thatṡ is of the same order of magnitude asṙ, which
ends the proof. j

Note that we have also proven continuity with respect
mixing. Let us now discuss some peculiarities. The fact t
the algorithm can converge to zero despite the fact that alAi
have determinant equal to 1 is a consequence of the fact
SL(n,C) is not compact. There exist states that can only
brought into their respective normal form by infinite tran
formations, although the class of states with this property
clearly of measure zero. As an example, consider theW state
@8# uc&5u001&1u010&1u100&. The following identity is eas-
ily checked:

lim
t→`

S 1/t 0

0 t D
^ 3

uW&50.

The normal form corresponding to theW state is therefore
equal to zero, clearly the state with the minimal possi
trace. This is interesting, as it will be shown that a norm
form is zero iff a whole class of entanglement monotones
equal to zero. Therefore, the states with normal form equa
zero are fundamentally different from those with finite no
mal form, and this leads to the generalization of theW class
to arbitrary dimensions.

It thus happens that some states have normal form e
to 0. This also happens if the state does not have full sup
on the Hilbert space in that one partial tracer i is rank defi-
cient. Note that states which do not have full support on
Hilbert space, such as pure states from which one part
fully separable, all have normal form equal to zero. It w
indeed turn out that the amount of multipartite entanglem
present in a state can be quantified by the trace of the
tained normal form, which is clearly zero in the case of se
rable states. On the other hand, the only normalized st
that are already in normal form are precisely the maxima
entangled states. In the case of three qubits, for example
3-2
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only state with the property that all its local-density operat
are proportional to the identity is the GHZ state.

As a last remark, we give an example of a state tha
brought into a nonzero normal form by SLOCC operat
that are unbounded:

uc&.a~ u0000&1u1111&)1u01&~ u10&1u01&). ~2!

The normal form is just given by the GHZ state (u0000&
1u1111&), but as can be derived from the results presen
in Ref. @14#, infinite SLOCC transformations are needed
reach this.

III. ENTANGLEMENT MONOTONES

Until now we contented ourselves to characterize the
bits generated by local unitary or SLOCC operations, but
have not tried to quantify the entanglement present in a s
The SLOCC normal form introduced in the preceding s
tion, however, gives us a strong hint of how to do this. No
that all separable states have a normal form equal to z
and that the known maximally entangled states such as
states and GHZ states are the only ones of their class w
are in normal form. This suggests a very general way
constructing entanglement monotones.

Theorem 2.Consider a linearly homogeneous positi
function of a pure~unnormalized! stateM (r5uc&^cu) that
remains invariant under determinant 1 SLOCC operatio
ThenM (uc&^cu) is an entanglement monotone.

Proof. A quantity M (r) is an entanglement monotone i
its expected value does not increase under the action of e
local operation. It is therefore sufficient to show that f
every localA1<I N1

, Ā15AI N1
2A1

†A1, it holds that

M ~r!>Tr„~A1^ I !r~A1^ I !†
…,

M S ~A1^ I !r~A1^ I !†

Tr„~A1^ I !r~A1^ I !†
…

D 1Tr„~A1̄^ I !r~A1̄^ I !†
…,

M S ~A1̄^ I !r~A1̄^ I !†

Tr„~A1̄^ I !r~A1̄^ I !†
…

D .

If A1 is full rank, it can be transformed into a determina
1 matrix by dividing it by det(A1)1/N1. Due to the homoge-
neity of M (ar)5aM (r), the previous inequality is equiva
lent to

M ~r!>@ u det~A1!u2/N11u det~A1̄!u2/N1#M ~r!.

As the arithmetic mean always exceeds the geometric m
this inequality is always satisfied. This argument can be e
ily completed to the cases whereAi is not full rank due to
continuity. The same argument can then be repeated for
otherAi , which ends the proof. j

Entanglement monotones of the above class can rea
be constructed using the completely antisymmetric ten
e i 1 , . . . ,i N

. Indeed, it holds that(Ai 1 j 1
Ai 2 j 2

•••Ai Nj N
e j 1••• j N

5det(A)e i 1••• i N
, and as det(A)51, this leads to invarian
01210
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quantities under determinant 1 SLOCC operations. Th
quantities seem to be related to hyperdeterminants@13,15#,
and latter seem to be a subclass of the quantities consid
here.

Consider, for example, the case of two qubits. The qu
tity

U (
i 1 j 1i 2 j 2

c i 1 j 1
c i 2 j 2

e i 1i 2
e j 1 j 2U

is clearly of the considered class, and it happens to be
celebrated concurrence entanglement measure@11#. In the
case of three qubits, the simplest nontrivial homogene
quantity invariant under determinant 1 SLOCC operations
given by

uc i 1 j 1k1
c i 2 j 2k2

c i 3 j 3k3
c i 4 j 4k4

e i 1i 2
e i 3i 4

e j 1 j 2
e j 3 j 4

ek1k3
ek2k4

u1/2.

~Note that we use the Einstein summation convention.! This
happens to the square root of the 3-tangle for three qu
introduced by Wootterset al. @10#, which quantifies the true
tripartite entanglement.

More generally, as the considered entanglement mo
tones are invariant under the determinant 1 SLOCC op
tions, the number of independent entanglement monotone
equal to the degrees of freedom of the normal form obtai
in the case of a pure state minus the degrees of free
induced by the local unitary operations. Indeed, this is
amount of invariants of the whole class of states connec
by SLOCC operations. It is then easily proven that a norm
form is equal to zero if and only if all the considered e
tanglement monotones are equal to zero. The entanglem
monotones are homogeneous functions of the normal fo
and if the normal form is not equal to zero, there alwa
exists an SLOCC invariant quantity that is different fro
zero.

In the case of four qubits, for example, parameter cou
ing leads to (232422)243656 ~a state has 32 degrees
freedom —two to an irrelevant phase and the four SL(2C)
matrices have each six degrees of freedom! independent en-
tanglement monotones. The simplest monotone is given

uc i 1 j 1k1l 1
c i 2 j 2k2l 2

e i 1i 2
e j 1 j 2

ek1k2
e l 1l 2

u, ~3!

and the other five entanglement monotones can be obta
by including more factors; an example is

A2uc i 1 j 1k1l 1
c i 2 j 2k2l 2

c i 3 j 3k3l 3
c i 4 j 4k4l 4

3e i 1i 2
e i 3i 4

e l 1l 2
e l 3l 4

e j 1 j 3
e j 2 j 4

ek1k3
ek2k4

u1/2. ~4!

These are clearly generalizations of the concurrence for
qubits and the 3-tangle for three qubits to four parties. No
however, that the situation here is more complicated due
the existence of multiple independent entanglement mo
tones. Note also that there exist biseparable states that ca
brought into a nonzero normal form by determinant
SLOCC operations. Consider, for example, the tensor pr
uct of two Bell states; all local-density operators are prop
tional to the identity, the value of the entanglement mon
3-3
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tones~11! and ~12! is, respectively given by 1 and 1/A2 @as
opposed to 1 and 1 for the GHZ state (u0000&
1u1111&)/A2], and, nevertheless, no true 4-partite entang
ment is present.

If the subsystems happen to be of unequal dimensio
then the respective subdimensions should be chosen
larger than the maximal allowed dimension such that
local-density operators remain full rank. In a 2323N sys-
tem, for example, a pure state can only have full support
the 23234 subspace, and therefore it makes no sens
calculate the normal form withN.4. One can always firs
transform theN-dimensional system into a four-dimension
one by local unitary operations, and proceed by calcula
the normal form for the 23234 system. More generally, i
the dimension of the largest subsystem does not exceed
product of all the other ones then generically the norm
form will not be equal to zero, leading to nontrivial entang
ment monotones. As an example, consider a 23234 sys-
tem; there are more local SLOCC parameters than the n
ber of degrees of freedom, so there will be only o
entanglement monotone~as is the case in the 232 and
23232 cases!. The 23234 tangle is given by

A4

3
U( c i 1 j 1k1

c i 2 j 2k2
c i 3 j 3k3

c i 4 j 4k4

3e i 1i 2
e i 3i 4

e j 1 j 3
e j 2 j 4

ek1k2k3k4
U1/2

.

The factorA4/3 is included to ensure that the state in norm
form

~ u000&1u011&1u102&1u113&)/2 ~5!

has tangle given by 1. Indeed, as will be shown in the f
lowing section, the maximal value of the tangle is alwa
obtained for states in normal form, and this is the uniq
state~up to local unitaries! having all its local-density opera
tors proportional to the identity. Note that this state is the
fore the generalization of the GHZ state to 23234 systems.

For completeness, let us also give a formula for
23233 tangle:

A3 27

4
U( c i 1 , j 1 ,k1

c i 2 , j 2 ,k2
c i 3 , j 3 ,k3

3c i 4 , j 4 ,k4
c i 5 , j 5 ,k5

c i 6 , j 6 ,k6

3e i 1i 4
e i 2i 5

e i 3i 6
e j 1 j 4

e j 2 j 5
e j 3 j 6

ek1k2k3
ek4k5k6

U1/3

The state maximizing this entanglement monotone~the num-
ber is bounded by 1! is the generalization of the GHZ state
the 23233 case:

1

A3
u000&1

1

A6
u011&1

1

A6
u101&1

1

A3
u112&. ~6!
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Let us finally give a nontrivial example of an entangl
ment monotone of the considered class in the case of t
qutrits:

A2U( c i 1 j 1k1
c i 2 j 2k2

c i 3 j 3k3
c i 4 j 4k4

c i 5 j 5k5
c i 6 j 6k6

3e i 1i 2i 3
e i 4i 5i 6

e j 1 j 2 j 4
e j 3 j 5 j 6

ek1k5k6
ek2k3k4

U1/3

.

The other (233321)2(3316)2154 independent en-
tanglement monotones can again be constructed by inclu
more factors.

IV. OPTIMAL FILTERING

A natural question now arises: characterize the optim
SLOCC operations to be performed on one copy of a mu
partite system such that, with a nonzero chance, a state
maximal possible multipartite entanglement is obtained. T
question is of importance for experimentalists as in gene
they are not able to perform joint operations on multip
copies of the system. Therefore, the procedure outlined h
often represents the best entanglement distillation proce
that is practically achievable.

In the preceding section, a whole class of entanglem
monotones that measures the amount of multipartite
tanglement were introduced. The following theorem can e
ily be proved using the techniques of Theorem 1.

Theorem 3.Consider a pure multipartite state, then t
local filtering operations that maximize all entangleme
monotones introduced in Theorem 2 are represented by
erators proportional to the determinant 1 SLOCC operati
that transform the state into its normal form.

Proof. The proof of this theorem is surprisingly simpl
Indeed, all the quantities introduced in Theorem 2 are inv
ant under determinant 1 SLOCC operations if the states
not get normalized. The value of an entanglement monoto
however, only makes sense if defined on normalized sta
and due to the linear homogeneity of the entanglem
monotones, the following identity holds:

M S ~ ^ iAi !r~ ^ iAi !
†

Tr„~ ^ iAi !r~ ^ iAi !
†
…

D 5
M ~r!

Tr„~ ^ iAi !r~ ^ iAi !
†
…

.

The optimal filtering operators are then obtained by the$Ai%
minimizing

Tr„~ ^ iAi !r~ ^ iAi !
†
…. ~7!

But this problem was solved in Theorem 1, where it w
proved that the$Ai% bringing the state into its normal form
minimize this trace. j

It is therefore proved that the~reversible! procedure of
washing out the local correlations maximizes the multipar
entanglement as measured by the generalization of
tangle. This is in complete accordance with the results
majorization@12#, where it is shown that the notion of loca
disorder is intimately connected to the amount of entang
3-4
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ment present. Therefore, we have supporting evidence to
pure states in normal form maximally entangled with relat
to their SLOCC orbit.

V. THE MIXED STATE CASE

The normal form derived in Theorem 1 can readily
generalized to the case where the state is mixed, i.e., the
where the density operator is a convex sum of pure sta
Indeed, nowhere in the proof of the theorem it was used
the stater was pure; the same holds for the continuity for t
normal form. We have therefore proven.

Theorem 4.Consider anN13N23•••3Nm mixed multi-
partite state. Then this state can be brought into a nor
form by determinant 1 SLOCC operations, where the norm
form has all local-density operators proportional to the id
tity and is unique up to local unitaries. Moreover, the trace
the normal form is the minimal one that can be obtained
determinant 1 SLOCC operations. If the SLOCC operatio
are chosen to be Hermitian, then the normal form is conti
ous with respect to perturbations of the original state.

Note that if r is full rank, its normal form will never
converge to zero. The determinant of the density operato
constant under SLOCC operations.

It is also possible to adopt the results of entanglem
monotones. First of all, we extend the definition of an e
tanglement monotonemp , which is defined on pure state
and is linearly homogeneous inr by the convex roof formal-
ism,

mm~r!5 min

(
i

pi uc i &^c i u5r

(
i

pimp~ uc i&). ~8!

Here the optimization has to be done over all pure state
compositions of the state. The fact that the pure state
tanglement monotone is linearly homogeneous inr ensures
that mm is, on an average, not increasing under local ope
tions, and therefore assures thatmm is an entanglemen
monotone. Moreover, it is obvious that these entanglem
monotones are again invariant under determinant 1 SLO
operations. The results on optimal filtering for mixed sta
also readily apply, and therefore we arrive at the followi
very powerful result.

Theorem 5.The local filtering operations bringing
mixed state into its normal form are exactly the ones t
maximize the entanglement monotones that remain invar
under determinant 1 SLOCC operations.

This result is remarkable, because typically there does
exist a way of actually calculating the value of an entang
ment monotone defined on a mixed state. Finding the o
mal pure state decomposition of a state unrelation to
convex roof formalism for a given entomqlement monoto
is excessively difficult and has until now only been prov
possible for the concurrence for two qubits. So, although
cannot calculate the entanglement monotone, we know
to maximize it. This particularly applies to mixed states
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three qubits. We have proven how to maximize the 3-tan
for three qubits, although we do not know how to calcula
it.

Note that this optimal filtering procedure produces no
trivial results even in the case of two qubits. It proves th
the concurrence for two qubits and therefore the entan
ment of formation of a mixed state of two qubits is max
mized by the SLOCC operations bringing the state into
unique~Bell diagonal! normal form.

VI. CONCLUSION

In conclusion, we presented a constructive way of brin
ing a single copy of a quantum state into normal form un
local filtering operations. This normal form is such that
local information is washed out~i.e., the local-density opera
tors are maximally mixed!. We presented qualitative an
quantitative arguments why the amount of entanglemen
states in normal form cannot be enlarged by local operatio
and introduced a whole class of entanglement meas
which are a direct generalization of concurrence for two q
bits and 3-tangle for three qubits to systems of an arbitr
dimension. This sheds some light on the difficulty encou
tered in classifying, understanding, and unravelling the m
teries of multipartite quantum entanglement.
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APPENDIX: NORMAL FORMS UNDER LOCAL UNITARY
OPERATIONS

Consider a general multipartite state withm parties de-
fined on an1^ n23•••3nM dimensional Hilbert space:

uc&5 (
i 1 , . . . ,i m

c i 1••• i m
u i 1&u i 2&•••u i m&. ~A1!

In this appendix, we try to solve the following natur
question: is there a method to verify if two statesuc1& and
uc2& are equivalent up to local unitary transformations?
the bipartite case, this problem can readily be solved us
the singular value decomposition~SVD!, and we therefore
ask for some kind of generalization of this diagonal norm
form. Let us state the following theorem~see also Carteretet
al. @16#!, which is a weak generalization of the SVD:

Theorem 6.Given a general complex tensorc i 1 , . . . ,i m
with dimensionsn15n25•••5nm5n, then there exist loca
unitariesUi such that all the following entries in the tens
c85U1^ •••^ Umc i 1 , . . . ,i m

are set equal to zero:

;1< j <n, ;k. j :c j , j , . . . ,j , j ,k8 50,

c j , j ,••• j ,k, j8 50,

A

3-5
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c j ,k, j ,•••, j , j8 50,

ck, j ,•••, j , j8 50.

Moreover, all entriescn,n, . . . ,n,i ,n, . . . ,n8 ,i<n, can be made
real and positive. If the number of parties exceeds two, t
the normal form is typically not unique up to permutation
but there exist a discrete number of different normal for
with the aforementioned property. The number of zeros ho
ever can generically not be increased by further local unit
operations.

Proof. Unlike the proof in Ref.@16#, this proof is con-
structive and can readily be translated into matlab code
calculate the normal form numerically. First consider all e
tries with at leastm21 times 1 in its indices, and define th
vectors xi

15c i ,1,1, . . . ,1, xi
25c1,i ,1, . . . ,1, . . . , xi

m

5c1,1, . . . ,1,i . Define now a recursive algorithm that goes
follows. Rotatex1 to ix1i@1,0, . . . ,0# by a unitary transfor-
mation, apply the same transformtion on the full tensor, a
definex25c1,i ,1, . . . ,1with c the transformed tensor. Now d
the same thing withx2, . . . ,xm and then again withx1, until
the algorithm converges. This algorithm will certainly co
verge because at each step the (1,1, . . . ,1) entry of c be-
comes larger and larger, unless all entr
(1,1, . . . ,1,i ,1, . . . ,1) areequal to zero; moreover, its valu
is bounded above because the unitary group is compact.
exactly the same algorithm can be applied to the subtenso
c defined as the one with all entries larger than or equa
two ~it is easy to check that the zeros obtained in the fi
step will remain zero by this kind of action!. Next we can
again do the same thing with another~smaller! subtensor,
proving that indeed all zeros quoted in the theorem can
made.

It is straightforward to prove that the entrie
cn,n, . . . ,n,i ,n, . . . ,n8 ,i<n, can all be made real and positive b
further diagonal unitary transformations.

Let us finally prove that no more zeros can be made
whatever unitaries~in the generic case!. This follows from
the fact that a unitaryn3n matrix hasn2 continuous real
degrees of freedom, but that onlyn22n of them can be used
to produce zeros as the othern degrees of freedom can b
embedded in a diagonal unitary with just phases. Countin
the number of zeros produced indeed leads to

(
j 51

m

(
k51

m21

max~n2k,0!5m
n~n21!

2
, ~A2!
ch

ev

01210
n
,
s
-
y

to
-

s

d

s

xt
of
o
t

e

y

of

which indeed corresponds to them(n22n) degrees of free-
dom as the zeros are ‘‘complex.’’ The nonuniqueness of
normal form obtained is surprising but can readily be verifi
by implementing the algorithm on a generic tensor; typica
the algorithm converges to one out of a finite number
possible different normal forms. j

As a first example, consider a system of three qubits. U
folding the 23232 tensor in two 232 matrices, the follow-
ing entries can always be made equal to zero:

S S x 0

0 xD S 0 x

x xD D . ~A3!

Here,x is used to denote a nonzero entry. In this case,
easy to see that four of the remaining five entries can
made real by multiplying with appropriate diagonal loc
unitaries. This is equivalent to the normal form obtained
Acin et al. @17#.

A more sophisticated example is the 33333 case, whose
normal form looks like

S S x 0 0

0 x x

0 x x
D S 0 x x

x x 0

x 0 x
D S 0 x x

x 0 x

x x x
D D . ~A4!

It is also straightforward to generalize the preceding th
rem ~and constructive proof! to systems with different sub
dimensions~see Carteretet al. @16# for an existence proof!;
the algorithm of the preceding proof can readily be extend
to this case. Let us, for example, consider the normal form
the N3232 case:

S S x 0

0 x

0 x

0 x

0 0

A A

0 0

D S 0 x

x x

x 0

0 0

0 0

A A

0 0

D D . ~A5!

This case is of particular interest as it describes a state of
qubits entangled with the rest of the world.
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