
Computational Statistics & Data Analysis 47 (2004) 455–465
www.elsevier.com/locate/csda

On homogeneous least-squares problems and the
inconsistency introduced by mis-constraining

Arie Yeredora;∗ , Bart De Moorb

aDepartment of Electrical Engineering-Systems, Tel-Aviv University, P.O. Box 39040,
Tel-Aviv 69978, Israel

bESAT-SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 Leuven B-3001, Belgium

Received 1 December 2002; accepted 4 December 2003

Abstract

The term “homogeneous least-squares” refers to models of the form Ya ≈ 0, where Y is
some data matrix, and a is an unknown parameter vector to be estimated. Such problems are
encountered, e.g., when modeling auto-regressive (AR) processes. Naturally, in order to apply
a least-squares (LS) solution to such models, the parameter vector a has to be somehow con-
strained in order to avoid the trivial solution a = 0. Usually, the problem at hand leads to a
“natural” constraint on a. However, it will be shown that the use of some commonly applied
constraints, such as a quadratic constraint, can lead to inconsistent estimates of a. An explana-
tion to this apparent discrepancy is provided, and the remedy is shown to lie with a necessary
modi;cation of the LS criterion, which is speci;ed for the case of Gaussian model-errors. As
a result, the modi;ed LS minimization becomes a highly non-linear problem. For the case of
quadratic constraints in the context of AR modeling, the resulting minimization involves the
solution of an equation reminiscent of a “secular equation”. Numerically appealing solutions to
this equation are discussed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many estimation problems, e.g., in the context of the identi;cation (parameter
estimation) of linear systems (SBoderstrBom and Stoica, 1989), both the inputs and outputs
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of a system are observed (possibly in the presence of additive noise), from which it is
desired to estimate the system’s parameters. The standard least-squares (LS) approach
for this estimation problem is conceptually and computationally appealing. It consists
of seeking the set of parameters with which the linear diKerence equations relating
each output sample to past output and input samples are most closely satis;ed (in the
sense of a possibly weighted L2 norm of the errors vector). Unfortunately, however,
the LS estimate is well-known to be biased and inconsistent whenever the past samples
used in the regression equations involve noise. Therefore, for such problems LS is only
used in cases of very high signal-to-noise ratio.

Extensive research has been addressed over the past two decades towards attempts
to modify the LS estimate in such problems, so as to eliminate its bias and regain con-
sistency (De Moor et al., 1994; Stoica and SBoderstrBom, 1982; SBoderstrBom and Stoica,
1983; Fernando and Nicholson, 1985; Zheng, 1988, 2002a,b; Van Pelt and Bernstein,
2001). Some of the well-known approaches, which have become nearly common prac-
tice in system identi;cation, are, e.g., the instrumental variable (Stoica and SBoderstrBom,
1982; SBoderstrBom and Stoica, 1983) or the Koopmans–Levin (Fernando and Nicholson,
1985) methods.

There are, however, two exceptional cases (except for the trivial noiseless case) in
which the LS estimate is generally unbiased and consistent:

• When the observed input is noiseless and the system has a ;nite impulse response
(also termed a “zeros only” system). In this case the past samples involved in the
regression equations are only the noiseless input samples. The LS model errors are
exactly the output noise, so that for zero-mean noise the resulting LS estimate is
unbiased. Moreover, if the output noise is (or can be uniquely transformed into) a
sequence of independent, identically distributed random variables, the LS estimate
is also consistent. Additionally, if the noise is Gaussian, then the properly weighted
LS estimate coincides with the maximum-likelihood (ML) estimate.

• When the system identi;cation problem is actually the identi;cation of an auto-
regressive (AR) process, and the observed “output” (namely the process to be iden-
ti;ed) is noiseless. The “input”, or the process’ “driving noise” in this case, is
unobserved, which is equivalent to observations of zero, such that the “input obser-
vation noise” is actually (minus) the “driving noise”. Thus, in such cases, the LS
model errors are also the input noise, so that the same conditions (as mentioned
above) for unbiased, consistent and ML-equivalent LS estimation prevail.

Although the ordinary LS estimate in these cases is unbiased and consistent, a problem-
atic aspect thereof lies in the possible formulation of such LS problem as constrained
homogeneous least-squares (HLS) problems. More generally, HLS problems are prob-
lems in which an observed data matrix Y can be modeled approximately by

Ya ≈ 0; (1)

where a is an unknown parameters vector, to be estimated from the observations.
The inequality often implies the presence of some “driving noise”, which can also be
regarded as “modeling errors” in terms of the deviation of Ya from 0.
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A straightforward LS approach would be to estimate a as the minimizer of the
norm of Ya. However, to avoid the trivial minimizer a = 0, a has to be properly
constrained. Usually in such problems, some “natural” constraint (or set of constraints)
on a is dictated by the problem at hand (De Moor et al., 1994; Ninness, 1996; Van
Pelt and Bernstein, 2001; Ysebaert et al., 2001). For example, the unbiased, consistent
LS estimate for the two estimation problems mentioned above would be obtained by
constraining the respective element of a to be 1.

However, it turns out that in general, the solution to the constrained minimization

min
a
aTYTYa; s:t: f (a) = 0; (2)

where f (a) = 0 is the set of constraints, can often lead to a biased, inconsistent, and,
in a sense, useless estimate of a. We shall show that in order to obtain a consistent
estimate (subject to a certain pre-speci;ed constraint), the LS criterion aTYTYa has to
be modi;ed, taking into consideration the distribution of the model errors (or “driving
noise”). We shall explicitly specify the modi;cation for the case of Gaussian errors.

The paper is structured as follows. We begin with a simple example in the next
section, illustrating the problematic aspects of mis-constraining. In Section 3 we present
a possible remedy in the form of a modi;ed LS criterion, based on equivalence to ML
estimation, for the identi;cation of a ;rst-order AR process. In Section 4 we generalize
the criterion to a general-order AR process. A possible computational approach to
the minimization of the proposed modi;ed LS criterion is presented in Section 5.
Conclusions and summary appear in the closing section.

2. An example

We begin by considering an example in which we illustrate the problems induced
by choosing a “wrong” constraint. The problem originates from the identi;cation of an
AR process as treated, e.g., in Lemmerling and De Moor (2001) (see also SBoderstrBom
and Stoica (1989) or Yeredor (2000)).

Let yn be a ;rst-order AR (AR(1)) process satisfying the diKerence equation:

yn = −a1yn−1 + en; n= 1; 2; : : : ; N; (3)

where en is a white Gaussian noise process with zero mean and known variance 	2
e .

It is desired to estimate a1 from the observations y1; y2; : : : yN . We further assume, for
convenience, that y0 is deterministically known to be zero.

We can formulate the model equations in matrix form as Ya = e, where

Y ,




y1 0

y2 y1

...
...

yN yN−1


 ; a ,

[
a0

a1

]
; e ,




e1

e2

...

eN


 : (4)
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Any estimate â of a in which â0 =a0 = 1, leads to an estimate ê of e, via ê=Yâ. Our
goal is then to choose â such that the norm of ê is minimized, subject to the linear
constraint â0 = 1:

min
â
âTYTYâ; s:t: [1 0] · â = 1: (5)

Denoting R̂,1=NYTY , we obtain the well-known LS solution

â1 = − R̂2;1

R̂2;2
; (6)

where R̂i; j denotes the (i; j)th element of R̂. If |a1|¡ 1, then yn is (asymptotically)
stationary with autocorrelation satisfying

R[0] , E[y2
n] =

	2
e

1 − a2
1
; R[1] , E[ynyn−1] = −a1 · R[0]: (7)

Moreover, we also have (asymptotically)

R̂ N→∞→
[
R[0] R[1]

R[1] R[0]

]
; (8)

so that â1 → −R[1]=R[0]=a1 is a consistent estimator. Its consistency can be attributed
to the fact that it is essentially the ML estimate, whose consistency is guaranteed in
this problem setup.

Suppose now, that we want to use a quadratic constraint on â, and later “normalize”
â0 to 1. Solving

min
â
âTYTYâ; s:t: âTâ = 1; (9)

reduces to an eigenvalue problem, and asymptotically, due to (8), we would eventually
always get either â1 = 1 (if R[1]¡ 0), or â1 = −1 (if R[1]¿ 0), which is (almost)
always inconsistent.

In the context of the original problem, the straightforward explanation is that the
quadratic constraint is inappropriate (even when followed by normalization), and there-
fore there is no reason to expect a consistent estimator. We note in this context, that
in Van Pelt and Bernstein (2001) it is shown, that it is generally possible to obtain a
consistent estimate by using an alternative quadratic constraint of the form âTNâ= 1,
where N is some symmetric (not necessarily positive-de;nite) matrix (that generally
depends on the noise statistics). In fact, this is one of the proposed remedies for the
LS estimator’s bias and inconsistency (as mentioned in the Introduction) in the gen-

eral case. For our case it is evident, that using N =
[

1 0
0 0

]
is equivalent to the linear

(sign-ambiguous) constraint â0 = ±1.
However, an interesting question is—what if the quadratic constraint were indeed

part of the problem formulation—would such unreasonable estimates still be obtained?
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In order to clarify this, consider an alternative formulation, in which we assume that
the process yn satis;es

a0yn = −a1yn−1 + en; n= 1; 2; : : : ; (10)

(with the same characteristics of en as before), where it is now known that a2
0+a2

1=1. It
is desired to estimate a0 and a1 from y1; y2; : : : yN . Again we assume, for convenience,
that y0 is deterministically known to be zero.

Apparently, it is now legitimate to use the quadratically constrained minimization
(9)—but then we would get the same highly inconsistent, nearly data-independent,
totally unreasonable estimate.

Although this time the constraint is valid, the problem here lies with the objective
function. As we shall show immediately, (9) is not the ML criterion, and therefore
there is indeed no claim for consistency.

3. The correct (ML) criterion

As the matrix-vector product Ya is bilinear in the data y and the vector a, we can
also rewrite the model equations as e = Ya = T(a)y, where

T(a) ,




a0

a1 a0

. . .
. . .

a1 a0



; y ,




y1

y2

...

yN



: (11)

Note that the matrix T(a) de;ned above is square, due to the zero initial conditions
(y0 = 0) in (4). For higher-order AR processes this would generalize to assuming
further zero initial conditions, namely y0 =y−1 = · · ·=y−p+1 =0 for an AR(p) process.
However, often in practice the available data y are part of a stationary process, and
then the “initial conditions” are not zeros, but must be treated as additional (random)
unknowns. To avoid complications, it is common practice in these situations to ignore
any equations involving “initial conditions” data, and then the respective ;rst rows of Y
in (4) are eliminated, resulting in a rectangular T(a). A “proper” way of incorporating
non-zero initial conditions while maintaining T square can be found in Yeredor (2000).

Thus, if e is a zero-mean Gaussian vector with covariance 	2
eI , then y = T−1(a)e

is also a zero-mean Gaussian vector, but its covariance is 	2
eT

−1(a)T−T(a). Therefore
its distribution is given by

f(y; a) =
1

|2�	2
eT−1(a)T−T(a)|1=2 e

− 1
2	2
e
yTTT(a)T(a)y

; (12)
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the logarithm of which is given by

L(y; a) = logf(y; a)

= c + log |T(a)| − 1
2	2

e
yTTT(a)T(a)y

= c + log |T(a)| − 1
2	2

e
aTYTYa; (13)

where c is an irrelevant constant and | · | denotes the determinant. Evidently, in an AR
problem, it is easy to observe from (11), that |T(a)| = aN0 , so that the maximization
of the likelihood L(y; a) is equivalent to the following minimization problem:

min
â

{âTYTYâ − N	2
e log â2

0}; s:t: âTâ = 1; (14)

which would yield the consistent ML estimate of a, in contrast to the “wrong” mini-
mization problem of (9).

In the appendix we verify the consistency of the resulting estimate by deriving the
closed-form solution to this simple, two-dimensional problem.

4. Generalization and discussion

Straightforward generalization to the general-order AR(q) (q¿ 1) process with gen-
eral constraints f (a) = 0, maintains the same objective function:

min
â

{âTYTYâ − N	2
e log â2

0} s:t: f (â) = 0:

The general constraints can be any (linear or nonlinear) constraints that are justi;ed by
the model, such as (but not limited to) linear constraints reUecting known coeVcients
(most commonly â0 = 1) or known poles. Evidently, if (and only if) one or more
of the constraints impose â0 = 1, then the second term of the objective function is
zeroed out, and we obtain the classical objective function of (9). It is interesting to
note, however, that no arti;cial constraints are actually needed (unless the available
a-priori information would dictate so), because the “trivial” solution â=0 is no longer
a minimizer (due to the log term).

For the more general case of an HLS (not necessarily AR) problem, the entire
matrix T(a) has to be incorporated into the LS criterion. If, in addition, the model
errors are assumed to have a general (known) covariance structure Ce, then the resulting
minimization assumes the form

min
â

{âTYTC−1
e Yâ − 2 log |T(a)|} s:t: f (â) = 0:

A potentially weak point of this approach, is that prior knowledge of the noise variance
	2
e (or the noise covariance Ce) is required. In some cases the noise statistics are
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indeed known a-priori, e.g., through knowledge of a physical model or of technical
speci;cations, such as a receiver’s input noise-;gure. In other cases it is sometimes
possible to estimate the noise statistics “oK-line” when the signal of interest is muted.
When such means are not available, it may still be possible to employ an iterative
strategy in which, following an intelligent initial guess, the noise level is re-estimated
from the implied residual ê n, and the parameter estimates are re;ned accordingly in
each iteration; however, such a strategy should be applied with caution, so as to avoid
a misleading feedback of error between iterations.

5. Minimization of the modi#ed LS criterion

In this section, we discuss the minimization of the modi;ed LS criterion (14) for the
general-order AR(p) model with a quadratic constraint. Given the estimated (symmetric,
positive de;nite) M × M correlation matrix R̂ and the model error variance 	2

e , we
wish to minimize (with respect to (w.r.t.) a)

min
a

{aTR̂a − 	2
e log(a2

0)} s:t: aTa = 1; (15)

where a0 denotes the ;rst element of a.
We form the Lagrangian,

L(a; �) = aTR̂a − 	2
e log(a2

0) − �(aTa − 1); (16)

diKerentiating w.r.t. a (taking advantage of the symmetry of R̂), and equating zero, we
obtain

(R̂− �I)a =
	2
e

a0
· i1; (17)

where I denotes the M ×M identity matrix and i1 denotes its ;rst column. Naturally,
diKerentiation of L(a; �) w.r.t. � further yields the constraint aTa = 1.

Using the eigenvalue decomposition R̂ = U
UT (with U a unitary matrix and 

diagonal) and de;ning ã , a0 · a, we may rewrite (17) as

U(
− �I)UTã = 	2
e i1; (18)

hence

ã = 	2
eU(
− �I)−1UTi1; (19)

or, de;ning v , UTi1,

ã = 	2
eU(
− �I)−1v: (20)

We now need to address the constraint aTa = 1. Noting that

‖ã‖2
2 = a2

0 · ‖a‖2
2; (21)

we conclude that the constraint is satis;ed if and only if ‖ã‖2
2 = a2

0. From (20) we
have

‖ã‖2
2 = 	4

ev
T(
− �I)−2v: (22)
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On the other hand, a2
0 is simply the ;rst element of ã, given by

a2
0 = iT1 ã = 	2

ev
T(
− �I)−1v: (23)

Our constraint can thus be expressed as

	2
ev

T(
− �I)−2v= vT(
− �I)−1v; (24)

or

	2
e

M∑
m=1

v2
m

(�m − �)2 =
M∑
m=1

v2
m

�m − � ; (25)

where vm and �m denote the mth elements of v and the (m;m)th element of 
, respec-
tively. This expression leads to a polynomial (of degree 2M − 1 at most) in �,

M∑
m=1


v2

m(� + 	2
e − �m)

∏
n�=m

(� − �n)2


 = 0; (26)

whose rooting would yield at most 2M − 1 possible real-valued solutions in �. Each
of the candidate (real-valued) solution can be plugged into (20), yielding a candidate
ã. Dividing each element of ã by

√
ã0 would yield a candidate unit-norm solution

for a. Of the resulting 2M − 1 (at most) solutions, the one that yields the smallest
objective-function value aTR̂a − 	2

e log(a2
0) is to be chosen as the global minimizer.

To avoid the need for general polynomial rooting, one may observe the resemblance
of the left-hand side (LHS) or right-hand side (RHS) of (25) to the form known
as a “secular equation” (see, e.g. (Gu and Eisenstat, 1995a,b)). Then, with vertical
asymptotes at the locations of the eigenvalues �m (a typical situation is illustrated in
Fig. 1), the graph for the LHS (as a function of �) would resemble “parabolic” curves
between these asymptotes, while the graph for the RHS would resemble monotonic
“cubic power” curves between the asymptotes (each extending from −∞ at the left
asymptote to +∞ at the right asymptote). The solutions in that case are particularly
easy to compute numerically, because they interlace with the eigenvalues, and can be
found by simple bisections; additionally, denoting the smallest and largest eigenvalues
by �min and �max (respectively), there are no solutions larger than �max (since for all
�¿�max, the LHS is positive and the RHS is negative), and there is always at least
one real-valued solution, smaller than �min (since when � → �min from below, the LHS
is larger than the RHS, whereas when � → −∞ the LHS is smaller than the RHS-
and both are continuous in (−∞; �min), so they must intersect).

Additionally, although in general any solution of (25) is merely a stationary point of
the Lagrangian, and can therefore be either a minimum, a maximum or a saddle point,
it can be observed that � values below �min are guaranteed to be associated with (at
least local) minima. To show that, we examine the second derivative matrix (Hessian)
of the Lagrangian (16) w.r.t. a:

H,
@2L(a; �)
@a2 = R̂− �I +

	2
e

a2
0
I11 =U(
− �I)UT +

	2
e

a2
0
I11; (27)
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Fig. 1. A typical pattern of the LHS vs. the RHS of (25).

where I11 denotes an M×M matrix with all-zeros entries, except for its (1; 1) element,
which is 1. Indeed, for �¡�min, the ;rst term is positive-de;nite, hence (since I11 is
positive-semide;nite) the Hessian is positive-de;nite and the associated solution is
guaranteed to be a minimum.

Although the converse is not guaranteed in general, 1 we conjecture that the solu-
tion associated with the smallest � (which is always below �min) is always the global
minimizer of criterion (15). This conjecture has been supported by extensive experi-
mentation, yet we were unable to provide a rigorous proof. It may be interesting to
note, in this context, that when �=0, the solution to (17) coincides with the maximum
entropy (ME) estimate of a, and for diKerent values of � the associated solutions of
(17) can be regarded as “modi;ed ME” estimates of a. Thus, the smallest (absolute)
value of � implies “the least modi;cation” of the ME estimate.

6. Conclusion

We have presented and explained the observation, that the constrained HLS approach
can sometimes yield useless estimates. The reason is that the LS criterion in these cases
has to be supplemented with an additional term in order to yield consistent estimates
in a statistical framework. Fortunately, in several common applications this term is
automatically zeroed-out by the constraint; however, when using constraints that do
not guarantee zero value to this term, one has to take precaution not to exclude the
term from the minimization. Thus, from an algebraic point of view, monic constraints

1 For �¿�min the Hessian may still be positive-de;nite.
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may often be the most ‘manageable’, albeit theoretically not the only ones possible
(even not from the point of view of ML).

We speci;ed this additional term for the case of Gaussian “driving noise” (or “model
errors”), and discussed possible numerical approaches for the resulting minimization.
Note, however, that for the problems illustrated, the consistent estimators of the pa-
rameters are based on consistent estimates of second-order statistics of the data, so
for ergodic processes with ;nite second-order moments, the consistency is maintained
regardless of the distribution, which may be non-Gaussian.
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Appendix A. Closed-form solution for the AR(1) example

We shall show that the solution of the “correct” minimization problem (14) yields
a consistent estimate. Dividing by N , we obtain the equivalent problem

min
â

{âTR̂â − 	2
e log â2

0} s:t: âTâ = 1: (A.1)

By parameterizing the constraint as â0=cos(�̂) and â1=sin(�̂) for some single parameter
�̂, we obtain the following equivalent unconstrained minimization:

min
�̂

{cos2(�̂)R̂1;1 + 2 cos(�̂)sin(�̂)R̂1;2 + sin2(�̂)R̂2;2 − 	2
e log(cos2(�̂))}: (A.2)

As already mentioned, assuming that |a1=a0|¡ 1, yn is (asymptotically) a stationary
process, and R̂ tends (as N → ∞) to the true R (as in (8)). Thus, with R̂1;1 = R̂2;2 =
R[0], and R̂1;2 = R[1], this minimization problem reduces to

min
�̂

{sin(2�̂)R[1] − 	2
e log(cos2(�̂))}: (A.3)

(Note that without the second term, a minimum is always obtained either at �̂=�=4 or
at �̂= 3�=4, depending only on the sign of R[1], as already observed for the “wrong”
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minimization problem earlier). DiKerentiating and equating to zero we obtain that the
minimizing �̂ should satisfy

tan(�̂)

cos(2�̂)
= −R[1]

	2
e
: (A.4)

Indeed, for the stationary process

yn = − sin(�)
cos(�)

yn−1 +
1

cos(�)
en; (A.5)

we have

R[0] =
	2
e

cos2(�)
1

1 − tan2(�)
=

	2
e

cos(2�)
(A.6)

and

R[1] = −tan(�)R[0] = −	2
e

tan(�)
cos(2�)

; (A.7)

from which the consistency of �̂ is evident in view of (A.4).

References

De Moor, B., Gevers, M., Goodwin, G., 1994. L2-Overbiased, L2-underbiased and L2-unbiased estimation
of transfer functions. Automatica 30 (5), 893–898.

Fernando, K.V., Nicholson, H., 1985. Identi;cation of linear systems with input and output noise: the
Koopmans–Levin method. IEE Proc. D 132, 30–36.

Gu, M., Eisenstat, S.C., 1995a. A Divide-and-conquer algorithm for the bidiagonal SVD. SIAM J. Matrix
Anal. Appl. 16, 79–92.

Gu, M., Eisenstat, S.C., 1995b. A Divide-and-conquer algorithm for the symmetric tridiagonal eigenvalue
problem. SIAM J. Matrix Anal. Appl. 16, 172–191.

Lemmerling, P., De Moor, B., 2001. Mis;t versus latency. Automatica 37, 2057–2067.
Ninness, B., 1996. Integral constraints on the accuracy of least-squares estimation. Automatica 32 (3),

391–397.
SBoderstrBom, T., Stoica, P., 1983. Instrumental Variable Methods for System Identi;cation. Springer, New

York.
SBoderstrBom, T., Stoica, P., 1989. System Identi;cation. Prentice-Hall, Englewood CliKs, NJ.
Stoica, P., SBoderstrBom, T., 1982. Bias correction in least-squares identi;cation. Internal J. Control 35,

449–457.
Van Pelt, T.H., Bernstein, D.S., 2001. Quadratically constrained least-squares identi;cation. Proceedings of

the American Control Conference, Arlington, VA, USA, 25–27 June 2001, pp. 3684–3689.
Yeredor, A., 2000. The joint MAP-ML criterion and its relation to ML and to extended least-squares. IEEE

Trans. Signal Process. 48 (12), 3484–3492.
Ysebaert, G., Van Acker, K., Moonen, M., De Moor, B., 2001. Constraints in channel shortening equalizer

design for DMT-based systems. Internal Report 01–27, ESAT-SISTA, K.U. Leuven, Leuven, Belgium,
2001.

Zheng, W.-X., 1988. Consistent estimation of parameters of stochastic feedback systems in the presence of
correlated disturbances. Adv. Modelling Simulation 14, 15–26.

Zheng, W.-X., 2002a. Noisy input–output system identi;cation—the Koopmans–Levin method revisited.
Proceedings of the Conference on Decision and Control, Las Vegas, NV, December 2002, pp.
636–637.

Zheng, W.-X., 2002b. A bias correction method for identi;cation of linear dynamic errors-in-variables models.
IEEE Trans. Automat. Control 47, 1142–1147.


	On homogeneous least-squares problems and the inconsistency introduced by mis-constraining
	Introduction
	An example
	The correct (ML) criterion
	Generalization and discussion
	Minimization of the modified LS criterion
	Conclusion
	Acknowledgements
	Appendix A. Closed-form solution for the AR(1) example
	References


