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Abstract

State estimation problems for linear time-invariant systems with noisy inputs and outputs are considered. An efficient recursive algorithm
for the smoothing problem is presented. The equivalence between the optimal filter and an appropriately modified Kalman filter is
established. The optimal estimate of the input signal is derived from the optimal state estimate. The result shows that the noisy input/output
filtering problem is not fundamentally different from the classical Kalman filtering problem.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The noisy input/output (I/O) estimation problem is first
put forward inGuidorzi, Diversi, and Soverini (2003), where
it is called errors-in-variables filtering. InGuidorzi et al.
(2003), Diversi, Guidorzi, and Soverini (2003a), a trans-
fer functions approach is used and recursive algorithms that
solve the filtering problem are derived. The treatment, how-
ever, is limited to the SISO case and the obtained solution
is not linked to the classical Kalman filter.
The MIMO case is addressed inMarkovsky and De

Moor (2003), where the equivalence with a modified
Kalman filter is established. Closely related to the ap-
proach of Markovsky and De Moor (2003)is the one
used in Diversi, Guidorzi, and Soverini (2003b). The
continuous-time version of the noisy I/O state estimation

� This paper was presented at the SYSID ’03 IFAC Symposium, see
Markovsky and De Moor (2003). This paper was recommended for pub-
lication in revised form by Associate Editor T. Chen under the direction
of Editor I. Petersen.
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problem is explicitly solved inMarkovsky, Willems, and De
Moor (2002)by a completion of the squares approach.
In this paper, we consider the deterministic discrete-time

LTI state-space system

x(t + 1)= Ax(t)+ Bu(t), x(0)= x0,
y(t)= Cx(t)+Du(t) (1)

together with themeasurement errors model

ud = u+ ũ, yd = y + ỹ. (2)

The vector of measurement errors̃w := col(ũ, ỹ)
is a white, stationary, zero mean, stochastic process
with positive-definite block diagonal covariance matrix
Vw̃ = blk diag(Vũ, Vỹ). We refer to model (1) together with
the measurement errors model (2) as thenoisy I/O model.
The considered problem is to find the least-squares estimate
of the statex from the measured I/O datawd := col(ud, yd).
We prove that the optimal filter is the Kalman filter for the
system

x(t + 1)= Ax(t)+ Bu(t)+ v1(t),
y(t)= Cx(t)+Du(t)+ v2(t), (3)
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where the process noisev1 and the measurement noisev2
have a joint covariance matrix
[
Q S

S� R

]
:= cov

([
v1
v2

])

=
[−B 0
−D I

] [
Vũ

Vỹ

] [−B 0
−D I

]�
. (4)

The noisy I/O state estimation problem is treated impli-
citly in Roorda and Heij (1995)andFagnani and Willems
(1997), where the behavioral setting is adopted. In the be-
havioral setting, the observations are not partitioned into in-
puts and outputs and in this respect all observation chan-
nels are treated symmetrically. The global total least-squares
problem ofRoorda and Heij (1995)has as a subproblem the
computation of the closest trajectory in the behavior of a
given system to a given time series. This is a deterministic
estimation problem, the recursive solution of which corre-
sponds to the Kalman filter.
Application of the noisy I/O estimation problem for

fault detection and data reconciliation is presented in
Mourot, Maquin, and Ragot (1999), Ragot, Kratz, and
Maquin (1999).

2. Problem formulation

A signal variable, without time index, denotes the col-
umn vector obtained by stacking consecutive signal sam-
ples, e.g., over the time horizon 0,1, . . . , tf − 1, u :=
col(u(0), . . . , u(tf −1)), andx := col(x(0), . . . , x(tf )). We
denote byVũ andVỹ the covariance matrices of̃u and ỹ,
and defineV := blk diag(Vũ,Vỹ ).

Definition 1 (Noisy I/O smoothing problem). The noisy I/O
smoothing problem is defined by

min
x̂,ŵ=col(û,ŷ)

(ŵ − wd)
�V−1(ŵ − wd) s.t.

x̂(t + 1)= Ax̂(t)+ Bû(t), ŷ(t)= Cx̂(t)+Dû(t) (5)

for t = 0,1, . . . , tf − 1, and thenoisy I/O smoothed state
estimatex̂(·, tf ) is the optimal solution of (5).

Definition 2 (Noisy I/O filtering problem). The noisy I/O
filtering problem is to find a dynamical system,

z(t + 1)= Af (t)z(t)+ Bf (t)wd(t),

x̂(t)= Cf (t)z(t)+Df (t)wd(t), (6)

such that̂x(t)= x̂(t, t+1), wherex̂(·) is the solution of (6),
i.e., thenoisy I/O filtered state estimate, andx̂(·, t+1) is the
noisy I/O smoothed state estimate with a time horizont+1.

Note 1: The noisy I/O filtering problem is defined as a
state estimation problem. When the input is measured with
additive noise, an extra step is needed to find the filtered I/O
signals from the state estimate. This is explained in Note 5.

Note2 (Initial conditions): Definition 1 implicitly assumes
there is no prior information aboutx(0). Another possibility
is x(0) is exactly known. The standard assumption isx(0) ∼
N(x0, P0), i.e., x(0) normally distributed with meanx0
and covarianceP0. Exactly known initial conditions corre-
spond toP0 = 0 and unknown initial conditions correspond
to P0 = ∞ · I . The latter is a singular case that calls for
the information matrixP−1

0 = 0. We have chosen the initial
condition assumption that results in the simplest derivation.

3. Solution of the smoothing problem

We represent the I/O dynamics of system (1), over the
time horizon 0, . . . , tf −1, explicitly asy=�x0+T u, where

� :=




C

CA
...

CAtf−1


 , T :=




H0 0 · · · 0

H1 H0
. . .

...
...

...
. . . 0

Htf−1 Htf−2 · · · H0


 ,

andH0 =D, Ht = CAt−1B, for t >0, are the Markov pa-
rameters of (1). Using this representation, (5) becomes a
classical Weighted Least Squares (WLS) problem

min
x̂0,û

∥∥∥∥
√
V−1

([
ud
yd

]
−

[
0 I

� T

] [
x̂0
û

])∥∥∥∥
2

. (7)

Alternatively, we represent the input/state/output dynamics
of the system over the time horizon 0, . . . , tf − 1, asȳ =
Ax + Bu, where

ȳ :=




y(0)
0
y(1)
0
...

y(tf − 1)
0



, A :=




C 0
A −I

C 0
A −I

. . .
. . .

C 0
A −I



,

B :=




D

B

D

B
.. .

D

B



.

Substitutingyd− ỹ for y andud− ũ for u (see (2)), we have

ȳd + Bud = Ax + Bũ+ Cỹ, (8)

where ȳd is defined analogously tōy andC := blk diag([
I
0

]
, . . . ,

[
I
0

])
.Using (8) and defining�w := col(�u,�y),

(5) is equivalent to the following problem:

min
x̂,�w

�w�V−1�w

s.t. ȳd + Bud = Ax̂ + [B C]�w, (9)
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which is a minimum-norm-type problem, so that its solution
can be computed in closed form.
Next we show a recursive solution for the case when

x(0)=x0 is given andD=0. The more general case,x(0) ∼
N(x0, P0) andD �= 0 leads to similar but heavier result.
Define the value functionV� : Rn → R, for � =

0,1, . . . , tf , wheren := dim(x0) as follows:V�(z) is the
minimum value of (5) overt = �, . . . , tf − 1 with x̂(�)= z.
Then V0(x0) is the optimum value of the I/O smoothing
problem. By the dynamic programming principle, we have

V�(z)= min
û(�)

(||
√
V−1
ũ
(û(�)− ud(�))||2

+ ||
√
V−1
ỹ
(Cz− yd(�))||2

+ V�+1(Az+ Bû(�))). (10)

The value functionV� is quadratic for all�, i.e., there are
P(�) ∈ Rn×n, s(�) ∈ Rn, andv(�) ∈ R, such thatV�(z) =
z�P(�)z+ 2s�(�)z+ v(�). This allows us to solve (10).

Theorem 3(Recursive smoothing). The solution of the noisy
I/O smoothing problem with givenx(0)= x0 andD = 0 is

û(t)= − (B�P(t + 1)B + V −1
ũ
)−1(B�P(t + 1)Ax̂(t)

+ B�s(t + 1)− V −1
ũ
ud(t)), (11)

x̂(t +1)=Ax̂(t)+Bû(t), with x̂(0)=x0, and ŷ(t)=Cx̂(t)
for t = 0, . . . , tf − 1, where

P(t)= − A�P(t + 1)B(B�P(t + 1)B + V −1
ũ
)−1

× B�P(t + 1)A+ A�P(t + 1)A

+ C�V −1
ỹ
C (12)

for t = tf − 1, . . . ,0, with P(tf )= 0 and

s(t)= − A�P(t + 1)B(B�P(t + 1)B + V −1
ũ
)−1

× (B�s(t + 1)− V −1
ũ
ud(t))+ A�s(t + 1)

− C�V −1
ỹ
yd(t) (13)

for t = tf − 1, . . . ,0, with s(tf )= 0.

Pandsare obtained from the backward-in-time recursions
(12) and (13), and the estimatesû, x̂, and ŷ are obtained
from the forward-in-time recursion (11).

Note3 (Suboptimal smoothing): With(C,A) observable,
(12) has a steady-state solutionP̄ that satisfies the algebraic
Riccati equation (ARE)

P̄ = − A�P̄ B(B�P̄ B + V −1
ũ
)−1B�P̄A

+ A�P̄A+ C�V −1
ỹ
C. (14)

In a suboptimal solution,̄P can be substituted forP(t) in
(13) and (11). This is motivated by the typically fast conver-
gence ofP(t) to P̄ . Then the smoothing procedure becomes:

1. solve the algebraic Riccati equation (14),
2. simulate the LTI system (13) withP(t) ≡ P̄ ,
3. simulate the LTI system (11) withP(t) ≡ P̄ .

4. Solution of the filtering problem

Analogous to the derivation of (8) in Section 3, we now
derive an equivalent to the noisy I/O model (1–2) represen-
tation in form (3). Substituteud − ũ for u andyd − ỹ for y
(see (2)) in (1)

x(t + 1)= Ax(t)+ Bud(t)− Bũ(t),
yd(t)= Cx(t)+Dud(t)−Dũ(t)+ ỹ(t),
and define a “fake” process noisev1 and measurement noise
v2 by v1 := −Bũ andv2 := −Dũ+ ỹ. The resulting system
x(t + 1)= Ax(t)+ Bud(t)+ v1(t),
yd(t)= Cx(t)+Dud(t)+ v2(t), (15)

is in form (3), whereQ, S, andR are given in (4).
The Kalman filter corresponding to the modified system

(15) with covariance (4) is

z(t + 1)= Akf (t)z(t)+ Bkf (t)wd(t),

x̂(t)= Ckf (t)z(t)+Dkf (t)wd(t), (16)

where

Akf (t)= (A−K(t)C), Bkf (t)= [B −K(t)D,K(t)],
Ckf (t)= I − P(t)C�(CP (t)C� + R)−1C,

Dkf (t)= P(t)C�(CP (t)C� + R)−1[−D I ],
K(t)= (AP (t)C� + S)(CP (t)C� + R)−1, (17)

and

P(t + 1)= AP(t)A� − (AP (t)C� + S)
× (CP (t)C� + R)−1(AP (t)C� + S)� +Q.

We call (16) themodified Kalman filter. It recursively
solves (8) (which is equivalent to (15)) for the last block
entry of the unknownx. The solution is in the sense of the
WLS problem

min
x̂,ê

ê�([B C]V[B C]�)−1ê s.t. ȳd + Bud = Ax̂ + ê,

which is an equivalent optimization problem to the noisy I/O
smoothing problem (9). Therefore, the noisy I/O filtering
problem is solved by the modified Kalman filter.

Theorem 4. The solution of the noisy filtering problem is
Af = Akf , Bf = Bkf , Cf = Ckf , andDf = Dkf , defined
in (17).

Note4 (Suboptimal filtering): One can replace the time-
varying Kalman filter with the (suboptimal) time-invariant
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filter, obtained by replacingP(t) in (16) with the steady-
state solutionP̄ of the ARE

P̄ = AP̄A� − (AP̄C� + S)(CP̄C� + R)−1

× (AP̄C� + S)� +Q.
Note5 (Optimal estimation of the input/output signals):

Up to now we were interested in the optimal filtering in the
sense of state estimation. The optimal estimates of the input
and the output, however, can be derived from the modified
Kalman filter. The state estimatêx, the one-step-ahead pre-
diction z(t +1), and the optimal input estimatêu satisfy the
equation

z(t + 1)= Ax̂(t)+ Bû(t). (18)

Then we can find̂u exactly from x̂ and z(t + 1) obtained
from the modified Kalman filter (16). In fact, (18) and the
Kalman filter equations imply that

û(t)= E(t)z(t)+ F(t)wd(t), (19)

whereE(t) := −VũD�(CP (t)C� + R(t))−1C and

F(t) := [I − VũD�(CP (t)C� + R)−1D,

VũD
�(CP (t)C� + R)−1].

The optimal output estimate is

ŷ(t)= (CCkf (t)+DE(t))z(t)
+ (CDkf (t)+DF(t))wd(t). (20)

Appending the output equation of the noisy I/O filter (6)
with Eqs. (19) and (20), we have an explicit solution of the
errors-in-variables filtering problem ofGuidorzi et al. (2003)
as a (modified) Kalman filter.

Note 6 (Misfit/latency): More general estimation prob-
lems occur when the signalsu, y are generated by the
stochastic model (3) with a noise covariance matrixVv :=
cov(col(v1, v2)), and the signalsud, yd, available for es-
timation, are generated by the measurement error model
(2). The noisy I/O smoothing and filtering problems can be
defined in this case analogously to Definitions 1 and 2 and
the results of the paper can be repeated mutatis mutandis
for the new problems. The final result is the equivalence of
the noisy I/O filter to the modified Kalman filter (16, 17),
with the only difference that now

[
Q S

S� R

]
= Vv +

[−B 0
−D I

] [
Vũ

Vỹ

] [−B 0
−D I

]�
.

Themore general setup is attractive because the noisesv1, v2
have different interpretation from that ofũ, ỹ. In the for-
mer model thelatencycontribution and the latter model the
misfit contribution, seeLemmerling and De Moor (2001),
Markovsky et al. (2002).

Table 1
Comparison of the absolute errors of the state, input, and output estimates
for all methods. (MKF—modified Kalman filter)

Method ||x̂ − x||2 ||û− u||2 ||ŷ − y||2

Optimal smoothing 75.3981 29.2195 15.5409
Optimal filtering 75.7711 35.5604 16.4571
Time-varying MKF 75.7711 35.5604 16.4571
Time-invariant MKF 76.1835 35.7687 16.5675
Noisy data 116.3374 42.4711 41.2419

5. Numerical example

We illustrate numerically the results of the paper. The

particular system used isA =
[
0.6
1

−0.45
0

]
, B =

[
1
0

]
, C =

[0.48429−0.45739], andD=0.5381. The time horizon is
tf=100, the initial state isx0=0, the input signal is a normal
white noise sequence with unit variance, andVũ=Vỹ =0.4.
The estimate of the noisy I/O filter is computed directly

from the definition, i.e., we solve a sequence of smoothing
problems with increasing time horizon. Every smoothing
problem is as a WLS problem (7). The last block entries of
the obtained sequence of solutions form the noisy I/O filter
state estimate.
We compare the noisy I/O filter estimate with the estimate

of the modified Kalman filter (16). The state estimatex̂KF
obtained by the modified Kalman filter is up to the numerical
errors equal to the state estimatex̂f obtained by the noisy
I/O filter, ||x̂KF− x̂f ||<10−14. This is the desired numerical
verification of the theoretical result. The absolute errors of
estimation||x̂− x||2, ||û−u||2, ||ŷ− y||2 for all estimation
methods discussed in the paper are given inTable 1.

6. Conclusions

We considered optimal noisy I/O estimation problems
for discrete-time LTI systems. A recursive solution for the
smoothing problem is derived. The filtering problem is
solved via a modified Kalman filter. The equivalence be-
tween the noisy I/O filter and the modified Kalman filter
is established algebraically using explicit state-space repre-
sentation of the system. The optimal estimate of the input
is a linear function of the optimal state estimate, so that
it is obtained by an extra output equation of the modified
Kalman filter. The results are extended to the case when the
system is driven by a measured and an unobserved input.
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