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ABSTRACT

A general Box–Cox transformation method in multiple linear
regressions is investigated. An algorithm is proposed to iden-
tify optimal general Box–Cox transformations based on
kernel density estimation techniques. It is shown that for a
multiple linear regression problem, the optimal general Box–
Cox transformation can be derived through solving a matrix
eigenvector problem, while the regression coefficients are esti-
mated by least squares approach. Examples are given to illus-
trate the proposed method.
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1. INTRODUCTION

The Box–Cox transformation is one of the most useful methods in
regression analysis.[1] For an independent and identically distributed
sample ð~xx

T
1 , ~yy1Þ

T, . . . , ð~xxTn , ~yynÞ
T
2 Rpþ1 from a distribution, Box and Cox[2]

considered the following model

�ð ~YY, �Þ ¼ �1þ ~XXbþ �" ð1:1Þ

where ~YY ¼ ½ ~yy1, . . . , ~yyn�
T is an n� 1 vector of responses, ~XX ¼ ½ ~xx1, . . . , ~xxn�

T is
an n� p design matrix ( p	 n), b is a p� 1 ‘‘slope’’ parameter vector, � is the
intercept, 1 is a vector of ones, �e is an n� 1 vector of errors which are
independent with zero mean and constant variance �2, and �(t, �) is the Box–
Cox transformation function:

�ðt; �Þ ¼
ðt� 
 1Þ=�, if � 6¼ 0
log t if � ¼ 0

where t > 0

�
ð1:2Þ

To estimate the parameter �,[2] used the maximum likelihood method
assuming that the error vector, e, has an exact normal distribution. The
optimal solution of the parameter � in the single-parameter family, (1.2),
can be easily found in a plot of the log-likelihood function of the normal
distribution versus � (see, e.g., Ref. [1]).

However, the assumption of normality is often not true in practice and
thus it is very important to check normality of residuals.[1] Recently, many
methods have been developed which do not assume normality of residuals.
Lin and Vonesh[3] constructed a non-linear regression model which is used to
estimate the transformation parameter, �, such that the normal probability
plot of the data on the transformed scale is as close to linearity as possible.
Halawa[4] investigated the power transformation estimation procedure using
an artificial regression model. Rahman[5] proposed to estimate a Box–Cox
transformation by maximising the Shapiro–Wilk W statistics. Although
implemented in different ways, all of these approaches,[3–5] are based on the
same idea of forcing the data to get closer to normality as much as possible.

When not all of the response data, ~yyj ( j¼ 1, . . . , n), are positive, the
transformation family (1.2) is not applicable. Instead a two-parameter trans-
formation family is usually applied:

�ðt; �,	Þ ¼
½ðtþ 	Þ� 
 1�=�, if � 6¼ 0
logðtþ 	Þ if � ¼ 0

�
ð1:2Þ0

such that ~yyj þ	>0 for all j¼ 1, . . . , n. In this case, however, when using the
maximum likelihood method, it is no longer possible to spot the optimal
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solution through a plot for the two-parameter transformation family, (1.2)0,
as done for the single-parameter case, incurring extra search efforts for the
optimal parameters, � and 	.

The purpose of this paper is to investigate a general Box–Cox trans-
formation approach which can be applied to a wide area, no matter whether
the transformed data are normal/positive or not. In addition, the transfor-
mation functions will be extended from the single/two parameter family,
(1.2)/(1.2)0, to any measurable functions. The criterion of selecting an appro-
priate transformation function is based on minimisation of predictive errors
rather than forcing the data to get close to normality as done in the
approaches.[3–5] The framework of this approach is based on Ref. [6] in
which a general method was developed to estimate optimal transformations
for multiple regressions. We will show that, however, for the problem of
seeking for a general transformation of the response variable in the linear
regression Eq., (1.1), the algorithm proposed in this paper has a particular
simplicity. It is non-iterative and easy to implement.

2. MAIN RESULTS

In this section, we first summarise the optimal transformation method
for multiple regressions in Ref. [6], and then concentrate on the general
Box–Cox transformations.

2.1. A Brief Summary of the Optimal Transformations

for Regression

Suppose Y, X1, . . . ,Xp are random variables with Y the response and
X1, . . . ,Xp the predictors. Let �(Y), 
1(X1), . . . ,
p(Xp) be arbitrary measur-
able zero-mean functions of the corresponding random variables. The objec-
tive is to identify these transformations which minimise

e2ð�,
1, . . . ,
pÞ ¼ E½�ðYÞ 

Xp
j¼1


jðXjÞ�
2

ð2:1Þ

subject to E�2¼ 1, E�¼E
1¼ 
 
 
 ¼E
p¼ 0
with k 
 k ¼ ½Eð
Þ2�1=2. For the simple case where there exists only single
predictor, X¼X1, Eq. (2.1) reduces to

e2ð�,
Þ ¼ E½�ðYÞ 
 
ðXÞ�
2

ð2:1Þ0

subject to E�2¼ 1, E�¼E
¼ 0
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and the solution to problem (2.1)0 satisfies

�ðYÞ ¼ E½
ðXÞjY �=a and 
ðXÞ ¼ E½�ðYÞjX � ð2:2Þ

where a ¼ kE½
ðXÞjY �k is a positive constant. The algorithm proposed by
Ref. [6], termed alternating conditional expectation algorithm, is an iterative
procedure in which each equation in (2.2) is substituted into another alter-
nately until e2ð�,
Þ in (2.1)0 fails to decrease. Similarly, for the case of multi-
ple predictors, �(Y) that minimise (2.1) satisfies

�ðYÞ ¼ E
Xp
i¼1


iðXiÞjY

" #.
a ð2:2Þ0

with a ¼ kE½
Pp

i¼1 
iðXiÞjY �k a positive constant, and the idea of the alter-
nating conditional expectation algorithm is the same as the case of single
predictor but more complicated.

2.2. The General Box–Cox Transformations

Without loss of generality, assume that the random variables Y and Xj

( j¼ 1, . . . , p) have zero means. Instead of considering a general problem,
(2.1), we restrict our interest to a special case of multiple linear regressions
with a transformed response variable. Specifically, an arbitrary zero-mean
measurable function of the random variable Y, �(Y), is sought for such that
�, together with the regression coefficients, �1, . . . ,�p, minimise

e2ð�,�1, . . . ,�pÞ ¼ E �ðYÞ 

Xp
j¼1

�jXj

" #2
ð2:3Þ

subject to E�2¼ 1 and E�¼ 0.
The problem (2.3) is different from (2.1). First of all, the problem

(2.3) is a constrained functional optimisation problem in the sense that
all of functional 
j ( j¼ 1, . . . , p) in (2.1) are restricted to be linear.
Secondly, instead of being a problem of functional optimisations, seek-
ing for the optimal regression coefficients, �1, . . . ,�p, is a problem
of parameter optimisations, and thus the algorithm for this problem
is expected to be much easier than the general case of functional
optimisations.
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It is clear that the solution of � to the problem (2.3) is similar to the
Eq. (2.2)0:

�ðYÞ ¼ E
Xp
j¼1

�jXjjY

" #.
a ð2:4Þ

with a ¼ kE½
Pp

j¼1 �jXjÞjY �k a positive constant, whilst the optimal regres-
sion coefficients, �1, . . . ,�p, satisfy the first-order conditions
@e2ð�,�1, . . . ,�pÞ=@�i ¼ 0, i.e.,

Xp
j¼1

E½�jXiXj� ¼ E½Xi�ðYÞ� i ¼ 1, . . . , p ð2:5Þ

Taking mathematical expectation for both sides of Eq. (2.4), and
noting that Xj ( j¼ 1, . . . , p) have zero means, we obtain

E½�ðYÞ� ¼ E E
Xp
j¼1

�jXj Yj

( )" #.
a ¼

Xp
j¼1

�jE½Xj�=a ¼ 0:

Therefore, �(Y) derived from (2.4) satisfies E�¼0, one of the con-
straints of problem (2.3). Moreover, it is clear that if �(Y) and �1, . . . ,�p
is a solution of (2.4) and (2.5), then for any constant c 6¼ 0, c�(Y) and
c�1, . . . , c�p is a solution as well. Therefore, to satisfy the another constraint
of the problem (2.3), E�2¼ 1, the constant c is chosen as [E�2]
1/2.

The sample version of the problem is to seek for a transformation �
and a vector of the regression coefficients, b¼ [�1, . . . ,�p]

T, for the following
regression problem

�ðYÞ ¼ Xbþ �" ð1:1Þ0

such that b and � minimise the following sample version of problem (2.3):

Jð�, bÞ ¼ ½�ðYÞ 
 Xb�T½�ðYÞ 
 Xb� ð2:3Þ0

subject to ½�ðYÞ�T�ðYÞ=ðn
 1Þ ¼ 1 and 1
T�ðYÞ ¼ 0

where Y¼ [y1, . . . , yn]
T is an n� 1 vector of responses, X¼ [x1, . . . , xn]

T is an
n� p design matrix of rank p ( p	 n) and �(Y)¼ [�( y1), . . . , �( yn)]

T. Both X

and Y are assumed to be mean centred, i.e., X1¼ 0 and Y1¼ 0. The sample
version of (2.5) is then given by

b� ¼ ðX
T
XÞ


1
X
T��ðYÞ ð2:5Þ0
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D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

4:
09

 2
9 

Ju
ly

 2
01

4 



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

In order to derive a sample version of (2.4), we consider a sample
conditional expectation of EðX jYÞ using the kernel density estimation tech-
niques. In this paper, we adopt the well-known Nadaraya–Watson estimator
which is a special case of the local polynomial kernel density estimators with
zero-order.[7]

Specifically, for a chosen kernel function k(x)� 0 and a bandwidth
h>0, the weighting matrix of the Nadaraya–Watson estimator is con-
structed as W¼ [wh( yi; yj)], where whðt; tjÞ ¼ k½ðt
 tjÞ=h�=

Pn
j¼1 k½ðt
 tjÞ=h�.

Note that the weighting matrix W of a Nadaraya–Watson estimator is a
stochastic matrix with all of its elements being non-negative and satisfying
W1¼ 1. The sample conditional expectation of EðXjjYÞ is then given byWxj
( j¼ 1, . . . , p). Therefore, sample version of Eq. (2.4) is given by

��ðYÞ ¼ WXb�=a ð2:4Þ0

with a¼kWXb�k a positive scalar and k
k is the norm of a vector. Inserting
(2.5)0 into (2.4)0 yields

��ðYÞ¼G��ðYÞ=a ð2:6Þ

where G¼WH, H¼X(XTX)
1XT and a ¼ kWH��ðYÞk > 0. Hence, ��ðYÞ is
an eigenvector of the matrix G corresponding to a positive eigenvalue. The
derived general Box–Cox transformation of the response vector is then given
by a scaled ��ðYÞ:

�̂�ðYÞ ¼ ��ðYÞ=f½��ðYÞ�T��ðYÞ=ðn
 1Þg1=2

and the estimate of the regression coefficients is given by b̂bLS ¼
ðX
T
XÞ


1
X
T�̂�ðYÞ. Note that the constraint, 1

T�̂�ðYÞ ¼ 0, is satisfied since
W1 ¼ 1 and X1 ¼ 0.

Inserting b̂bLS into (2.3)
0 and noting that ½�̂�ðYÞ�T�̂�ðYÞ=ðn
 1Þ ¼ 1, pro-

blem (2.3)0 becomes

~JJð�̂�Þ ¼ ðn
 1Þ 
 ½�̂�ðYÞ�TH�̂�ðYÞ ð2:7Þ

Hence, the global optimal solution of problem (2.3) can be found
through evaluation of ~JJð�Þ at � ¼ �̂�ðYÞ, the scaled eigenvectors of G corre-
sponding to positive eigenvalues.

One of the problem in solving problem (2.6) is that the dimension of G
depends on the sample size n which may become extremely large in practice.
We then convert the eigenvector problem (2.6) of dimension n into another
eignevector problem of dimension p which is typically much less than n in
many applications. For this end, instead of inserting (2.5)0 into (2.4)0, we
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substitute Eq. (2.4)0 into (2.5)0, and let A¼ (XTX)
1XTWX, yielding

Ab� ¼ ab� ð2:6Þ0

Therefore, b� is an eigenvector of A associated with the positive eigen-
value, a. Note that A is a p�p matrix. The matrix A is constructed by
exchanging the left part of the matrix G¼WX(XTX)
1XT, WX, with the
right part, (XTX)
1XT. The matrices G and A are therefore have the same
non-zero eigenvalues. The least squares estimate of the regression coeffi-
cients, b̂bLS, equals to b

� after being appropriately scaled. We then have
the following algorithm.
Given: The design matrix ~XX and response vector ~YY (they do not necessarily
have zero means). A kernel function k(x)� 0 and a bandwidth h>0;

Step 1. Computing the mean centred matrices X and Y ¼ ½y1, . . . , yn�
T of

~XX and ~YY;
Step 2. Computing weighting matrix W ¼ ½ðwhðyi, yjÞ�;
Step 3. Computing H¼XðX

T
XÞ


1
X
T and A¼ (XTX)
1XTWX;

Step 4. Computing the normalised eigenvector pi of A corresponding to
positive eigenvalues. Letting 
i ¼WXpi and standardising 
i as

i ¼ 
i=f


T
i 
i=ðn
 1Þg

1=2;
Step 5. Letting �̂�(Y)¼ argmax
i f


T
i H
ig;

Step 6. Computing the least squares estimate b̂bLS¼ (X
TX)
1XT�̂�(Y) and

�̂�LS¼ 1T(�̂�(Y)
 ~XXb̂bLS)/n;
Step 7. The transformation function is �̂�ðtÞ ¼

Pn
i¼1 ½whðt
 yiÞ �

f
Pp

j¼1 xij�̂�jg�;
End.

Noted that choices of the kernel function and bandwidth may influ-
ence the resulting �̂� and b̂bLS. See Refs. [7,8] for details of selection of kernel
function and bandwidth.

3. SOME PROPERTIES

In this section, we investigate properties of the solutions to (2.3) and
(2.3)0.

Lemma 1. The optimal general Box–Cox transformation �̂�(Y) of the response
vector Y, if exists, is real-valued.

The proof is immediate by noting that �̂�(Y) is an eigenvector
of the real-valued matrix G corresponding to a positive eigenvalue, 	,
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satisfying the linear equation systems of real-valued coefficients,
(	I
G)�̂�(Y)¼ 0.

Let � denote the set consisting of all eigenvalues of G. Then we have

Theorem 1. For the mean centred matrices, X and Y, letting G¼WH,
where H¼XðX

T
XÞ


1
X
T, W¼ [wh( yi;yj)], and wh(t;tj)¼ k[(t
 tj)/h]/Pn

j¼1 k½ðt
 tjÞ=h�, k(x)� 0 and h>0, then we have

(i) j�j 	 1 for 8 �2�. For the case where k(x)¼ 0 for some real x, if
there exists an eigenvalue �� ¼ 12�, then the associated eigenvec-
tor with unit variance is the optimal transformation minimising
(2.7).

(ii) For a positive kernel function k(x)>0 for 8x, we have j�j<1 for
�2�.

Proof. (i) Noting that the maximum eigenvalue of a stochastic matrix is 1
(see, e.g., Ref. [9]) and the eigenvalues of H are either 0 or 1, we have
j�j 	 kGk2	kHk2 kWk2¼ 1 for �2�.

Let gmax denote an eigenvector of G with unit length corresponding to
the eigenvalue 1. Decompose gmax as gmax ¼ c1g1 þ c2g2, where g12N(H)
and g22N?

ðHÞ, kgik¼1, 0	 ci	 1 (i¼ 1, 2), c1 ¼ ð1
 c22Þ
1=2, N(H) and

N?
ðHÞ are the null space of H and its orthogonal complementary space

respectively. Then noting that Hg1¼ 0 and Hg2¼g2, we have

gmax ¼ Ggmax ¼ WHðc1g1 þ c2g2Þ ¼ c2Wg2

Since 1 ¼ kgmaxk ¼ c2kWg2k 	 c2kWk2kg2k ¼ c2 	 1, we obtain
c2¼ 1 and thus c1¼ 0. Hence, gmax ¼ g2 2N?

ðHÞ. Finally,
g� ¼ ðn
 1Þ1=2gmax, the standardised vector of gmax, satisfies
~JJðg�Þ ¼ ðn
 1Þ 
 g�THg� ¼ 0 and thus attains the global minimum.

(ii) If 1¼ �*2�, then for any of the associated eigenvectors, gmax, we
have gmax 2N?

ðHÞ and Hgmax¼ gmax from (i). Since gmax¼Ggmax¼Wgmax,
gmax is an eigenvector of W associated with the eigenvalue 1. On the other
hand, when k(x)>0 for 8 x,W is a positive stochastic matrix. Therefore, the
algebraic multiplicity of the eigenvalue 1 is 1 (see Ref. [9]). Hence from
W1¼ 1, we have gmax¼ k 12N(H), where k is a scalar. This leads to a
contradiction since gmax 2N?

ðHÞ. This completes the proof.
In the sequel of this section, we focus on the problem of two random

variables, X and Y, each with zero-mean and unit variance, such that � and
� minimise

e2ð�,�Þ ¼ E½�ðYÞ 
 �X �
2

ð3:1Þ

subject to E�2¼ 1 and E�¼ 0
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We will investigate in what kind of circumstances an optimal general
Box–Cox transformation derived in the section 2, �(Y), reduces to the simple
linear transformation, i.e., �(Y)¼Y, and under what conditions it gives the
same solution as the Box–Cox transformation method.

Lemma 2. Suppose that both of the random variables Y and X have zero mean
and unit variance. If XjY ¼ y � Nðry, v2Þ, then the optimal solution to
problem (3.1) is �(t)¼� t.

The proof is immediate from Eq. (2.4). Therefore, Lemma 2 gives a
condition under which the optimal transformation is trivial. A related but
more interesting situation is that the conditional distribution of the random
variable Y given the predictor X is normal.

Theorem 2. Suppose that both of the random variables Y and X have abso-
lutely continuous distributions with zero mean and unit variance. Then
Y X ¼ x � Nðrx, v2Þ
		 and the optimal solution to the problem (3.1) is �(t)¼ t

and �¼ r (or �(t)¼
 t and �¼
 r) if and only if (Y, X) have a joint normal
distribution with the correlation coefficient r.

Proof. The sufficiency is immediate from Lemma 2. We then consider proof
of the necessity. Denote the marginal density functions of X and Y as f(x)
and q( y) respectively, and the conditional density function of Y given X as
g( yjx). When �(t)¼ t and �¼ r (or �(t)¼
 t and �¼
 r), from Eq. (2.4)
we have

ay ¼

Z þ1


1

rx½gð yjxÞf ðxÞ=qð yÞ� dx ð3:2Þ

where a is positive constant. Equation (3.2) can be rewritten as


fð1
 aÞy=v2gqð yÞ ¼ d

Z þ1


1

qðyjxÞpðxÞdx

� �.
dy

or

dqð yÞ=dy ¼ 
fð1
 aÞy=v2gqð yÞ

The above differential equation gives the solution as q( y)¼
c0exp{
(1
 a)y2/(2v2)} for an arbitrary constant c0. Since q( y) is a density
function with unit variance, we obtain a<1, v2¼ 1
 a, and c0¼ (2�)


1/2,
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yielding a standard normal distribution of Y. Then for the known q( y) and
g( yjx), we have following integral equation of the unknown f(x):Z þ1


1

f ðxÞgð yjxÞ dx ¼ qð yÞ

which gives solution f(x)¼ jrj/[(2�(1
v2)1/2] exp{
(rx)2/[2(1
v2)]} through
the Fourier transformation. Since X has unit variance, we obtain v2¼ 1
 r2,
and thus X has a standard normal distribution. Therefore the joint distribu-
tion of X and Y, g( yjx)f(x), is a bivariate normal distribution with the
correlation coefficient r. This completes the proof.

Immediate from Theorem 2, we have

Corollary. Suppose u(t) is a strictly monotonic and continuously differentiable
function, and both of the random variables Z¼ u(Y) and X have absolutely
continuous distributions with zero mean and unit variance. Then
u(Y)jX¼ x�N(rx,v2), and the optimal solution to problem (3.1) is �¼ r and
�(t)¼ u(t) (or �¼
r and �(t)¼
 u(t)) if and only if (u(Y), X) have a joint
normal distribution with the correlation coefficient r.

Hence, if u(Y) and X has a joint normal distribution, and u(t) belongs
to the Box–Cox family, (1.2) or (1.2)0, the general Box–Cox transformations
will give a transformation function which is identical to that derived by the
Box–Cox transformation method.

4. EXAMPLES

In this section, two examples are given to illustrate the developed
general Box–Cox transformations. For both examples, the kernel function
is chosen as the biweight function, i.e., k(x)¼ 15(1
 x2)2/16 for x2 [
1, 1],
and k(x)¼ 0 otherwise. Sample conditional expectation is taken as the
Nadaraya–Watson estimator.

Example 1. A Box–Cox transformation for Mooney viscosity data was
investigated by Ref. [1]. The predictor variables are filler level (x1) and
plasticiser level (x2). A transformation, �, of the response variable,
Mooney viscosity MS4 (V), was explored for the establishment of a linear
regression model:

�ðVÞ ¼ �þ �1x1 þ �2x2 þ "
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Using the Box–Cox transformations, Draper and Smith[1] identified
log(V) as an appropriate transformation. The regression fit of the standar-
dised log(V), z, and the two predictors, x1 and x2, is given by
ẑz¼
 0.7412þ 0.0445 x1
 0.0454 x2.

On the other hand, we derive a general Box–Cox transformation from
(2.6). The least square fitting is given by �̂�¼
 0.7016þ 0.0439x1
 0.0468x2.
The result is comparable to that obtained through the application of the
Box–Cox transformations, log(V).

It should be noted that unlike the Box–Cox transformations, the
assumption of normality for transformed data is not required for the general
Box–Cox transformations. In addition, the transformation function does
not necessarily belong to the Box–Cox transformation family. This is illu-
strated by the next example.

Example 2. In this simulation example, let the predictor X have a distribu-
tion function F(x) and the response variable Y be a transformation of Z
as Y¼ (Z3þ 3Zþ 10)/50, where Z is a random variable defined by
Z¼ 2þX/3þ e. e is independent of X and has a distribution function
H(x). The data vectors, X, e, Z and Y, of size 100 are generated as the
outcomes of X, e, Z and Y respectively. Consider the equation

�ðYÞ ¼ �1þ X�þ e

We seek for a transformation of Y, �(Y), such that X and the trans-
formed data �(Y) has a strong linear relationship.

Two simulation circumstances are considered. First, F(x) is taken as
N(0,102) andH(x)N(0,1). The scatter plot ofX and Y is shown in Figure 1. A
general Box–Cox transformation �̂� is then derived and the scatter plot of X
and �̂�ðYÞ is gives by Figure 2. In the second circumstance, F(x) and H(x) are
taken as a uniform distribution in [
5, 5] and [
1, 1] respectively. The scatter
plot of X and Y is shown is Figure 3. A general Box–Cox transformation �̂� is
derived and the scatter plot of X and �̂�ðYÞ is given by Figure 4. It can be seen
from these figures that for both circumstances, the general Box–Cox trans-
formations can successfully convert the response vector Y into a vector �̂�ðYÞ
which has a strong linear relationship with the predictor vector X.

Table 1 shows the least squares estimates of regression coefficients. The
second column gives the least square estimates �̂� and �̂� of � and � in both of
the simulation circumstances. For comparison, suppose that the transforma-
tion function, f(t)¼ (t3þ 3tþ 10)/50, is exactly known a prior. Then the
‘‘true’’ transformation of the response variable should be taken as
��(t)¼ [ f(t)
mean(Z)]/[variance(Z)]1/2 (standardisation is taken to satisfy
the constraints of (3.1)). The third column of Table 1 gives the least square
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Figure 2. The scatter plot of the predictor variable X and transformed response
variable �̂�ðYÞ after applying the general Box–Cox transformation for the normal
distribution circumstances.

Figure 1. The scatter plot of the predictor variable X and response variable Y for
the normal distribution circumstances.
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Figure 3. The scatter plot of the predictor variable X and response variable Y for

the uniform distribution circumstances.

Figure 4. The scatter plot of the predictor variable X and transformed response
variable �̂�ðYÞ after applying the general Box–Cox transformation for the uniform
distribution circumstances.
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estimates �� and �� of � and � after applying the ‘‘true’’ transformation ��. It
can be seen that for both circumstances, the results obtained by applying
general Box–Cox transformations �̂� and ‘‘true’’ transformations �� are very
close to each other.

Finally, one thousand experiments, each with sample size n¼ 100, for
both circumstances are conducted. Table 2 gives mean squared errors
(MSE) of the least squares estimates of regression coefficients � and �
after applying the general Box–Cox transformation and the ‘‘true’’ trans-
formation under the normal and uniform distribution circumstances. It can
be seen that, in comparison with the ‘‘true’’ transformation, the general
Box–Cox transformation method performs very well, no matter the under-
lying distribution is normal or not.
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