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The Clifford group, stabilizer states, and linear and quadratic operations over GF(2).
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We describe stabilizer states and Clifford group operations using linear operations and quadratic
forms over binary vector spaces. We show how the n-qubit Clifford group is isomorphic to a group
with an operation that is defined in terms of a (2n+ 1) x (2r+1) binary matrix product and binary
quadratic forms. As an application we give two schemes to efficiently decompose Clifford group
operations into one and two-qubit operations. We also show how the coeflicients of stabilizer states
and Clifford group operations in a standard basis expansion can be described by binary quadratic
forms. Qur results are useful for quantum error correction, entanglement distillation and possibly

quantum computing.

PACS numbers: 03.67.-a

I. INTRODUCTION

 Stabilizer states and Clifford group operations play a
central role in quantum error correction, quantum com-
puting, and entanglement distillation. A stabilizer state
is a state of an n-qubit system that is a simultane-
ous eigenvector of a commutative subgroup of the Pauli
group. The latter consists of all tensor products of »
single-qubit Pauli operations. The Clifford group is the
group of unitary operations that map the Pauli group
to itself under conjugation. In quantum error correction
these concepts play a central role in the theory of stabi-
lizer codes {1]. Although a quantum computer working
with only stabilizer states and Clifford group operations
is not powerful enough te disallow efficient simmlation on
a classical computer [2, 31, it is not unlikely that possible
new quantum algorithms will exploit the rich structure
of this group. In [4], we also showed the relevance of a
quotient group of the Clifford group in mixed state en-
tanglement distillation.

In this paper, we link stabilizer states and Clifferd op-
erations with binary linear algebra and binary quadratic
forms (over GF(2)). The connection between multipli-
cation of Pauli group elements and binary addition is
well known as is the connection between commutability
of Pauli group operations and a binary symplectic inner
product [1]. In [4] we extended this connection to a link
between a quotient group of the Clifford group and binary
symplectic matrices (there termed P orthogonal). In this
paper we give a binary characterization of the full Clifford
group, by adding quadratic forms to the symplectic op-
erations. In addition we show how the coefficients, with
respect to a standard basis, of both stabilizer states and
Clifford operations can also be described using binary
quadratic forms. Our results also lead to efficient ways
for decomposing Clifford group operations in a product
of 2-qubit operations.
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II. CLIFFORD GROUFP OPERATIONS AND
BINARY LINEAR AND QUADRATIC
OPERATIONS

In this section, we show how the Clifford group is iso-
morphic to a group that can be entirely described in
terms of binary linear algebra, by means of symplectic
linear operations and quadratic {forms.

We use the following notation for Paull matrices.

[1 0

oo = Tgo = 00 ~ 01}
[0 1

0ol = Tpl =0z = 10/
(10

Tlp =Tig — 0O = 0 -1 ]
=

711 =0y = R E
. F 01

T =10y = —1 0

We also use vector indices fo indicate tensor products

of Pauli matrices. If v,w € Z% and a = :)U] e 72,
then we denote
T = Opauy @ - @ Ty, (1)

Ta = Twlw1 ® DR ® T?Jn'lun

If we define the Pauli group to contain all tensor prod-
ucts of Pauli matrices with an additional complex phase
in {1,4,—1,—i}, an arbitrary Pauli group element can be
represented as i°(—1)°7,, where §,¢ € Zg and u € Z3n.
The separation of d and e, rather than having ¥ with
v € Zg4, is deliberate and will simplify formulas below.
Throughout this paper exponents of ¢ will always be bi-
nary. As a result %462 = §51#92(—1)%%  Multiplication
of two Pauli group elements can now be translated into
binary terms in the following way:

Lemma 1 If a3,ay € Z2", 61,02,61,60 € Zo and 7 is




That symplecticity is also sufficient was first implied
by Theorem 1 of [4] (almost, as this result was set in
the context of entanglement distillation where the signs
¢ play no significant role). The idea is to give a construc-
tive way of realizing the Clifford operation @ given by €'
and f. This can be done using only one and two-qubit
operations, which makes the result also of practical use.
In Sec. IV we give two such decompositions that are more
transparent than the results of [4].

First, to conclude this section, we complete the binary
group picture by a formula for the inverse of a Clifford
group element, given in binary terms.

Theorem 3 Given Cy and by, defining a Clifford oper-
ation (J1 as above, the inverse Qs = Ql_l 15 represented

by

~ a1t o) _[PCTP 0
G =% =|dfcr 1| = | dPGTP
hy =C~Th+ diag(C~Tlows{(CTUC)C~1)

These formulas can be verified using Theorem 2. Fi-
nally note that since the Clifford operations form a group
and the matrices C are simply multiplied when compos-
ing Clifford group operations, the matrices C with ¢
symplectic and d = diag(CT/C)} must form a group of
(2n + 1} x (2n + 1) matrices that is isomorphic to the
symplectic group of 2n x 2n matrices. This can be easily
verified by showing that

diag(CT CTUC,Cy) = CF diag(CT U Cy) + diag(CT UCH)

This follows from the fact that CTUC + U is symmet-
ric when CTPC = P and 2TSz = z¥diag(S) when S
is symmetric. In a similar way it can be proven that

diag(C-TUC~Y) = C~Tdiag(CTUC).

I1I. SPECIAL CLIFFORD OPERATIONS IN
THE BINARY PICTURE

In this section we consider a selected set of Clifford
group operations and their representation in the binary
picture of Sec. IL.

First, we consider the Pauli group operations ¢} = 7, as
Clifford operations. Note that a global phase cannot be
represented as it does not affect the action X — QX
To construct C and h we have to consider the images of
the operalors 7., representing one-qubii operations o,
and .. One can easily verify that r, is represented by

¢ = I2n
h =Pa @

Second, note that Clifford operations acting on a sub-
set & C {1,...,n} consist of a symplectic matrix on the
rows and columns with indices in o U (o 4+ n), embed-
ded in an identity matrix (that is, with ones on positions
Crp=1,kgaU(a+n)and Cpy=0ifk # and k or
[¢aU(a+n)) Also by = 0if k€ a U (a+n).

Third, qubit permutations, are represented by

fmo
h

where II is a permutation matrix.
Fourth, the conditional not or CNOT operation on two
qubits is represented by

.- [
h =0

Fifth, by composing qubit permutations and CNOT
operations on selected qubits any linear transformation of
the index space |z) — | Rz} can be realized, where » € Z7
labels the standard basis states |z) = |21} ® ... ® |25)

and R € Z2*" is an invertible matrix (modulo 2). This
operation is represented in the symplectic picture by

_[rRTo
o =137 3]

h =0

OO QO =
oSO =
== oo
s B R ]

(3)

The qubit permutations and CNOT operation dis-
cussed above are special cases of such operations as qubit
permutations can be represented as |[z) — |IIz) and the
CNOT operation as {z) — | [ } (1) ] z).

Decomposing a general linear transformation K into
CNOTS and qubit permutations can be done by Gauss
elimination (a well known technique for the solution of
systems of linear equations)}. In this process R is operated
on on the left by CNOTS and qubit permutations to be
gradually transformed in an identity matrix. The process
operates on R, column by column, first moving a nonzero
element into the diagonal position by a qubit permuta-
tion, then zeroing the rest of the column by CNOTS. The
inverses of the applied operations yield a decomposition
of R.

Sixth, we consider Hadamard operations. The
Hadamard operation on a single qubit ) = H =
2 “ _H is represented by C' = [2 é] and h=0. A
Hadamard operation on a selected set of qubits is repre-
sented by the embedding of such matrices in an identity
matrix as explained above. As a spectal case we mention
the Hadamard operation on all qubits, which is repre-
sented by &= P and h = 0.

Seventh, we consider operations e’("/4)7s = %(I +irg)

— a nT
where a € Z&", a=| , and 75 = i® Yer,. These
a'Ua
operations are represented by

C =[+aalP
b =Tl (4)




Ry equal to a basis of the kernel of G’, (2} choosing the
other columns of Ry as to make it invertible, (3) setting
the last r columns of R equal to the last r columns of
Ry multiplied on the left by ¢/ (This yields a basis of
the range of G’}), and (4) choosing the other columns of
R, as to make it invertible. By construction, this implies
— 090
G'Re = Fs [O fr}'
Now we set

{Rf 0 c Ry 0 1

0 Rzl] [0 RET]_
Ei1 Eig Py Fra (7)
Eo By Py Fo

0 0 Hp Hp
0 I, Hy Hp

Because the three matrices in the left-hand side of Eq. {7)
are symplectic, so is the right-hand side. This leads to
the following relations between its submatrices:

EL =0 (8)

EfHy + EfHy =1 (9)

ETHis+ ELHs=0  (10)

EL 4+ Ep=0 (11

ELH| + EHy + Fs =0 (12)

EfL,His+ ELHpp + Fao =1  (13)

FLH, + FhHy+ HAF+ HLF =0 (14)
FlLHyy + FHHoo+ HE Fio+ HiFo: =0 (15)
F£H12+F27;H22+H?2F12+H§2F22=9 (16)

With Eq. (8) and Eq. (9) we find Hy,=E;’. Now,

~1
if we replace Rs by Rs [OE” ? , both Hi; and Eqg

are replaced by I,_,. We will assume that this choice
of Ry was taken from the start. Then, from Eq. (8) and
Eq. (10) we find Hqs = 0. From Eq. (11) we learn that
Es is symmetric. From Eq. {12) and Eq. (13) we find
Foy = E%{-Eg’zHgl and Foo = I+ EosHoa. Substituting
these equations in Egs. (14),(15) and (16), we find that
M1+ HS}E}; is symmetric, Fig = Hg; + Ei9Hys, and
Hsy is symmetric. Setting 71 = By, 5% = Rg (with Ra
chosen as to make El]_ = Hu = I), Vl == Em, va = H;ﬂ,
Z1 = Fga, Zo = Has and 73 = Fy1 + V1V2T, we obtain
Eq. (5). Note that Zs3 is symmetric because Fi1 -+ VaVi¥
and Va¥ T + ViVy are symmetric. Finally Eq. 6 can be
easily verified. This completes the proof. O

To find a decomposition of C in one and two-qubit op-
erations we concentrate on the five matrices in the right-
hand side of Eq. (6), all of which are symplectic. Clearly
the first and last matrix are linear index space transfor-
mations as discussed in Sec. III. These can be decom-
posed into CNOTs and qubit permutations. The middle
matrix corresponds to Hadamard operations on the last
r qubits. We will now show that the second and fourth
matrix can be realized by one and two-qubit operations
of the type !("/4)7a  First note that both matrices are

iz
of the form [0 IJ

form a commutative subgroup of the symplectic matrices

with
TZ0[1I 2] _[I Za+ 2%
0 7]]0 ~lo I :

with one and two-qubit op-

with Z symmetric. These matrices

. F A
Now, we realize [U 7

erations by first realizing the ones on off-diagonal po-
sitions in % and then realizing the diagonal. Entries
Ziy = Zip = 1 are realized by operations (/97 with
ar =a; =1 and am = 0 if m # &k and m # {. These are
two-qubit operations which realize the off-diagonal part
of Z and as a by-product produce some diagonal. Now
this diagonal can be replaced by the diagonal of Z by
one-qubit operations e("/47 with o = 1 and an, = 0 if
m # k, which affect only the diagonal entries Zg . This
completes the construction of C' by means of one and
two-qubit operations.

V. DESCRIPTION OF STABILIZER STATES
AND CLIFFORD OPERATIONS USING BINARY
QUADRATIC FORMS

In this section we use our binary language to get fur- -
ther results on stabilizer states and Clifford operations.
First, we take the binary picture of stabilizer states and
their stabilizers and show how Clifford operations act on
stabilizer states in the binary picture. We also discuss the
binary equivalent of replacing one set of generators of a
stabilizer by another. Then we move to two seemingly
unrelated results. One is the expansion of a stabilizer
state in the standard basis, describing the coeflicients
with binary quadratic forms. The other is a similar de-
scription of the entries of the unitary matrix of a Clifford
operation with respect to the same standard basis.

A stabilizer state |¢) is the simultaneous eigenvector,
with eigenvalues 1, of n commutable Hermitian Pauli
group elements z'f"(—l)bkrsk, E=1,...,n, where s; €
Z¥ k = 1,...,n are linearly independent, fi,bx € Z»
and fi = 51 Usg. The n Hermitian Pauli group elements
generate a commutable subgroup of the Pauli group,
called the stabilizer 8 of the state. We will assemble the
vectors sg as the columns of a matrix S € Zg"xn and the
scalars f and by in vectors f and b € Z3. This binary
representation of stabilizer states is common in the litera-
ture of stabilizer codes [1]. The fact that the Pauli group
elements are commutable is reflected by ST PS = 0. One
can think of S, fT and b7 as the “left half” of C, dT and
hT of Sec. IL. In the style of that section we also define

= S
5= .
)
If |+) is operated on by a Clifford operation @, @[¢) is

a new stabilizer state whose stabilizer is given by QSQi
As a result, the new set of generators, represented by S’




t]
0 | and leaves W = W’ un-
L.

changed. Through all the transformations we also have
to keep track of f and b. We find f' = diag(S'"TUS") =

dia%(Z) Setting B = RyRsR3 we find [bbab} =

RTb + diag(RTlows(VTW + ddT)R).

We still have to prove that Z is full rank. First note
that Z = WP VP, From S®"PS = 0 and the
fact that [V 1A T/;(:z)] nd [W(z) W, 2)] are full rank, it
follows that the columns of Wb( ) span the orthogonal
complement of {Va c(z)} and the columns of V%

the orthogonal complement of [ 52).W§2)]. Assume now
that there exists some z € ZI* with  # 0 and Z2 = 0,

then V( )z is orthogonal to the columns of W(z). And
Vi¥y is also orthogonal to the columns of W( ). There-

Z 0
Vi=VBRs=1|0 0
00

span

fore V( ) z is a linear combination of the columns of Vc(z).
This is in contradiction with the fact that [V 1/2(2)] is
full rank. Therefore, Z is full rank. This completes the
proof of part {i).

To prove part (ii), first observe that applying |z) —
|-z} to |¢) simply replaces |T[ }) by |[ ]) and
stabilizer basis transformations only change the descrip-
tion of a stabilizer state but not the state itself. There-
fore, we have io prove that

) =

Zyezga%b)(—i)ﬁy“(—i)( Tlows(Z+fa s T yatb?, y)l[ ])
(18)

is an elgenvector with eigenvalue one of the operators

ik (—1)% 7, described by S’ and ¥'. For k = 1,.

we have

Zey
0
s, = e
0
f,{c = fap = Zk k
b, = babg

where ey is the k-th column of ... With Eq. (17) we

find

ifk (~1)% 7 |9)

Z[fak( 1)babs (—1 ){Zek)Tya ‘)ff(yu+ek)x
(— 1)({yn+5k)T10WS(Z+faf More e} +53 (yater) 03 vs)
[

)

5,
=2y [zfﬂk( )nya(wi)fak( 1)-nya.fukX
-1
—1)

JENS———

€k dya+babk( 1)(3T10WS(Z+faf Yda) x
1R (Z+Fafd Watb] yatbasitby yb)| [ ])}

|)

H""‘l

Fork =vr,+1,...,7, we have
d
s, = | ek
0
fy =0
¥, = baox

where now e; is the k-th column of [l 4.). With

Eq. (17) we find

if'r‘(—l)b:‘ﬁ;]ﬁﬁ) -

_Z [(— l)babk( ')f Ya x

(- 1)(yalows(2+faf’*")ya+b y+ek))|{ c]}]
= |¢)

For k = 7+ 1,...,n, we find with Eq. (17) that
ik (—1)Pery jz) = (—1)=*+% |z}, The state |¢) is clearly
an eigenstate of this operator as zy + b}, = 0 for all states
|a:):}[fc}) and k=rp+1,...,
proof. £l

Finally, we show how also the entries of a Clifford ma-
trix can be described with binary quadratic forms, by
using Theorem 4. This leads to the following theorem
for which we give a constructive proof.

n. This completes the

Theorem 6 Given a Clifford operation (), represented
by C and k (or C,d and h} as in Sec. II, Q can be written

as

= (1/v2 )beez’z‘r er,ezgzxcle

(- )dbrwbr §)dremoe (— 1) (BacoretarTe)
( c;:h,lows(zi,,.+d!l,r br}xh,x
(-1

mhclows(zbc+db= £ x"’“|T193I:r)(T2 $bc+f§]

mb:| and Ty, = [:_b:', N, Ty € Zg‘xn
[+

where Ty = [
.
are invertible matrices, Zop, Zpe € Z57" are symmetric,

dpy = diag(Zb,-), dpe = d’iag(Zbc) and hp.,t € Z3.

Proof: The proof is based on the decomposition of C
as a product of five matrices as in Theorem 4. Due to the
isomorphism between the group of symplectic matrices C'
and the extended matrices C as defined in Sec. II, this
decomposition can be converted into a decomposition of
C as follows.

O = COEREEEGEME GE)

T 0 0 [ In Zer O
= 0 1 0 0 I, 0|x

0 0 1]]0 di 1

Lii, 00 00

0 00 L O0|[I % 0][T% 00
0 0 Lir 0 0|0 I, O 0 Ty 0/,
0 L0 0 0|0 di1 0 01
0 00 01




C = (I +aa?P). For h we find hy = (ef Pa){(aTUa+
efia). With (e Pa)(eFUa) = efUa this reduces to
hi = el (Paa™Ua + Ua) and b = (I + aaT P)TUa. This
completes the proof, n
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