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ABSTRACT
The use of linear error correction models based on stationarity and cointegra-
tion analysis, typically estimated with least squares regression, is a common
technique for financial time series prediction. In this paper, the same formula-
tion is extended to a nonlinear error correction model using the idea of a kernel-
based implicit nonlinear mapping to a high-dimensional feature space in which
linear model formulations are specified. Practical expressions for the nonlinear
regression are obtained in terms of the positive definite kernel function by
solving a linear system. The nonlinear least squares support vector machine
model is designed within the Bayesian evidence framework that allows us to
find appropriate trade-offs between model complexity and in-sample model
accuracy. From straightforward primal–dual reasoning, the Bayesian frame-
work allows us to derive error bars on the prediction in a similar way as for
linear models and to perform hyperparameter and input selection. Starting from
the results of the linear modelling analysis, the Bayesian kernel-based predic-
tion is successfully applied to out-of-sample prediction of an aggregated equity
price index for the European chemical sector. Copyright © 2006 John Wiley
& Sons, Ltd.

key words financial time series prediction; least squares support vector
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INTRODUCTION

Financial time series forecasting is a dynamic field with important contributions coming from many
disciplines. The issue of forecasting financial time series has traditionally been seen as a difficult
task, since the data generating process is dominated by stochastic rather than deterministic compo-
nents. Although the efficient markets hypothesis (Bachelier, 1900; Fama, 1965) states that stock
returns are unpredictable, recent modelling techniques seem to suggest that stock returns are pre-
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dictable to some degree (Brock et al., 1992; Campbell et al., 1997; Lo et al., 2000; Sullivan et al.,
1999).

Within the linear framework, usually forecasting models are based on stationarity considerations
of the series at hand (Campbell et al., 1997; Granger and Newbold, 1986; Hamilton, 1994). In this
sense, evidence of possible cointegration can be exploited into an error correction mechanism for-
mulation. This model is typically estimated by ordinary least squares, applying input selection to
control the model complexity and avoid overfitting on the training set.

The universal approximation property of multilayer perceptrons (MLPs) motivated their use for
nonlinear financial time series prediction (Granger and Terasvirta, 1993; Hutchinson et al., 1994;
Refenes and Zapranis, 1999). While powerful design techniques like the Bayesian evidence frame-
work (MacKay, 1995) have been developed, the practical use of neural networks suffers from draw-
backs like the nonconvex optimization problem with multiple local minima and the choice of the
number of hidden neurons. In support vector machines (SVMs), least squares support vector
machines (LS-SVMs) and related kernel-based prediction techniques (Schölkopf and Smola, 2002;
Suykens et al., 2002; Vapnik, 1998), the solution follows from a convex optimization problem. Basi-
cally these methods map the inputs in a nonlinear way, first into a high kernel-induced feature space,
in which ridge regression is applied in the case of LS-SVMs. The solution follows from a linear
Karush–Kuhn–Tucker system in the dual space in terms of the positive definite kernel function by
applying Mercer’s theorem (Schölkopf and Smola, 2002; Suykens et al., 2002; Vapnik, 1998).

In this paper, a nonlinear error correction model (ECM) formulation is estimated using LS-SVMs
to predict an aggregated equity price index for the European chemical sector. First a stationarity and
cointegration analysis is performed to define a good linear model formulation. This model is used
as a starting point to design the nonlinear kernel-based model within the Bayesian evidence frame-
work. The parameters and inputs of the LS-SVM are estimated1 in the Bayesian evidence frame-
work (Van Gestel et al., 2001, 2002). The Bayesian framework embodies Occam’s razor to find an
optimal trade-off between training set accuracy and model complexity in a similar way as the Akaike
and Bayesian information criteria (Akaike, 1974; Schwarz, 1978). The linear and nonlinear predic-
tions are compared in terms of directional accuracy and market timing ability.

This paper is organized as follows. The initial problem definition, stationarity analysis and linear
model specification are reviewed and applied in the next section. The design and application of non-
linear kernel-based regression within the evidence framework is presented in the third section. The
final results are discussed in the fourth section.

LINEAR MODELLING

In financial engineering applications, the importance of having good forecasting modelling tools is
straightforward. Risk and portfolio management are mainly based on such tools, therefore any
improvement over traditional techniques can lead to competitive advantages. Traditional forecasting
based on linear models is built upon the concepts of stationarity and cointegration.

Stationarity
A linear model formulation to predict an output y Œ ˙ based on n explanatory input variables x =
[x1; . . . ; xn] = [x1, . . . , xn]T Œ ˙n can be written as

1 A Matlab toolbox for the LS-SVM formulation and Bayesian inference is available from
http://www.esat.kuleuven.ac.be/sista/lssvmlab.
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(1)

with w Œ ˙n is a coefficient vector and b Œ ˙ a bias term. Having a set of nD observations D = {(xt,
yt)}nD

t=1, the most usual technique to estimate a linear model is by using the ordinary least squares
(OLS) estimator

(2)

with error et = yt - (wTxt + b). Defining y = [y1; y2; . . . ; ynD
] = [y1, y2, . . . , ynD

]T Œ ˙nD, 1 = [1, 1,
. . . , 1]T Œ ˙nD and X = [x1, x2, . . . , xnD

]T Œ ˙nD¥n the solution to (2) is obtained from the linear set
of equations

(3)

Although the general assumptions underlying the application of the OLS are described in the
Gauss–Markov conditions, in the particular scope of time series forecasting it is required that the
series involved should be stationary. It has been widely recognized that performing linear regression
with nonstationary series has the potential to lead to serious inference errors (Granger and Newbold,
1974). Some of the known problems when performing OLS estimations with nonstationary series
are, for instance, the identification of spurious relationships between unrelated variables, or the non-
convergence of the ŵ estimates (Maddala and Kim, 1998). Formally, for a process yt to be (weakly)
stationary, it must satisfy the following set of properties: E[yt] = my, E[(yt - my)2] = var(yt) = s 2

y =
g (0), E[(yt - my)(yt-t - my)] = cov(yt, yt-t) = g(t), where the mean and variance of yt are constant, and
the covariances depend only on the time interval t and not on the particular moment of time t.

One of the most common tests for stationarity of a time series yt is based on the so-called aug-
mented Dickey–Fuller (ADF) regression (Dickey and Fuller, 1979): Dyt = a + ryt-1 + Sq

j=1 bjDyt-j +
et. Under the null hypothesis of nonstationarity (H0 :r = 1), the t-statistic of the estimated coefficient

will follow a nonstandard distribution, usually known as the Dickey–Fuller (DF) distribution. If
the corresponding t-statistic for the coefficient yt-1 is above the critical value of the ADF test, then
the null hypothesis of nonstationarity cannot be rejected (Rao, 1994).

Cointegration
If a series yt

(l) of levels is found to be nonstationary on its original levels, one usual transformation
is to take first differences and work with the transformed variable y t

(d) = Dyt
(l) = yt

(l) - y(l)
t-1. However,

before attempting to transform all nonstationary variables into first differences, it is useful to explore
for possible cointegration between the dependent variable and any subset of the explanatory vari-
ables. For the case of two nonstationary variables yt

(l), xt
(l) testing for cointegration involves testing

for stationarity of the residuals in the regression

(4)

Thus, finding stationary residuals from the regression above is equivalent to finding a cointegrating
relationship between the variables, where the stationary cointegrating linear combination can be esti-
mated as zt = y t

(l) - 0 - 1xt
(l).b̂b̂
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If cointegration exists, then it is possible to take advantage of this long-term relationship and use
it to model the short-term behaviour of the system. It was proved that any cointegrating system can
have an equivalent ECM representation (Engle and Granger, 1987). Following from the example
above, if the series xt

(l) and yt
(l) do cointegrate, then their corresponding linear ECM equals

(5)

which can be written more generally as

(6)

It is possible to also include some additional external variables that can help to improve the model,
but the central concept of the ECM is as shown above. The extension2 using more than two vari-
ables is straightforward.

The number of lags p for an autoregressive AR(p) model can be heuristically defined based on
the partial autocorrelation function pacf(r) (Hamilton, 1994). For an autoregressive formulation of
the stationary series y(t)(d) of order p (like the ECM above), it can be shown that the pacf(r) func-
tion will drop to zero after r > p (Box and Jenkins, 1970).

NONLINEAR KERNEL-BASED MODELLING AND PREDICTION

Least squares support vector machines
A straightforward way to extend the linear models (1), (5) and (19) to a nonlinear model is to pre-
process the inputs x in a nonlinear way by a mapping

(7)

where the feature vector j(x) is typically high (or even infinite)-dimensional. Given the nonlinear
mapping, the ECM model (6) is assumed to be of the following form:

(8)

where f(x) � wTj (x) + b. Given this nonlinear mapping, the coefficient vector w is estimated by
solving the (regularized) least squares problem in the primal or feature space:

(9)

(10)s.t. e y b t nt t
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2 The model depicted so far is known as the Engle–Granger two-step approach for cointegration. When using vector formu-
lations, the so-called Johansen procedure (Johansen, 1988) is applied.
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As the nonlinear mapping j is high-dimensional, the regularization term wTw is introduced to 

avoid overfitting the training data. The parameters m and z determine the trade-off between regu-
larization Jw = (1/ 2)wTw and error minimization Je = (1/2)SnD

t=1 e2
t .

A key element of support vector machines and kernel-based learning methods is that the nonlin-
ear mapping j(x) is not explicitly known. Instead it is implicitly defined from Mercer’s theorem in
terms of the positive-definite kernel function

(11)

Some commonly used kernel functions are

(12)

where d Œ ˘ and c, s Œ ˙+ are tunable parameters.
In order to solve the constrained optimization problem (9) and (10), one constructs the Lagrangian

(13)

where the scalars at Œ ˙ are the Lagrange multipliers associated with the equality constraints (10)
and are called support values. The conditions for optimality are

in which we have defined F = [j(x1), . . . ,j(xnD)]T Œ ˙nD¥nj, a = [a1, . . . ,anD]T Œ ˙nD, e= [e1, . . . ,
enD]T Œ ˙nD, y = [y1, . . . , ynD]T Œ ˙nD and 1 = [1, . . . , 1]T Œ ˙nD. For the linear case (e.g. a linear
kernel) one typically has nj = n << nD and after elimination of e and a, one solves the (nj + 1) ¥
(nj + 1) linear system in the primal space
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In nonlinear kernel-based regression, one usually has nj >> nD and, moreover, the feature vector
j(x) is only implicitly defined in terms of the kernel function K from (11). Eliminating w and e from
(14), one obtains the linear Karush–Kuhn–Tucker (KKT) system of dimension (nD + 1) ¥ (nD + 1)
in the dual space (Suykens et al., 2002)

(16)

where the Mercer condition (11) is applied in the matrix W = FFT Œ ˙nD¥nD with elements Wij = K(xi,
xj), i, j = 1, . . . , nD and guarantees that W ≥ 0. The primal–dual formulations also allow us to make
extensions to nonlinear generalized least squares regression in a straightforward way, as typically
used in financial forecasting (Campbell et al., 1997).

Given the support values a and bias term b, one obtains the predicted value corresponding to a
new input x as a weighted sum of the kernel functions evaluated in the new data point and the train-
ing data points:

(17)

Bayesian inference for model design
Given the primal–dual formulations, it is clear how to estimate the model parameters , and point
prediction . However, the regularization and kernel function parameters still have to be tuned from
the given training data. In this subsection, the design is done within the Bayesian evidence frame-
work (Van Gestel et al., 2001, 2002), depicted in Figure 1.

The model parameters w, b, the hyperparameters m, z and model structure H (corresponding, e.g.,
to the input set and/or tunable kernel parameters) are inferred by applying Bayes’ formula on three
different levels:

1. On the first level, it is assumed that the hyperparameters m, z and model H are given. Applying
Bayes’ formula, the posterior probability of the model parameters w and b is obtained:

The evidence shows that p(D| logm, logz, H) does not depend upon the model parameters w 
and b and is a normalizing constant such that the left-hand side is a probability density function
ÚÚ . . . Úp(w, b|D, logm, logz, H)dw1 . . . dwnjdb = 1. The ridge regression cost function (9) and
(10) is obtained by taking the negative logarithm of the posterior p(w, b|D, logm, logz, H) using
proper choices for the prior p(w, b|logm, logz, H) and the likelihood p(D|w, b, logm, logz, H).
In the dual space, the parameters a and b are obtained from the linear KKT-system (16).

2. The hyperparameters m and z are inferred on the second level:
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Taking the negative logarithm of the posterior p(logm, logz|D,H), the cost function (34) is
obtained in order to optimize m and z, which can be further simplified into optimizing g = z/m
from (38).

3. The posterior probability of the model H is obtained on the third level as

As there are infinitely many models, the evidence is omitted here. The candidate models Hi (with
different kernel parameters si or different sets of explanatory inputs Ii) are compared using the
expression (44).

Observe that the evidence on level 1 and 2 is equal to likelihoods on level 2 and 3, respectively,
which implies that one also needs expressions of the lower levels in order to perform inference on
the higher levels. The mathematical details of the Bayesian inference are given in Appendix B.

p p pH D D H H( ) µ ( ) ( )

Figure 1. Different levels of Bayesian inference. The posterior probability of the model parameters w and b is
inferred from the data D by applying Bayes’ formula on the first level for given hyperparameters m (prior) and
z (likelihood) and the model structure H. The model parameters are obtained by maximizing the posterior. The
evidence on the first level becomes the likelihood on the second level when applying Bayes’ formula to infer
m and z (with g = z/m) from the given data D. The optimal hyperparameters mMP and zMP are obtained by max-
imizing the corresponding posterior on level 2. Model comparison is performed on the third level in order to
compare different model structures, e.g., with different candidate input sets and/or different kernel parameters
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The LS-SVM is designed in the Bayesian framework using the following steps:

1. Preprocess the data by completing missing values and handling outliers. Standardize the inputs
to zero mean and unit variance.

2. Define models Hi by choosing a candidate input set Ii, a kernel function Ki and a kernel para-
meter, e.g., si in the RBF kernel case. For all models Hi, with i = 1, . . . , nH (with nH the number
of models to be compared), compute the level 3 posterior:
(a) Find the optimal hyperparameters mMP and zMP by solving the scalar optimization problem

(38) in g = z/m related to maximizing the level 2 posterior.3 With the resulting gMP, compute
the effective number of parameters from (35), the hyperparameters mMP and zMP.

(b) Evaluate the level 3 posterior (44) for model comparison.
3. Select the model Hi with maximal evidence. If desired, refine the model tuning parameters Ki,

si, Ii to further optimize the classifier and go back to step 2; else, go to step 4.
4. Given the optimal H *i , calculate a and b from (16), with kernel Ki, parameter si and input set

Ii.

Given the optimized model and its parameters, the prediction for a new observation is obtained by
first standardizing the inputs in exactly the same way as the training set and then evaluating (17) for
the prediction and (48) for the variance s 2

y indicating the uncertainty on the prediction due to the
noise and model uncertainty.

CASE STUDY: STOCK MARKET PREDICTION

In this application, the goal is to predict the performance of an aggregated equity price index for the
European chemical sector. The data set consists of 13 variables in weekly values ranging from April
1986 to February 2001, provided by Datastream (787 observations). The dependent variable is
labelled CHMCLEM, and the prediction will be made in a one-week-ahead schedule. The set of
(candidate) explanatory variables selected by the financial analyst includes macroeconomic indices
(industrial production index, gross domestic product, consumer price index), some specific market
series (oil price, raw materials price) and some financial variables (bonds, exchange rate dollar/euro,
fibor 3-month interest rate). The first 600 observations are selected for initial model estimation (from
April 1986 to mid-September 1997). Details on the behaviour of the data (in logarithms) within the
estimation sample are described in Table I.

Performance measures
The model is evaluated in a forward way on the time period t = 601, . . . , 787. The out-of-sample
forecasts for CHMCLEMt

(d) are computed as follows. The first forecast (t = 601) is computed from
the initial model. Then, the first observation is dismissed (t = 1) and the new observation is incor-
porated in the model for re-estimation (t = 601). In this way, each forecast is computed from a model
estimated with the last 600 observations available. Only the variables found to be relevant are used
in this moving window approach, it is assumed that the relevance found in the initial 600 data points
will also hold out-of-sample.

ŷ

3 Observe that this implies in each iteration step maximizing the level 1 posterior in w and b.



Bayesian Nonlinear SVM ECM 85

Copyright © 2006 John Wiley & Sons, Ltd. J. Forecast. 25, 77–100 (2006)
DOI: 10.1002/for

The quality of the forecasts is assessed as follows. One usual way to quantify the quality of the
forecasts is by using magnitude accuracy measures, such as the mean squared error (MSE) or the
mean absolute error (MAE). Additionally, in financial applications, the percentage of correct sign
predictions (PCSP) is often used, or the success in forecasting only the direction of the change rather
than its magnitude (in plain terms, if the stock price rises or falls). The PCSP significance is assessed
by using the Pesaran–Timmerman test statistic (PTstat) and the corresponding p-value (Pesaran and
Timmerman, 1992). This test discriminates if the PCSP is obtained randomly or not. A PTstat 
above 2 allows us to reject the null hypothesis of no dependency between the predictions and the
observations.

Nevertheless, a simple trading exercise is performed using a transaction cost of 0.1% (10bps as
in Refenes and Zapranis, 1999) to assess the market timing ability. In investment strategy 1 (IS1),
a naive allocation of 100% equities or cash is implemented, based on the sign of the prediction. The
corresponding Sharpe ratio (SR, defined as the ratio between the return and the risk of a particular
asset), equivalent yearly return (Re) and risk (Ri) on the test set are computed. A more advanced
trading rule involves the use of the uncertainty or moderated output on the prediction for doing the
actual trade: trading is still based on the sign of the prediction, but only when the ratio /sy exceeds
a threshold value (investment strategy 2). For comparison, the same indicators for a simple buy&hold
strategy (buy the asset today and sell it at the end period) are calculated.

Stationarity and cointegration analysis
All series were found to be nonstationary by using the ADF test. Nevertheless, evidence of linear
cointegration between the variables CHMCLEM(l), FIBOR3M(l), CPI(l) and IP(l) was found. The resid-
uals et in the linear regression

(18)

are found to be stationary, as reported in Table II. It can be seen from the critical values of the ADF
test that the null hypothesis of nonstationarity of the residuals can be rejected.

CHMCLEM CPI FIBOR3M IPt
l

t
l

t
l

t
l

ta a a a e( ) ( ) ( ) ( )= + + + +0 1 2 3

ŷ

Table I. Name and description of the dependent or output variable and of the candidate explanatory or input
variables as selected by the financial analyst. The mean, maximum, minimum and standard deviation of the
data in the training sample are also reported

Variable Description Min Max Mean St.Dev.

CHMCLEM Index/Chemical Sector 5.6503 6.8340 6.1555 0.2668
CPI Consumer Price Index 4.2885 4.6201 4.4607 0.1080
FIBOR3M Interest Rate 1.1309 2.2935 1.7294 0.3750
EUOOCIPDG Industrial Production Index 4.4224 4.6482 4.5423 0.0586
OILBREN Oil Price 2.1955 3.7098 2.8871 0.1895
ETYEUSP Ethylene Price 5.6922 6.7557 6.0901 0.2562
PHREUSN Specific Polymer Price -1.0564 -0.0030 -0.3875 0.2582
GDP European GDP 6.9418 7.2249 7.1061 0.0841
USEURWD Exchange Rate US/Euro -0.0739 0.4240 0.2123 0.0857
CHLORED Chlorine Price 1.7373 2.2330 2.0123 0.1231
BMBD02Y Bond 2 years (index) 4.5641 4.6774 4.6331 0.0305
BMBD05Y Bond 5 years (index) 4.4890 4.6659 4.5862 0.0533
BMBD010Y Bond 10 years (index) 4.4323 4.6955 4.5689 0.0654
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The evidence of cointegration between the dependent original variable and a subset of the explana-
tory variables allow us to implement an ECM specification. The series CHMCLEM(l), FIBOR3M(l),
CPI(l) and IP(l) are used as first differences. Also, from Figure 2 we see that the partial autocorrela-
tion function of the dependent variable in the ECM (CHMCLEMt

(d)) drops to zero after one lag.
Therefore, we will include all variables lagged at t - 1 and t - 2 (one additional lag is used for con-
servativeness). The remaining explanatory variables (those not included in the cointegration) will
also be included in the model up to two lags, in first differences, as exogeneous variables.

According to the ECM specification, we have the following model:

(19)

CHMCLEM CHMCLEM FIBOR3M CPI CPI
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Table II. Estimates of the cointegrating regression, where the variables are
used in nonstationary levels. The high R2 value and the low Durbin–Watson
(DW) statistics are clearly a sign of a misleading regression in terms of
inference and forecasts. Usually the DW statistic, measuring the serial cor-
relation between the residuals of a regression, is between 0 and 4 with a
value of 2.00 showing no serial correlation. The ADF statistic is equal to
-4.85, which is low given the critical values -4.64 (1%), -4.10 (5%) and
-3.81 (10%)

Cointegrating regression: R2 = 0.95, DW = 0.08, ADF = -4.85

Variable Coeff. St.Dev. t-stat

Constant -8.4264 0.2378 -35.4397
CPI 0.7897 0.0617 12.8098
FIBOR3M -0.3422 0.0083 -41.4730
EUOOCIPDG 2.5658 0.0977 26.2700
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Figure 2. Partial autocorrelation function (pacf) for the output or dependent variable CHCLEM(d) in the ECM
specification
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where i = 1,2 and zt-1 = CHMCLEM(l)
t-1 - ( 0 + 1CPI(l)

t-1 + 2FIBOR3M(l)
t-1 + 3IP(l)

t-1), where the co-
efficients are estimated from (18).

Linear ECM model
With this initial definition of input variables, the function f will be estimated by the linear OLS
regression. The data set contains 787 observations. The model is first estimated using the initial 600
data points, in order to obtain the relevant variables. In the linear regression, the selection of rele-
vant inputs is based on the asymptotic t-tests of individual significance. With this methodology, the
relevant variables are found to be the following: zt-1, CHMCLEM(d)

t-1, FIBOR3M(d)
t-1, FIBOR3M(d)

t-2 and
ETYEUSP(d)

t-2. The detailed results for the linear regression are reported in Table III.
The linear forecasts yield the following performance indicators: MSE = 6.63 ¥ 10-4, MAE = 0.021,

PCSP = 53.2%, PTstat = 0.73, p-value = 0.462. In this case, the low PTstat for the 53% of predic-
tional accuracy shows that it is not significantly different from a random case. The results for invest-
ment strategy 1 are Sharpe ratio = 0.596, return = 8.94 and risk = 15.00, while investment strategy
2 yields Sharpe ratio = 0.487, return = 7.19 and risk = 14.76, respectively. Compared to the buy&hold
strategy (Sharpe ratio = 0.208, return = 3.98, risk = 19.14), we can see that the linear model defined
in this section allows us to increase the possible profits compared to a simple buy&hold strategy.

Nonlinear ECM model
Nonlinear modelling was performed using the ECM specification with the same candidate input set
as in (19). The model is designed on the same training data set and is evaluated on the remaining
test set using the same moving window approach.

Backward input selection is applied, removing in each step one input until the model probability
p(H|D) stops increasing. The evolution of the level 3 and level 2 cost function as a function of the
number of input pruning steps is depicted in Figure 3, together with the evolution of deff, g and of
the directional accuracy measures PTstat and PCSP. From the initial 27 input variables, 21 inputs
have been removed. The optimal input set for the nonlinear model is reported in Table IV, from
which it is observed that the variables found to relevant for the nonlinear models are almost the same
as for the linear models. The cointegrating vector zt is kept as an important input, its removal would
lead to a significantly worse predictive performance of the nonlinear model. The optimal regular-
ization and kernel function parameters that are inferred from the training data D are: mMP = 258.29,
zMP = 2.93 ¥ 103, gMP = 11.34 and sMP = 0.25.

With the nonlinear forecasts, we obtain MSE = 6.87 ¥ 10-4, MAE = 0.021, while the performance
measures for directional accuracy are PCSP = 60.2%, PTstat = 2.66, p-value = 0.8%. The high PTstat

ââââ

Table III. Final estimates of the linear regression based on the ECM 
specification

Linear ECM regression: R2 = 0.10, DW = 2.01

Variable Coeff. St.Dev. t-stat

zt-1 -0.0397 0.0100 -3.9718
CHMCLEM(d)

t-1 0.2213 0.0391 5.6589
FIBOR3M(d)

t-1 0.1555 0.0513 3.0318
FIBOR3M(d)

t-2 -0.2216 0.0514 -4.3144
ETYEUSP(d)

t-2 -0.0659 0.0327 -2.0141
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for the 60.2% of predictional accuracy shows that it is significantly different from random sign pre-
dictions. This is also observed in better performances with both trading strategies. With investment
strategy 1 we obtain Sharpe ratio = 0.826, return = 12.75 and risk = 15.44, while investment strat-
egy 2 yields Sharpe ratio = 0.841, return = 12.78 and risk = 15.21. The results for the buy&hold
strategy, the linear and nonlinear ECM models are summarized in Table V, while the cumulative
profits are depicted in Figure 4. Using almost the same input variables, the nonlinear model achieves
clearly better out-of-sample performance.

CONCLUSIONS

In financial time series modelling and prediction, it is important to have reliable forecasting and
modelling techniques. Based on stationarity and cointegration analysis, a linear ECM model is spec-

Figure 3. Backward input selection for nonlinear kernel-based regression. The evolution of the level 3 cost
function (a) as a function of the number of input pruning steps yields an optimum at step 22. The correspon-
ding values for the effective number of parameters deff, the out-of-sample Pesaran–Timmerman test statistic
PTstat and the percentage of correct sign predictions (PCSP) are reported in panels (b)–(d). Notice that the PT
statistic and PCSP become maximal at the minimum of the level 3 cost function
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Table IV. Optimal input sets for the linear and nonlinear models

Linear LS-SVM

Variables Lags Variables Lags

z t - 1 z t - 1
CHMCLEM t - 1 CHMCLEM t - 1
FIBOR3M t - 1, t - 2 FIBOR3M t - 1, t - 2
ETYEUSP t - 2 ETYEUSP t - 2

BMBD010Y t - 2

Table V. Test set performances of the LS-SVM model obtained on the one-week-ahead prediction of the aggre-
gated chemical index. The LS-SVM time series model with RBF-kernel is compared with linear ECM and a
buy&hold strategy. The RBF-LS-SVM clearly achieves a better directional accuracy, better return (Re), risk
(Ri) and resulting Sharpe ratio (SR) in combination with investment strategies IS1 and IS2

Residuals Directional accuracy IS1 IS2

MSE MAE PCSP PT p-value SR1 Re1 Ri1 SR2 Re2 Ri2

LS-SVM 6.87 ¥ 10-4 0.021 60.2 2.66 0.008 0.826 12.75 15.44 0.841 12.78 15.21
Linear 6.63 ¥ 10-4 0.021 53.2 0.73 0.462 0.596 8.94 15.00 0.487 7.19 14.76
B&H — — — — — 0.208 3.98 19.14 0.208 3.98 19.14
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Figure 4. Cumulative returns using the sign predictions (transaction cost 0.1%) on the out-of-sample test set
obtained with: (1) LS-SVM regressor with nonlinear RBF-kernel (dash-dotted line); (2) linear model (dashed
line); and (3) buy&hold strategy (full line). The LS-SVM regressor yields the highest annualized return and
corresponding Sharpe ratio as reported in Table V. Panels (a) and (b) depict the results of investment strategies
1 and 2, respectively
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ified and estimated in order to produce out-of-sample linear stock market forecasts. The specified
input variables of the linear ECM formulation are used in this paper as an initial candidate input set
for nonlinear kernel-based regression. The nonlinear model was designed within the Bayesian evi-
dence framework, getting an appropriate trade-off between model complexity and in-sample model
accuracy. The regularization, kernel function parameters and relevant inputs are obtained by apply-
ing Bayes’ formula on different levels of inference. For the prediction of an aggregated index for
the European chemical sector, it was found that the optimal linear and nonlinear forecasts are based
on almost the same set of relevant variables including the cointegrating vector. Comparing both tech-
niques, the nonlinear model achieves significantly nonrandom out-of-sample sign predictions and
also yields better a Sharpe ratio when implemented in a simple trading strategy.

APPENDIX A: BAYESIAN INFERENCE FOR LS-SVM REGRESSION

Inference of model parameters (level 1)
Bayes’ formula
Applying Bayes’ formula on level 1, one obtains the posterior probability of the model parameters
w and b:

(20)

where the last step is obtained since the evidence p(D| logm, logz,H) is a normalizing constant that
does not depend upon w and b.

For the prior, no correlation between w and b is assumed: p(w, b|logm,H) = p(w| logm, H)p(b|H)
µ p(w| logm,H), with a multivariate Gaussian prior on w with zero mean and covariance matrix 
m-1Inj and an uninformative, flat prior on b:

(21)

The uniform prior distribution on b can be approximated by a Gaussian distribution with standard
deviation sb Æ •. The negative logarithm of (21) corresponds to the regularization term mJw =
m /2wTw. The prior states a belief that without any learning from data, the coefficients are zero with
an uncertainty denoted by the variance 1/m; a priori we do not expect a functional relation between
the feature vector j and the observation y. Before the data are available, the most likely model has
zero weights wk = 0 (k = 1, . . . , nj), corresponding to the efficient market hypothesis (Bachelier,
1900; Campbell et al., 1997; Fama, 1965).

It is assumed that the errors et = yt - (wTj(xt) + b) are independently identically normally dis-
tributed with zero mean and variance 1/z for expressing the likelihood
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(22)

with

(23)

The negative logarithm of the likelihood (22) corresponds to the sum squared error term zJe =

SnD
t=1 et

2.

Substituting (21) and (22) into (20), neglecting all constants and taking the negative logarithm,
Bayes’ rule at the first level of inference corresponds to the constrainted minimization problem (9)
and (10) that can be solved for w and b in the primal space from (15) in the linear case when n £
nD or a and b in the dual space from (16) in the nonlinear kernel-based regression case and in the
linear case when n ≥ nD. In the remainder of this paper, the maximum a posteriori parameter esti-
mates are denoted by the subscript ‘MP’, e.g., wMP and bMP.

Given that the prior (21) and likelihood (22) are multivariate distributions, the posterior (20) is a
multivariate normal distribution4 in [w; b] with mean [wMP; bMP] Œ ˙nj+1 and covariance matrix Q Œ
˙(nj+1)¥(nj+1). An alternative expression for the posterior is obtained by substituting (21) and (22) into
(20). These approaches yield

(24)

(25)

respectively.
The evidence is a normalizing constant in (20) independent of w and b such that Ú Ú . . . Ú p(w, b|D,

logm, logz, H)dw1 . . . dwnj
db = 1. Substituting the expressions for the prior (21), likelihood (22)

and posterior (25) into (20), one obtains

(26)

Computation and interpretation
The model parameters with maximum posterior probability are obtained by minimizing the nega-
tive logarithm of (24) and (25):
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4 The notation [x; y] = [x, y]T is used here.
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(27)

(28)

where constants are neglected in the optimization problem. Both expressions yield the same opti-
mization problem and the covariance matrix Q is equal to the inverse of the Hessian H of J1. The
Hessian is expressed in terms of the matrix F = [j(x1), . . . j(xnD)]T with regressors, as derived in
Appendix B.

The optimal wMP and bMP are computed in the dual space from the linear KKT-system (16), while
the prediction = wT

MPj(x) + bMP is expressed in terms of the dual parameters a and bias term bMP

via (17).
Substituting (21), (22) and (25) into (26), one obtains

(29)

As J1(w, b) = mJw(w) + zJe(w, b), the evidence can be rewritten as

The model evidence consists of the likelihood of the data and an Occam factor that penalizes for
too complex models. The Occam factor consists of the regularization term 1/2wT

MPwMP and the ratio
(mnj/det H)1/2, which is a measure for the volume of the posterior probability divided by the volume
of the prior probability. Strong contractions of the posterior versus prior space indicates too many
free parameters and, hence, overfitting on the training data. The evidence will be maximized on level
2, where also dual space expressions are derived.

Inference of hyperparameters (level 2)
Bayes’ formula
The optimal regularization parameters m and z are inferred from the given data D by applying Bayes’
formula on the second level (Van Gestel et al., 2001, 2002)

(30)

The prior p(logm, logz) = p(logm|H)p(logz|H) = constant is taken to be a flat uninformative prior
(slog m, slog z Æ •). The level 2 likelihood p(D| logm, logz,H) is equal to the level 1 evidence (29).
In this way, Bayesian inference implicitly embodies Occam’s razor: on level 2 the evidence of level
1 is optimized so as to find a trade-off between the model fit and a complexity term to avoid over-
fitting (MacKay, 1995). The level 2 evidence is obtained in a similar way as on level 1, as the like-
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lihood for the maximum a posteriori times the ratio of the volume of the posterior probability and
the volume of the prior probability:

(31)

where one typically approximates the posterior probability by a multivariate normal probability func-
tion with diagonal covariance matrix diag([s 2

log m|D, s 2
log m|D]) Œ ˙2¥2.

Neglecting all constants, Bayes’ formula (30) becomes

(32)

where the expressions for the level 1 evidence are given by (26) and (29).

Computation and interpretation
In the primal space, the hyperparameters are obtained by minimizing the negative logarithm of (29)
and (32)

(33)

Observe that in order to evaluate (33) one needs also to calculate wMP and bMP for the given m and
z and evaluate the level 1 cost function. The determinant of H is equal to (see Appendix B for details)

with the idempotent centring matrix Nc = InD - 1/nD11T = N2
c Œ ˙nD¥nD. The determinant is also equal

to the product of the eigenvalues. The ne nonzero eigenvalues l1, . . . , lne
of FTNcF are equal to the

ne nonzero eigenvalues of NcFFTNc = NcWNc Œ ˙nD¥nD, which can be calculated in the dual space.
Substituting the determinant det(H) = znDmnj-ne Pne

i=1(m+zli) into (33), one obtains the optimization
problem in the dual space

(34)

where it can be shown by matrix algebra (see Appendix B) that mJw(wMP) + zJe(wMP, bMP) =

yTNc( NcWNc + InD)-1Ncy.

An important concept in neural networks and Bayesian learning in general is the effective number
of parameters. Although there are nj + 1 free parameters w1, . . . , wnj

, b in the primal space, the use
of these parameters (28) is restricted by the use of the regularization term 1/2wTw. The effective
number of parameters deff is equal to deff = Si li,u/li,r, where li,u, li,r denote the eigenvalues of 
the Hessian of the unregularized cost function J1,u = zED and the regularized cost function J1,r = mEW
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+ zED (Bishop, 1995; MacKay, 1995). For LS-SVMs, the effective number of parameters is equal
to

(35)

with g = z/m Œ ˙+. The term +1 appears because no regularization is applied on the bias term b. As
shown, one has that ne £ nD - 1 and, hence, also that deff £ nD, even in the case of high-dimensional
feature spaces.

The conditions for optimality for (34) are obtained by putting ∂J2/∂m = ∂J2/∂z = 0. One obtains5

(36)

(37)

where the latter equation corresponds to the unbiased estimate of the noise variance 1/zMP = SnD
i=1

ei
2/(nD - deff).

Instead of solving the optimization problem in m and z, one may also reformulate (34) using (36)
and (37) in terms of g = z/m and solve the following scalar optimization problem (Van Gestel et al.,
2002):

(38)

with

(39)

(40)

(41)

and with the eigenvalue decomposition NcWNc = VTLV. Given the optimal gMP from (38) one finds
the effective number of parameters deff from deff = 1 + Sne

i=1 gli/(1 + gli). The optimal mMP and zMP are
obtained from mMP = (deff - 1)/(2Jw(wMP)) and zMP = (nD - deff)/(2Je(wMP, bMP)).
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5 In this derivation, one uses that (MacKay, 1995; Suykens et al., 2002; Van Gestel et al., 2002) ∂(J1(wMP, bMP))/∂m = d(J1(wMP,
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Model comparison (level 3)
Bayes’ formula
The model structure H determines the remaining parameters of the kernel-based model: the selected
kernel function (linear, RBF, . . .), the kernel parameter (RBF kernel parameter s) and selected
explanatory inputs. The model structure is inferred on level 3.

Consider, for example, the inference of the RBF-kernel parameter s, where the model structure
is denoted by Hs. Bayes’ formula for the inference of Hs is equal to

(42)

where no evidence p(D) is used in the expression on level 3 as it is in practice impossible to 
integrate over all model structures. The prior probability p(Hs) is assumed to be constant. The 
likelihood is equal to the level 2 evidence (31).

Computation and interpretation
Substituting the evidence (31) into (42) and taking in the constant prior, the Bayes’ rule (31) becomes

(43)

As uninformative priors are used on level 2, the standard deviations slog m and slog z of the prior dis-
tribution both tend to infinity and are omitted in the comparisons of different models in (43). The
posterior error bars can be approximated analytically as s 2

log m|D � 2/(deff - 1) and s 2
log z|D � 2/(nD -

deff), respectively (MacKay, 1995). The level 3 posterior becomes

(44)

where all expressions can be calculated in the dual space. A practical way to infer the kernel param-
eter s is to calculate (44) for a grid of possible kernel parameters s1, . . . , sm and to compare the
corresponding posterior model parameters p(Hs1

|D), . . . , p(Hsm|D).
Model comparison is also used to infer the set of most relevant inputs (Van Gestel et al., 2001)

out of the given set of candidate explanatory variables by making pairwise comparisons of models
with different input sets. In a backward input selection procedure, one starts from the full candidate
input set and removes in each input pruning step that input that yields the best model improvement
(or smallest decrease) in terms of the model probability (44). The procedure is stopped when no sig-
nificant decrease of the model probability is observed. In the case of equal prior model probabilities
p(Hi) = p(Hj)("i, j) the models Hi and Hj are compared according to their Bayes factor
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According to Jeffreys (1961), a value 2 lnBij corresponding to 0–2, 2–5, 5–10 and >10 indicates a
very weak, positive, strong and decisive evidence against the null hypothesis of no difference in
model performance between the models Hi and Hj.

Moderated output
The uncertainty on the estimated model parameters results in an additional uncertainty for the 

one-step-ahead prediction yMP = wT
MPj(x) + bMP = SnD

t=1 K(x, xt) + bMP. Given the normal 

distribution (27) of the model parameters [w; b] with mean [wMP; bMP] and covariance matrix Q, and
the additive noise with mean zero and noise variance z, it is well known that the predicted output
is normally distributed with mean

(46)

and variance

(47)

where the first term is due to the additive noise et and the second term is due to the posterior uncer-
tainty (27) on the model parameters w and b.

The dual space expression for yMP is given in (17). The expression for the variance s 2
y involves

the inversion of the Hessian H = Q-1 in the feature space. Given the expressions (51) and (53), the
following practical expression is obtained in the dual space by applying linear matrix algebra:

(48)

with the vector k(x) = Fj(x) = [K(x, x1), . . . , K(x, xnD)]T Œ ˙nD. This dual space expression allows
us to compute the variance on the point prediction yMP when the nonlinear mapping j is implicitly
defined by the (nonlinear) kernel function K or when n ≥ nD in the linear case.

APPENDIX B: MATHEMATICS

Expression for the Hessian and covariance matrix
The level 1 posterior probability p([w; b]|D, m, z, H) is a multivariate normal distribution in ˙nj

with mean [wMP; bMP] and covariance matrix Q = H-1, where H is the Hessian of the least squares
cost function (9). Defining the matrix of regressors FT = [j(x1), . . . ,j(xnj

)], the identity matrix I and
the vector with all ones 1 of appropriate dimension; the Hessian is equal to

s
z z m

z
m

m z

y
T T

T

n

n
K

n n

n n

2
2

1

1 1 1 1
1 1

2
1

1
1

1

= + + ( ) + - ( )Ê
Ë

ˆ
¯

- ( ) -Ê
Ë

ˆ
¯ +( ) ( ) -Ê

Ë
ˆ
¯

-

D D D

D D
D

x x k x

k x N I N k x

, W

W W Wc c c 1

s
z

j jy
T2 1

1 1= + ( )[ ] ( )[ ]x Q x; ;
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(49)

with corresponding block matrices H11 = mInj
+ zFTF, h12 = hT

21 = FT1 and h22 = nD. The inverse
Hessian H-1 is then obtained via a Schur complement type argument:

(50)

(51)

with X = h12h22
-1 and F11 = H11 - h12h22

-1hT
12. In matrix expressions, it is useful to express FTF -

FT11TF as FTNcF with the idempotent centring matrix Nc = InD - 11T Œ ˙N¥N having Nc = N2
c. 

Given that F11
-1 = (mInj

+ zFTNcF)-1, the inverse Hessian H-1 = Q is equal to

Expression for the determinant
The determinant of H is obtained from (50) using the fact that the determinant of a product is equal
to the product of the determinants and is thus equal to

(52)

which is obtained as the product of znD and the eigenvalues li (i = 1, . . . , nj) of mInj
+ zFTNcF,

denoted as li(mInj
+ zFTNcF). Because the matrix FTNcF Œ ˙nj¥nj is rank deficient with rank ne £

nD - 1, nj - ne eigenvalues are equal to m.
The dual space expressions can be obtained in terms of the singular value decomposition

(53)

with U Œ ˙nj¥nj, S Œ ˙nj¥nD, V Œ ˙nD¥nD and with the block matrices U1 Œ ˙nj¥ne, U2 Œ ˙nj¥(nj-ne), 
S1 = diag([s1, s2, . . . , sne

]) Œ ˙ne¥ne, V1 Œ ˙nD¥ne and V2 Œ ˙nD¥(nD-ne), with 0 £ ne £ nD - 1. Due to the
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orthonormality property we have UUT = U1U1
T + U2U2

T = Inj
and VVT = V1V1

T + V2V2
T = InD. Hence,

one obtains the primal and dual eigenvalue decompositions

(54)

(55)

The nj eigenvalues of mInj
+ zFTNcF are equal to l1 = m + zs1

2, . . . , lne
= m + zs2

ne
, lne+1 = m, . . . ,

lnj
= m, where the nonzero eigenvalues si

2 (i = 1, . . . , ne) are obtained from the eigenvalue decom-
position of NcFFTNc from (55). The expression for the determinant is equal to NzmnD-ne

Pne
i=1(m+zli(NcWNc), with NcWNc = V1diag([l1, . . . , lne])V1

T and li = si
2, i = 1, . . . , ne.

Expression for the level 1 cost function
The dual space expression for J1(wMP, bMP) is obtained by substituting [wMP; bMP] = H-1[FTy; 1Ty] in
(9). Applying a similar reasoning and algebra as for the calculation of the determinant, one obtains
the dual space expression:

(56)

Given that NcWNc = VLVT, with L = diag([s1
2, . . . , s2

ne
, 0, . . . , 0]), one obtains (41). In a similar way,

one obtains (39) and (40).
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