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1. INTRODUCTION AQ1

Unforeseen toxicity is one of the main reasons for the failure
of drug candidates. A reliable screening of drug candidates on
toxicological side effects in early stages of the lead component
development can help in prioritizing candidates and avoiding
the futile use of expensive clinical trials and animal tests. A
better understanding of the underlying cause of toxicological
and pharmacokinetic responses will be useful to develop such
screening procedure (1).

Pioneering studies (such as Refs. 2–5) have demon-
strated that observable=classical toxicological endpoints are
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reflected in systematic changes in expression level. The
observed endpoint of a toxicological response can be expected
to result from an underlying cellular adaptation at molecular
biological level. Until a few years ago studying gene regula-
tion during toxicological processes was limited to the detailed
study of a small number of genes. Recently, high-throughput
profiling techniques allow us to measure expression at mRNA
or protein level of thousands of genes simultaneously in an
organism=tissue challenged with a toxicological compound
(6). Such global measurements facilitate the observation not
only of the effect of a drug on intended targets (on-target),
but also of side effects on untoward targets (off-target) (7).
Toxicogenomics is the novel discipline that studies such large
scale measurement of gene=protein expression changes that
result from the exposure to xenobiotics or that are associated
with the subsequent development of adverse health effects
(8,9). Although toxicogenomics covers a larger field, in this
chapter we will restrict ourselves to the use of DNA arrays
for mechanistic and predictive toxicology (10).

1.1. Mechanistic Toxicology

The main objective of mechanistic toxicology is to obtain
insight in the fundamental mechanisms of a toxicological
response. In mechanistic toxicology, one tries to unravel
the pathways that are triggered by a toxicity response. It
is, however, important to distinguish background expression
changes of genes from changes triggered by specific mechan-
istic or adaptive responses. Therefore, a sufficient number of
repeats and a careful design of expression profiling measure-
ments are essential. The comparison of a cell line that is
challenged with a drug to a negative control (cell line treated
with a nonactive analogue) allows discriminating general
stress from drug specific responses (10). Because the trig-
gered pathways can be dose- and condition-dependent, a
large number of experiments in different conditions are typi-
cally needed. When an in vitro model system is used (e.g.,
tissue culture) to assess the influence of a drug on gene
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expression, it is of paramount importance that the model
system accurately encapsulates the relevant biological in
vivo processes.

With dynamic profiling experiments one can monitor
adaptive changes in the expression level caused by adminis-
tering the xenobiotic to the system under study. By sampling
the dynamic system at regular time intervals, short-, mid-
and long-term alterations (i.e., high and low frequency
changes) in xenobiotic-induced gene expression can be mea-
sured. With static experiments, one can test the induced
changes in expression in several conditions or in different
genetic backgrounds (gene knock out experiments) (10).

Recent developments in analysis methods offer the possi-
bility to derive low-level (sets of genes triggered by the toxico-
logical response) as well as high-level information (unraveling
the complete pathway) from the data. However, the feasibility
of deriving high-level information depends on the quality of
the data, the number of experiments, and the type of biologi-
cal system studied (11). Therefore, drug triggered pathway
discovery is not straightforward and in addition is expensive
so that it cannot be applied routinely. Nevertheless, when
successful it can completely describe the effects elicited by
representative members of certain classes of compounds.
Well-described agents or compounds, for which both the toxi-
cological endpoints and the molecular mechanisms resulting
in them are characterized, are optimal candidates for the con-
struction of a reference database and for subsequent predic-
tive toxicology (see AQ2Sec. 1.2). Mechanistic insights can also
help determining the relative health risk and guide the dis-
covery program towards safer compounds. From statistical
point of view, mechanistic toxicology does not require any
prior knowledge on the molecular biological aspects of the sys-
tem studied. The analysis is based on what is called unsuper-
vised techniques. Because it is not known in advance which
genes will be involved in the studied response, arrays used
for mechanistic toxicology are exhaustive, they contain
cDNAs representing as much coding sequences of the genome
as possible. Such arrays are also referred to as diagnostic or
investigative arrays (12).
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1.2. Predictive Toxicology

Compounds with the same mechanism of toxicity are likely to
be associated with the alteration of a similar set of elicited
genes. When tissues or cell lines subjected to such compounds
are tested on a DNA microarray, one typically observes char-
acteristic expression profiles or fingerprints. Therefore, refer-
ence databases can be constructed that contain these
characteristic expression profiles of reference compounds.
Comparing the expression profile of a new compound with
such a reference database allows for a classification of the
novel compound (2,5,7,9,13,14). From the known properties
of the class to which the novel substance was classified, the
behavior of the novel compound (toxicological endpoint) can
be predicted. The reference profiles will, however, depend to
a large extent on the endpoints that were envisaged (used
the cell lines, model organisms, etc.). By a careful statistical
analysis (feature extraction) of the profiles in such a compen-
dium database, markers for specific toxic endpoints can be
identified. These markers consist of genes that are specifically
induced by a class of compounds. They can then be used to
construct dedicated arrays (toxblots (12,15), rat hepato chips
(13)). Contrary to diagnostic arrays, the number of genes on
a dedicated array is limited resulting in higher throughput
screening of lead targets at a lower cost (12,15). Markers
can also reflect diagnostic expression changes of adverse
effects. Measuring such diagnostic markers in easily accessi-
ble human tissues (blood samples) makes it possible to moni-
tor early onset of toxicological phenomena after drug
administration for instance during clinical trials (5). More-
over, markers (features) can be used to construct predictive
models. Measuring the levels of a selected set of markers
on, for instance, a dedicated array can be used to predict with
the aid of a predictive model (classifier) the class of com-
pounds to which the novel xenobiotic belongs (predictive tox-
icology). The impact of predictive toxicology will grow with
the size of the reference databases. In this respect, the efforts
made by several organizations (such as e.g., the International
Life Science Institute (ILSI) http:==www.ilsi.org=) to make
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public repositories of microarray data that are compliant with
certain standards (MIAMI) are extremely useful (10,16).

1.3. Other Applications

There are plenty of other topics where the use of expression
profiling can be helpful for toxicological research, including
e.g., the identification of interspecies or in vitro-in vivo discre-
pancies. Indeed, results on the determination of dose
responses and on the predicted risk of a xenobiotic for humans
are often extrapolated from studies on surrogate animals.
Measuring the differences in effect of administering well-
studied compounds to either model animals or cultured
human cells, could certainly help in the development of more
systematic extrapolation methods (10).

Expression profiling can also be useful in the study of
structure activity relationships (SAR). Differences in phar-
macological or toxicological activity between structural
related compounds might be associated with corresponding
differences in expression profiles. The expression profiles
can thus help distinguish active from inactive analogues in
SAR (7).

Some drugs need to be metabolized for detoxification.
Some drugs are only metabolized by enzymes that are
encoded by a single pleiothropic gene. They involve the risk
of drug accumulation to toxic concentrations in individuals
carrying specific polymorphisms of that gene (17). With
mechanistic toxicology, one can try to identify the crucial
enzyme that is involved in the mechanism of detoxification.
Subsequent genetic analysis can then lead to an a priori pre-
diction to determine whether a xenobiotic should be avoided
in populations with particular genetic susceptibilities.

2. MICROARRAYS

2.1. Technical Details

Microarray technology allows simultaneous measurement
of the expression levels of thousands of genes in a single
hybridization assay (7). An array consists of a reproducible
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pattern of different DNAs (primarily PCR products or
oligonucleotides—also called probes) attached to a solid sup-
port. Each spot on an array represents a distinct coding
sequence of the genome of interest. There are several microar-
ray platforms that can be distinguished from each other in the
way that the DNA is attached to the support.

Spotted arrays (18) are small glass slides on which pre-
synthesized single stranded DNA or double-stranded DNA
is spotted. These DNA fragments can differ in length depend-
ing on the platform used (cDNA microarrays vs. spotted oli-
goarrays). Usually the probes contain several hundred of
base pairs and are derived from expressed sequence tags
(ESTs) or from known coding sequences from the organism
under study. Usually each spot represents one single ORF
or gene. A cDNA array can contain up to 25,000 different
spots.

GeneChip oligonucleotide arrays (Affymetrix, Inc., Santa
Clara (19)) are high-density arrays of oligonucleotides synthe-
sized in situ using light-directed chemistry. Each gene is
represented by 15–20 different oligonucleotides (25-mers),
that serve as unique sequence-specific detectors. In addition,
mismatch control oligonucleotides (identical to the perfect
match probes except for a single base-pair mismatch)
are added. These control probes allow the estimation of
cross-hybridization. An Affymetrix array represents over
40,000 genes.

Besides these customarily used platforms, other meth-
odologies are being developed (e.g., fiber optic arrays (20) as
well).

In every cDNA-microarray experiment, mRNA of a
reference and agent-exposed sample is isolated, converted
into cDNA by an RT-reaction and labeled with distinct fluor-
escent dyes (Cy3 and Cy5, respectively the ‘‘green’’ and ‘‘red’’
dye). Subsequently, both labeled samples are hybridized
simultaneously to the array. Fluorescent signals of both
channels (i.e., red and green) are measured and used for
further analysis (for more extensive reviews on microarrays
we refer to (7,21–23)). An overview of this procedure is given
in Fig. F11.
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2.2. Sources of Variation

In a microarray experiment, changes in gene expression level
are being monitored. One is interested in knowing how much
the expression of a particular gene is affected by the applied
condition. However, besides this effect of interest, other
experimental factors or sources of variation contribute to
the measured change in expression level. These sources of
variation prohibit direct comparison between measurements.

Figure 1 Schematic overview of an experiment with a cDNA
microarray. (1) Spotting of the presynthesized DNA-probes (derived
from the genes to be studied) on the glass slide. These probes are
the purified products from PCR-amplification of the associated
DNA-clones. (2) Labeling (via reverse transcriptase) of the total
mRNA of the test sample (red¼Cy5) and reference sample
(green¼Cy3). (3) Mixing of the two samples and hybridization. (4)
Read-out of the red and green intensities separately (measure for
the hybridization by the test and reference sample) of each probe.
(5) Calculation of the relative expression levels (intensity in the
red channel=intensity in the green channel). (6) Storage of results
in a database. (7) Data mining.
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That is why preprocessing is needed to remove these addi-
tional sources of variation, so that for each gene, the corrected
‘‘preprocessed’’ value reflects the expression level caused by
the condition tested (effect of interest). Consistent sources of
variation in the experimental procedure can be attributed to
gene, condition=dye, and array effects (24–26).

Condition and dye effects reflect differences in mRNA
isolation and labeling efficiencies between samples. These
effects result in a higher measured intensity for certain condi-
tions or for either one of both channels. When performing
multiple experiments (i.e., by using more arrays), arrays are
not necessarily being treated identically. Differences in hybri-
dization efficiency result in global differences in intensities
between arrays, making measurements derived from differ-
ent arrays incomparable. This effect is generally called the
array effect.

The gene effect explains that some genes emit a higher or
lower signal than others. This can be related to differences in
basal expression level, or to sequence-specific hybridization or
labeling efficiencies. A last source of variation is a combined
effect, the array–gene effect. This effect is related to spot-
dependent variations in the amount of cDNA present on the
array. Since the observed signal intensity is not only influ-
enced by differences in the mRNA population present in the
sample, but also by the amount of spotted cDNA, direct com-
parison of the absolute expression levels is unreliable.

The factor of interest, which is the condition-affected
change in expression of a single gene, can be considered to
be a combined gene–condition (GC) effect.

2.3. Microarray Design

The choice of an appropriate design is not trivial (27–29). In
Fig. F22 distinct designs are represented. The simplest microar-
ray experiments compare expression in two distinct condi-
tions. A test condition (e.g., cell line triggered with a lead
compound) is compared to a reference condition (e.g., cell line
triggered with a placebo). Usually the test is labeled with Cy5
(red dye), while the reference is labeled with Cy3 (green dye).
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Performing replicate experiments is mandatory to infer rele-
vant information on a statistically sound basis. However,
instead of just repeating the experiments exactly in the way
described above, a more reliable approach here would be to
perform dye reversal experiments (dye swap). As a repeat
on a second array: the same test and reference conditions
are measured once more but the dyes are swapped, i.e., on
this second array, the test condition is labeled with Cy3
(green dye), while the corresponding reference condition is
labeled with Cy5 (red dye). This allows intrinsically compen-
sating for dye-specific differences. When the behavior of dis-
tinct compounds is compared or when the behavior
triggered by a compound is profiled during the course of a

Figure 2 Overview of two commonly used microarray designs. (A)
Reference design; (B) loop design. Dyel¼Cy5; Dye2¼ Cy3; two con-
ditions are measured on a single array.
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dynamic process, more complex designs are required. Custo-
marily used, and still preferred by molecular biologists, is
the reference design: different test conditions (e.g., distinct
compounds) are compared to a similar reference condition.
The reference condition can be artificial and does not need
to be biologically significant. Its main purpose is to have a
common baseline to facilitate mutual comparison between
me samples. Every reference design results in a relatively
higher number of replicate measurements of the condition
(reference) in which one is not primarily interested, than of
the condition of interest (test condition). A loop design can
be considered as an extended dye reversal experiment. Each
condition is measured twice, each time on a different array
and labeled with a different dye (Fig. 2). For the same number
of experiments, a loop design offers more balanced replicate
measurements of each condition than a reference design,
while the dye-specific effects can also be compensated for.

Irrespective of the design used, the expression levels of
thousands of genes are monitored simultaneously. For each
gene, these measurements are usually arranged into a data
matrix. The rows of the matrix represent the genes while
the columns are the tested conditions (toxicological
compounds, timepoints). As such one obtains gene expression
profiles (row vectors) and experiment profiles (column
vectors) (Fig. F33).

3. ANALYSIS OF MICROARRAY EXPERIMENTS

Some of the major challenges for mechanistic and predictive
toxicogenomics are in data management and analysis (5,10).
In the following chapter, we give an overview of the state of
the art methodologies for the analysis of high-throughput
expression profiling experiments. The review is not compre-
hensive as the field of microarray analysis is rapidly evolving.
Although there will be a special focus on the analysis of cDNA
arrays, most of the described methodologies are generic and
applicable to data derived from other high-throughput
platforms.
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3.1. Preprocessing: Removal of Consistent
Sources of Variation

As mentioned before, preprocessing of the raw data is needed
to remove consistent and=or the systematic sources of varia-
tion from the measured expression values. As such, the pre-
processing has a large influence on the final result of the
analysis. In the following, we will give an overview of the

Figure 3 Schematic overview of the analysis flow of cDNA-
microarray data.
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commonly used approaches for preprocessing: the array by
array approach and the procedure based on analysis of var-
iance (ANOVA) (Fig. 3). The array by array approach is a
multistep procedure comprising log transformation, normali-
zation, and identification of differentially expressed genes
by using a test statistic. The ANOVA-based approach consists
of a log transformation, linearization, and identification of dif-
ferentially expressed genes based on bootstrap analysis.

3.1.1. Mathematical Transformation of the Raw
Data: Need for a Log Transformation

The effect of the log transformation as an initial preproces-
sing step is illustrated in Fig. F44. In Fig. 4A, the expression
levels of all genes measured in the test sample were plotted
against the corresponding measurements in the reference
sample. Assuming that the expression of only a restricted

Figure 4 Illustration of the influence of log transformation on the
multiplicative and additive errors. Panel A: representation of
untransformed raw data. X-axis: intensity measured in the red chan-
nel, Y-axis: intensity measured in the green channel. Panel B: repre-
sentation of log2 transformed raw data.X-axis: intensity measured in
the red channel (log2 value), Y-axis: intensity measured in the green
channel (log2 value). Assuming that only a small number of the genes
will alter their expression level under the different conditions tested,
for most genes the measurement in the green channel can be consid-
ered as a replica of the measurement in the red channel.
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number of genes is altered (global normalization assumption,
see below), measurements of the reference and the test condi-
tion can be considered to be comparable for most of the genes
on the array. Therefore, the residual scattering as observed in
Fig. 4A reflects the measurement error. As often observed, the
error in microarray data is a superposition of a multiplicative
error and an additive one. Multiplicative errors cause signal-
dependent variance of residual scattering, which deteriorates
the reliability of most statistical tests. Log transforming the
data alleviates this multiplicative error, but usually at the
expense of an increased error at low expression levels (Fig.
4B). Such an increase of the measurement error with decreas-
ing signal intensities, as present in the log-transformed data,
is however considered to be intuitively plausible: low expres-
sion levels are generally assumed to be less reliable than high
levels (24,30).

An additional advantage of log transforming the data is
that, differential expression levels between the two channels
are represented by log(test) � log(reference) (see below statis-
tical testing) AQ3. This allows bringing levels of under- and over-
expression to the same scale, i.e., values of underexpression
are no longer bound between 0 and 1.

3.1.2. Array by Array Approach

In the array by array approach, each array is compensated
separately for dye=condition and spot effects. A log
(test=reference)¼ log (test) � log(reference) is used as an esti-
mate of the relative expression. Using ratios (relative expres-
sion levels) instead of absolute expression levels allows
compensating intrinsically for spot effects. The major draw-
back of the ratio approach is that when the intensity mea-
sured in one of the channels is close to 0, the ratio attains
extreme values that are unstable as the slightest change in
the value close to 0 has a large influence on the ratio (30,31).

Normalization methods aim at removing consistent con-
dition and dye effects (see above). Although the use of spikes
(control spots, external control) and housekeeping genes
(genes not altering their expression level under the conditions
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tested) for normalization have been described in the litera-
ture, global normalization is commonly used (32). The global
normalization principle assumes that only of a small fraction
of the total number of genes on the array, the expression level
is altered. It also assumes that symmetry exists in the num-
ber of genes for which the expression is increased vs.
decreased. Under this assumption, the average intensity of
the genes in the test condition should be equal to the average
intensities of the genes in the reference condition. Therefore,
for the bulk of the genes, the log-ratios should equal 0.
Regardless of the procedure used, after normalization, all
log-ratios will be centered around 0. Notice that the assump-
tion of global normalization applies only to microarrays that
contain a random set of genes and not to dedicated arrays.

Linear normalization assumes a linear relationship
between the measurements in both conditions (test and refer-
ence). A common choice for the constant transformation factor
is the mean or median of the log intensity ratios for a given
gene set. As shown in Fig. F55, most often, the assumption of
a linear relationship between the measurements in both con-
ditions is an oversimplification, since, the relationship
between dyes depends on the measured intensity. These
observed nonlinearities are most pronounced at extreme
intensities (either high or low). To cope with this problem,
Yang et al. (32) described the use of a robust scatter plot
smoother, called Lowess, that performs local linear fits. The
results of this fit can be used to simultaneously linearize
and normalize the data (Fig. 5).

The array by array procedure uses the global properties of
all genes on the array to calculate the normalization factor.
Other approaches have been described that subdivide an array
into, for instance, individual print tip groups, which are nor-
malized separately (32). Theoretically, these approaches per-
form better than the array by array approach in removing
position-dependent ‘‘within array’’ variations. The drawback,
however, is that the number of measurements to calculate
the fit is reduced, a pitfall that can be overcome by the use of
ANOVA (see Sec. 3.1.3). SNOMAD offers a free online imple-
mentation of the array by array normalization procedure (33).

50 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



3.1.3. ANOVA-based preprocessing

ANOVA can be used as an alternative to the array by array
approach (24,27). In this case, it can be viewed as a special
case of multiple linear regression, where the explanatory
variables are entirely qualitative. ANOVA models the mea-
sured expression level of each gene as a linear combination
of the explanatory variables that reflect, in the context of
microarray analysis, the major sources of variation. Several
explanatory variables representing the condition, dye and
array effects (see above) and combinations of these effects
are taken into account in the models (see Fig. F66). One of the
combined effects, the GC effect, reflects the expression of a
gene solely depending on the tested condition (i.e., the condi-
tion-specific expression or the effect of interest). Similarly, the

Figure 5 Illustration of the influence of an intensity-dependent
normalization. Panel A: representation of the log-ratio
M¼ log2(R=G) vs. the mean log intensity A¼ (log2(R)þ log2(G))=2.
At low average intensities, the ratio becomes negative indicating
that the green dye is consistently more intense as compared to
the intensity of the red dye. This phenomena is referred to as the
non-linear dye effect. Solid line represents the Lowess fit with f
value of 0.02 (R¼ red; G¼ green). Panel B: Representation of the
ratio M¼ log2(R=G) vs. the mean log intensity A¼ (logo2(R)þ
log2(G))=2 after performing a normalization and linearization based
on the Lowess fit. Solid line represent the new Lowess fit with f
value of 0.02 on the normalized data (R¼ red; G¼ green).
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difference between the GC effects of two conditions reflects
the differential expression. Of the other combined effects, only
those having a physical meaning in the process to be modeled
are retained. Reliable use of an ANOVA model requires a good
insight into the experimental process. Several ANOVA mod-
els have been described for microarray preprocessing
(24,34,35).

The ANOVA approach can be used if the data are ade-
quately described by a linear ANOVA model and if the resi-
duals are approximately normally distributed. ANOVA
obviates the need for using ratios. It offers as an additional
advantage that all measurements are used simultaneously
for statistical inference and that the experimental error is
implicitly estimated (36). Several web applications that offer
an ANOVA-based preprocessing procedure have been pub-
lished (e.g., MARAN (34), GeneANOVA (37)).

3.2. Microarray Analysis for Mechanistic
Toxicology

The purpose of mechanistic toxicology consists of unraveling
the genomic responses of organisms exposed to xenobiotics.
Distinct experimental setups can deliver the required infor-
mation. The most appropriate data analysis method depends

Figure 6 Example of an ANOVA model. I is the measured inten-
sity, D is the dye effect, A is the array effect, G is the gene effect, B
is the batch effect (the number of separate arrays needed to cover
the complete genome if the cDNAs of the genome do not fit on a sin-
gle array), P is the pin effect, E is the expression effect (factor of
interest). AD is the combined array–dye effect, e is the residual
error, m is the number of batches, l the number of dyes, j the num-
ber of spots on an array spotted by the same pin, and i the number
of genes AQ4. The measured intensity is modeled as a linear combination
of consistent sources of variation and the effect of interest Remark
that in this model condition effect C has been replaced by the com-
bined AD effect.
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both on the biological question to be answered and the experi-
mental design. For the purpose of clarity, we make a distinc-
tion between three types of design. This subdivision is
somewhat artificial and the distinction is not always clearcut.
The simplest design compares two conditions to identify dif-
ferentially expressed genes. Techniques developed for this
purpose will be reviewed in Sec. 3.2.1. Using more complex
designs, one can try to reconstruct the regulation network
that generates a certain behavior. Dynamic changes in
expression can be monitored as function of time. For such a
dynamic experiment, the main purpose is to find genes that
behave similarly during the time course, where often an
appropriate definition of similarity is one of the problems.
Such coexpressed genes are identified by cluster analysis
(Sec. 3.2.2). On the other hand, the expression behavior can
be tested under distinct experimental conditions (e.g., the
effect induced by distinct xenobiotics). One is interested, not
only in finding coexpressed genes but also in knowing the
experimental conditions that group together based on their
experiment profiles. This means that clustering is performed
both in the space of the gene variables (row vectors) and in the
space of the condition variables (column vectors). Although
such designs can also be useful for mechanistic toxicology,
they are usually performed in the context of class discovery
and predictive toxicology and will be further elaborated in
Sec. 3.3. The objective of clustering is to detect low-level infor-
mation. We describe this information as low-level because the
correlations in expression patterns between genes are identi-
fied, but all causal relationships (i.e., the high-level informa-
tion) remains undiscovered. Genetic network inference (Sec.
3.2.3) on the other hand tries to infer this high-level informa-
tion from the data.

3.2.1. Identification of Differentially Expressed
Genes

When preprocessed properly, consistent sources of variation
have been removed, and the replicate estimates of the (differ-
ential) expression of a particular gene can be combined. To
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search for differentially expressed genes, statistical methods
are used that test whether two variables are significantly dif-
ferent. The exact identity of these variables depends on the
question to be answered. When expression in the test condi-
tion is compared to expression in the reference condition, it
is generally assumed that for most of the genes no differential
expression occurs (global normalization assumption). Thus,
the zero hypothesis implies that expression of both test and
reference sample is equal (or that the log of the relative
expression equals 0). Because in a cDNA experiment the
measurement of the expression of the test condition and refer-
ence condition is paired (measurement of both expression
levels on a single spot), the paired variant of the statistical
test is used.

When using a reference design, one is not interested in
knowing whether the expression of a gene in the test condi-
tion is significantly different from its expression in the refer-
ence condition since the reference condition is artificial.
Rather, one wants to know the relative differences between
the two compounds tested on different arrays using a single
reference. Assuming that the ratio is used to estimate the
relative expression between each condition and a common
reference, the zero hypothesis now will be equality of the
average ratio in both conditions tested. In this case, the data
are no longer paired. This application is related to feature
extraction and will be further elaborated in Sec. 3.3.1.

In this paragraph, a major emphasis will be on the
description of selection procedures to identify genes that are
differentially expressed in the test vs. reference condition.

The fold test is a nonstatistical selection procedure that
makes use of an arbitrary chosen threshold. For each gene,
an average ratio is calculated based on the different ratio esti-
mates of the replicate experiments (log-ratio¼ log(test)�
log(reference)). Average ratios of which the expression ratio
exceeds a threshold (usually twofold) are retained. The fold
test is based on the assumption that a larger observed fold
change can be more confidently interpreted as a stronger
response to the environmental signal than smaller observed
changes. A fold test, however, discards all information
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obtained from replicates (30). Indeed, when either one of the
measured channels obtains a value close to 0, the log-ratio
estimate usually obtains a high but inconsistent value (large
variance on the variables). Therefore, more sophisticated var-
iants of the fold test have been developed. These methods
simultaneously construct an error model of the raw measure-
ments that incorporates multiplicative and additive varia-
tions (38–40).

A plethora of novel methods to calculate a test statistic
and the corresponding significance level have recently been
proposed, provided replicates are available. Each of these
methods first calculates a test statistic and subsequently
determines the significance of the observed test statistic. Dis-
tinct t-test like methods are available that differ from each
other in the formula that describes the test statistic and in
the assumptions regarding the distribution of the null
hypothesis. t-Test methods are used for detecting significant
changes between repeated measurements of a variable in
two groups. In the standard t-test, it is assumed that data
are sampled from a normal distribution with equal variances
(zero hypothesis). For microarray data, the number of repeats
is too low to assess the validity of this assumption of normal-
ity. To overcome this problem, methods have been developed
that estimate the distribution of the zero hypothesis from
the data itself by permutation or bootstrap analysis (36,41).
Some methods avoid the necessity of estimating a distribution
of the zero hypothesis by using order statistics (41). For an
exhaustive comparison between the individual performances
of each of these methods, we refer to Marchal et al. (31) and
for the technical details, we refer to the individual references
and Pan et al. (2002) (42) AQ5.

When ANOVA is used to preprocess the data, signifi-
cantly expressed genes are often identified by bootstrap ana-
lysis (Gaussian statistics are often inappropriate, since
normality assumptions are rarely satisfied). Indeed, fitting
the ANOVA model to the data allows the estimation of the
residual error which can be considered as an estimate of the
experimental error. By adding noise (randomly sampled from
the residual error distribution) to the estimated intensities,
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thousands of novel bootstrapped datasets, mimicking wet lab
experiments, can be generated. In each of the novel datasets,
the difference in GC effect between two conditions is calcu-
lated, as a measure for the differential expression. Based on
these thousands of estimates of the difference in GC effect,
a bootstrap confidence interval is calculated (36).

An extensive comparison of these methods showed that a
t-test is more reliable than a simple fold test. However, the t-
test suffers from a low power due the restricted number of
replicate measurements available. The method of Long et al.
(43) tries to cope with this drawback by estimating the popu-
lation variance as a posterior variance that consists of a con-
tribution of the measured variance and a prior variance.
Because they assume that the variance is intensity-depen-
dent, this prior variance is estimated based on the measure-
ments of other genes with similar expression levels as the
gene of interest. ANOVA-based methods assume a constant
error variance for the entire range of intensity measurements
(homoscedasticity). Because the calculated confidence inter-
vals are based on a linear model and microarray data suffer
from nonlinear intensity-dependent effects and large additive
effects at low expression levels (see also Sec. 3.1.1), the esti-
mated confidence intervals are usually too restrictive for ele-
vated expression levels and too small for measurements in the
low intensity range. In our experience, methods that did not
make an explicit assumption on the distribution of the zero
hypotheses, such as Statistical Analysis of Microarrays
(SAM) (41) clearly outperformed the other methods for large
datasets.

Another important issue in selecting significantly differ-
entially expressed genes is correction for multiple testing.
Multiple testing is crucial since hypotheses are calculated
for thousands of genes simultaneously. Standard Bonferroni
correction seems overrestrictive (30,44). Therefore, other cor-
rections for multiple testing have been proposed (45). Very
promising for microarray analysis seems the application of
the false discovery rate (FDR) (46). A permutation-based
implementation of this method can be found in the SAM
software (41).
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3.2.2. Identification of Coexpressed Genes

3.2.2.1. Clustering of the Genes

As mentioned previously, normalized microarray data
are collected in a data matrix. For each gene, the (row) vector
leads to what is generally called an expression profile. These
expression profiles or vectors can be regarded as (data) points
in a high-dimensional space. Genes involved in a similar bio-
logical pathway or with a related function often exhibit a
similar expression behavior over the coordinates of the
expression profile=vector. Such similar expression behavior
is reflected by a similar expression profile. Genes with similar
expression profiles are called coexpressed. The objective of
cluster analysis of gene expression profiles is to identify sub-
groups (¼ clusters) of such coexpressed genes (47,48). Cluster-
ing algorithms group together genes for which the expression
vectors are ‘‘close’’ to each other in the high-dimensional space
based on some distance measure. A first generation of algo-
rithms originated in research domains other than biology
(such as the areas of ‘‘pattern recognition’’ and ‘‘machine
learning’’). They have been applied successfully to microarray
data. However, confronted with the typical characteristics of
biological data, recently a novel generation of algorithms
has emerged. Each of these algorithms can be used with one
or more distance metrics (see Fig. F77). Prior to clustering,
microarray data usually are filtered, missing values are
replaced and the remaining values are rescaled.

3.2.2.2. Data Transformation Prior to Clustering

The ‘‘Euclidean distance’’ is frequently used to measure
the similarity between two expression profiles. However,
genes showing the same relative behavior but with diverging
absolute behavior (e.g., gene expression profiles with a differ-
ent baseline and=or a different amplitude but going up and
down at the same time) will have a relatively high Euclidean
distance. Because the purpose is to group expression profiles
that have the same relative behavior, i.e., genes that are
up- and downregulated together, cluster algorithms based
on the Euclidean distance will therefore erroneously assign
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the genes with different absolute baselines to different clus-
ters. To overcome this problem, expression profiles are stan-
dardized or rescaled prior to clustering. Consider a gene
expression profile g(g1, g2, . . . , gp) over p points (i.e., p time
points or conditions) with average expression level m and stan-
dard deviation s. Microarray data are commonly rescaled by
replacing every expression level gi by

gi � m
s

This operation results in a collection of expression pro-
files all being 0 mean and with standard deviation 1 (i.e.,
the absolute differences in expression behavior have largely
been removed). The Pearson correlation coefficient, a second
customarily used distance measure, inherently performs this
rescaling as it is basically equal to the cosine of the angle
between two gene expression profile vectors.

As previously mentioned, a set of microarray
experiments, in which gene expression profiles have been

Figure 7 Overview of commonly used distance measures in clus-
ter analysis. x and y are points or vectors in the p-dimensional
space. xi and yi (i¼ 1, . . . , p) are the coordinates of x and y. p is
the number of experiments.
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generated, frequently contains a considerable number of
genes that do not contribute to the biological process that is
being studied. The expression values of these profiles often
show little variation over the different experiments (they
are called constitutive with respect to the biological process
studied). By applying the rescaling procedure, these profiles
will be inflated and will contribute to the noise of the dataset.
Most existing clustering algorithms attempt to assign each
gene expression profile, even the ones of poor quality to at
least one cluster. When also noisy and=or random profiles
are assigned to certain clusters, they will corrupt these clus-
ters and hence the average profile of the clusters. Therefore,
filtering prior to the clustering is advisable. Filtering involves
removing gene expression profiles from the dataset that do
not satisfy one or possibly more very simple criteria (49).
Commonly used criteria include a minimum threshold for
the standard deviation of the expression values in a profile
(removal of constitutive genes). Microarray datasets regularly
contain a considerable number of missing values. Profiles con-
taining too many missing values have to be omitted (filtering
step). Sporadic missing values can be replaced by using
specialized procedures (50,51).

3.2.2.3. Cluster Algorithms

The first generation of cluster algorithms includes stan-
dard techniques such as K-means (52), self-organizing maps
(53,54) and hierarchical clustering (49). Although biologically
meaningful results can be obtained with these algorithms,
they often lack the fine-tuning that is necessary for biological
problems. The family of hierarchical clustering algorithms
was and is probably still the method preferred by biologists
(49) (Fig. F88). According to a certain measure, the distance
between every couple of clusters is calculated (this is called
the pairwise distance matrix). Iteratively, the two closest
clusters are merged giving rise to a tree structure, where
the height of the branches is proportional to the pairwise dis-
tance between the clusters. Merging stops if only one cluster
is left. However, the final number of clusters has to be deter-
mined by cutting the tree at a certain level or height. Often it
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Figure 8 Hierarchical clustering. Hierarchical clustering of the
dataset of Cho et al. (119) representing the mitotic yeast cell cycle.
A selection of 3000 genes was made as described in Ref. 51.
Hierarchical clustering was performed using the Pearson corr-
elation coefficient and an average linkage distance (UPGMA)
as implemented in EPCLUST (65). Only a subsection of the total
tree is shown containing 72 genes. The columns represent the
experiments, the rows the gene names. A green color indi-
cates downregulation, while a red color represents upreg-
ulation, as compared to the reference condition. In the complete
experimental setup, a single reference condition was used (reference
design).
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is not straightforward to decide where to cut the tree as it is
typically rather difficult to predict which level will give the
most valid biological results. Secondly, the computational
complexity of hierarchical clustering is quadratic in the num-
ber of gene expression profiles, which can sometimes be limit-
ing considering the current (and future) size of the datasets.

Centroid methods form another attractive class of algo-
rithms. The K-means algorithm for instance starts by assign-
ing at random all the gene expression profiles to one of the N
clusters (where N is the user-defined number of clusters).
Iteratively, the center (which is nothing more than the aver-
age expression vector) of each cluster is calculated, followed
by a reassignment of the gene expression vectors to the clus-
ter with the closest cluster center. Convergence is reached
when the cluster centers remain stationary. Self-organizing
maps can be considered as a variation on centroid methods
that also allow samples to influence the location of neighbor-
ing clusters. These centroid algorithms suffer from similar
drawbacks as hierarchical clustering: the number of clusters
is a user-defined parameter with a large influence on the out-
come of the algorithm. For a biological problem, it is hard to
estimate in advance how many clusters can be expected. Both
algorithms assign each gene of the dataset to a cluster. This is
from a biological point of view counterintuitive, since only a
restricted number of genes are expected to be involved in
the process studied. The outcome of these algorithms appears
to be very sensitive to the chosen parameter settings (number
of clusters for K-means (Fig. F99)), the distance measure that is
used and the metrics to determine the distance between clus-
ters (average vs. complete linkage for hierarchical clustering).
Finding the biological most relevant solution usually requires
extensive parameter fine-tuning and is based on arbitrary cri-
teria (e.g., clusters look more coherent) (55).

Besides the development of procedures that help to esti-
mate some of the parameters needed for the first generation of
algorithms (e.g., like the number of clusters present in the
data (56–58)), a panoply of novel algorithms have been
designed that cope with the problems mentioned above in
different ways: self-organizing tree algorithm or SOTA (59)
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combines self-organizing maps and divisive hierarchical clus-
tering; quality-based clustering (60) only assigns genes to a
cluster that meet a certain quality criterion; adaptive qual-
ity-based clustering (51) is based on a principle similar to
quality-based clustering, but offers a strict statistical mean-
ing to the quality criterion; gene shaving (61) is based on prin-
cipal component analysis (PCA). Other examples include
model-based clustering (56,58); clustering based on simulated
annealing (57) and CAST (62). For a more extensive overview
of these algorithms we refer to Moreau et al. (47).

Some of these algorithms determine the number of clus-
ters based on the inherent data properties (51,58–60,63).
Quality criteria have been developed to minimize the number

Figure 9 Illustration of the effect of using different parameter
settings on the end result of a K-means clustering of microarray
data. Data were derived from Ref. 119 and represent the dynamic
profile of the cell cycle. The cluster number is the variable para-
meter of the K-means clustering. By underestimating the number
of clusters, genes within a cluster will have a very heterogeneous
profile. Since K-means assigns all genes to a cluster (no inherent
quality criterion is imposed), genes with a noisy profile disturb
the average profile of the clusters. When increasing the number of
clusters, the profiles of genes that belong to the same cluster become
more coherent and the influence of noisy genes is less exacerbating.
However, when too high the cluster number, genes belonging biolo-
gically to the same cluster might be assigned to separate clusters
with very similar average profiles.
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of false positives. Only those genes are retained, in the clus-
ters, that satisfy a quality criterion. This results in clusters
that contain genes with tightly coherent profiles (51,60).
Fuzzy clustering algorithms allow a gene to belong to more
than one cluster (61). Distinct publicly available implementa-
tions of these novel algorithms are freely available for aca-
demic users (INCLUSive (64), EPCLUST (65), AMADA (66),
Cluster (49), . . . )

3.2.2.4. Cluster Validation

Depending on the algorithms and the distance measures
used, clustering will give different results. Therefore valida-
tion, either statistically or biologically, of the cluster results
is essential. Several methods have been developed to assess
the statistical relevance of a cluster. Intuitively, a cluster
can be considered reliable if the within cluster distance is
small (i.e., all genes retained are tightly coexpressed) and
the cluster has an average profile well delineated from the
remainder of the dataset (maximal intercluster distance).
This criterion is formalized by Dunn’s validity index (67).
Another desirable property is cluster stability: gene expres-
sion levels can be considered as a superposition of real biolo-
gical signals and small experimental errors. If true biological
signals are more pronounced than the experimental variation,
repeating the experiments should not interfer with the iden-
tification of the biological true clusters. Following this reason-
ing, cluster stability is assessed by creating new in silico
replicas (i.e., simulated replicas) of the dataset of interest by
adding a small amount of artificial noise to the original data.
The noise can be estimated from a reasonable noise model
(68,69) or by sampling the noise distribution directly from
the data (36). These newly generated datasets are prepro-
cessed and clustered in the same way as the original dataset.
If the biological signal is more pronounced than the noise sig-
nal in the measurements of one particular gene, adding small
artificial variations (in the range of the experimental noise
present in the dataset) to the expression profile of such gene
will not influence its overall profile and cluster membership.
The result (cluster membership) of that particular gene is
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robust towards what is called a sensitivity analysis and a reli-
able confidence can be assigned to the cluster result of that
gene.

An alternative approach of validating clusters is by
assessing the biological relevance of the cluster result. Genes
exhibiting a similar behavior might belong to the same bio-
logical process. This is reflected by enrichment of functional
categories within a cluster (51,55). Also, for some clusters,
the observed coordinate behavior of the gene expression pro-
files might be caused by transcriptional coregulation. In such
case, detection of regulatory motifs is useful as a biological
validation of cluster results (55,70–72).

3.2.3. Genetic Network Inference

The final goal of mechanistic toxicology is the reconstruction
of the regulatory networks that underlie the observed cell
responses. A complete regulatory network consists of proteins
interacting with each other, with DNA or with metabolites to
constitute a complete signaling pathway (73). The action of
regulatory networks determines how well cells can react or
adapt to novel conditions. From this perspective, a cellular
reaction against a xenobiotic compound can be considered as
a stress response that triggers a number of specialized regula-
tion pathways and induces the essential survival machinery.
A regulatory network viewed at the level of transcriptional
regulation is called a genetic network. This genetic network
can be monitored by microarray experiments. In contrast to
clustering that searches for correlation in the data, genetic
network inference goes one step beyond and tries to recon-
struct the causal relationships between the genes. Although
methods for genetic network inference are being developed,
the sizes of the currently available experimental datasets do
not yet meet the extensive data requirements of most of these
algorithms. In general, the number of experimental data
is still much smaller than the number of parameters that is
to be estimated (i.e., the problem is underdetermined). The
low signal to noise level of microarray data and the inherent
stochasticity of biological systems (74,75) aggravates the
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problem of underdetermination. Combining expression data
with additional sources of information (prior information)
can possibly offer a solution (76–79). Most of the current infer-
ence algorithms already make use of general knowledge on
the characteristics of biological networks, such as the pre-
sence of hierarchical network structures (77,80), a powerlaw
distribution of the number of connections (81), sparsness of
a network (82,83), and a maximal indegree (maximal number
of incoming and outgoing edges).

In order to unravel pathways, both dynamic and static
experiments can be informative. However, most of the devel-
oped algorithms can only handle static data. Dynamic data
can always be converted to static data by treating the transi-
tion from a previous time point to a consecutive time point as
a single condition. However, this is at the expense of losing
the specific information that can be derived from the dynami-
cal characteristics of the data. Treating this biological time
signals as responses of a dynamical system is one of the big
challenges of the near future.

Networks are either represented graphically or by a
matrix representation. In a matrix representation, each col-
umn and row represent a gene and the matrix elements
represent causal relationships. In a graph, the nodes repre-
sent the genes and the edges between the nodes reflect the
interactions between the genes. To each edge corresponds
an interaction table (matrix representation) that expresses
the type and strength of the interaction between the nodes
it connects.

A first group of inference methods explicitly uses the gra-
phical network representation. As such algorithms based
on Boolean models have been proposed (84,85). Interactions
are modeled by Boolean rules and expression levels are
described by two discrete values. Although such discrete
representations require relatively few data, the discretization
leads to a considerable loss of information that was present
in the original expression data. Most Boolean models cannot
cope with the noise of the experimental data or with the
stochasticity of the biological system although certain
attempts have been made (86).
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Bayesian networks (or belief networks) are from that
perspective more appropriate (87). Because of their probabil-
istic nature, they cope with stochasticity automatically. Also,
in this probabilistic framework, additional sources of informa-
tion can easily be taken into account (76). With a few excep-
tions that can handle continuous data (88,89), most of the
inference implementations based on Bayesian networks
require data discretization. Bayesian networks can also cope
with hidden variables (90). Hidden variables represent essen-
tial network components for which no changes in expression
can be observed, either because of measurements error (then
called missing variables), or because of biological reasons,
e.g., the compound acts at posttranslational level. Inference
algorithms based on Bayesian networks have been developed
both for static data (76,88,89,91,92) and dynamic data
(87,93,94).

The probabilistic nature of Bayesian networks certainly
offers an advantage over the deterministic characteristics of
Boolean networks. The downside, however, is the extensive
data requirement that is much less explicit in the simpler
Boolean models than in Bayesian networks. To combine the
best of both methods, a hybrid model based on the use of
Bayesian Boolean networks has been proposed. This method
combines the rule-based reasoning of the Boolean models with
probabilistic characteristics of Bayesian networks (95). A sec-
ond group of methods uses the matrix, representation of a net-
work. These methods are based on linear or nonlinear models,
In linear models, each gene transcription level depends line-
arly on the expression level of its parents, for instance repre-
sented by linear differential equations (96,97). Nonlinear
models make use of black box representations such as neural
networks (98), nonlinear differential equations (99), or non-
linear differential equations based on empirical rate laws of
enzyme kinetics (100). Nonlinear optimization methods are
used to fit the model equations to the data and to estimate
the model parameters. Estimating all of the parameters
requires an unrealistic large amount of data. The matrix
method of singular value decomposition (SVD) has been pro-
posed to solve linear models more efficiently and to generate
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a family of possible candidate networks for the undetermined
problem (101–104).

To this day, genetic network inference is, given the rela-
tively small number of available experiments, an undeter-
mined problem. The solution of any algorithm will therefore
pinpoint a number of possible solutions, i.e., networks that
are equally consistent with the data. To further reduce the
number of possible networks, design methods have been
developed (105). These methods predict, based on a first series
of experiments, the consecutive set of experiments that will be
most informative. Close collaboration between data-analysts
and molecular biologists using experiment design procedures
and consecutive series of experiments will be indispensable
for biological relevant inference. Practical examples where
genetic network inference has resulted in the reconstruction
of at least part of a network are rare. Most of the successful
studies use heuristic methods that are based on biological
intuition and that combine expression data with additional
prior knowledge (e.g., 77,106).

3.3. Microarray Analysis for Predictive
Toxicology

Every toxicological compound affects the expression of genes
in a specific way. Every gene, represented on the array, there-
fore, has a characteristic expression level triggered by the
compound. All these characteristic gene expression levels con-
tribute to a profile that is specifically associated with a certain
compound (typical fingerprint or reference profile or experi-
ment profile). Each reference profile thus consists of a vector
with thousands of components (one, component for each probe
present on the array) and corresponds to a certain column of
the expression matrix (see Sec. 2.3). Assuming that com-
pounds with a similar mechanism of toxicity are associated
with the alteration of a similar set of genes, they should exhi-
bit similar reference profiles, in our setup, a class or a group
of compounds corresponds to the set of compounds that have a
similar characteristic profile.
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Based on this reasoning, reference databases are con-
structed. For each class of compounds, representatives, for
which the toxicological response is well-characterized
mechanistically are selected. For these representatives, refer-
ence profiles are assessed. The main goal of predictive toxicol-
ogy is to determine the class to which a novel compound
belongs by comparing its experiment profile to the reference
profiles present in the database. However, due to its huge
dimension (thousands of components), it is impossible to use
the complete experiment profile at once in predictive toxicol-
ogy. Prediction is based on a selected number of features
(genes or combination of genes) that are most correlated with
the class differences between the compounds (that are most
discriminative). Identification of such features relies on fea-
ture extraction methods (Sec. 3.3.1). Sometimes the number
of classes and the exact identity of classes present in the data
are not known, i.e., it is not known in advance which of the
tested compounds belong to the same class of compounds.
Class discovery (or clustering of experiments) is an unsuper-
vised technique that tries to detect these hidden classes and
the features associated with them (Sec. 3.3.2). Eventually,
once the classes and related features have been identified in
the reference database, classifiers can be constructed that
predict the class to which a novel compound belongs (class
prediction or classification Sec. 3.3.3).

3.3.1. Feature Selection

Due to its high dimensionality, using the complete experi-
ment profile to predict the class membership of a novel com-
pound is infeasible. Dimensions need to be reduced, e.g., the
profile consisting of the expression levels of 10,000 genes will
be reduced to a profile that only consists of a restricted num-
ber of most discriminative features (e.g., 100). The problem of
dimensionality reduction thus relates to the identification of
the genes for which the expression profile is most correlated
with the distinction between the different classes of com-
pounds. Several approaches for feature selection exist, some
of which will be elaborated below.
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3.3.1.1. Selection of Individual Genes

The aim is to identify single genes the expression of
which is correlated with the class distinction one is interested
in. Features then correspond to these individual genes (i.e.,
single gene features). Because not all genes have an expres-
sion that contains information about a certain class distinc-
tion, some genes can be omitted when studying these
classes. Contrary to class discovery, feature extraction as
described here requires that the class distinction is known
in advance (i.e., it is a supervised method). For this simple
method of feature selection, standard statistical tests to
identify two variables that are significantly different from
each other are applicable (t-test, Wilcoxon rank-sum
test, . . .—see Sec. 3.2.1). Other specialized methods have been
developed such as the nonparameter rank based methods
of Park et al. (107) or the measure of correlation described
by Golub et al. (108).

Also here methods for multiple testing are required (see
Sec. 3.2.1). Indeed, a statistical test has to be calculated for
every single gene in the dataset (several thousands!). As a
consequence, several genes will be selected coincidentally
(they will have a high score or low p-value without having
any true correlation with the class distinction, i.e., they are
false positives).

Although frequently applied in predictive applications
(109,110), using single gene features might not result in the
best predictive performance. Indeed, in general, a class dis-
tinction is not determined by the activity of a single gene,
but rather by the interaction of several genes. Therefore,
using a combination of genes as a single feature is, a more
realistic approach (see Sec. 3.3.1.2).

3.3.1.2. Selection of a Combination of Genes

In this section, methods for dimensionality reduction
are described that are based on the selection of different com-
binations (linear or nonlinear) of gene expression levels
as features.

Principal component analysis is one of the methods
that can be used in this context (111). PCA finds linear
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combinations of the gene expression levels of a microarray
experiment in such a way that these linear combinations have
maximal spread (or standard deviation) for a certain collec-
tion of microarray experiments. In fact, PCA searches for
the combinations of gene expression levels that are most
informative. These (linear) combinations are called the princi-
pal components for a particular collection of experiments and
they can be found by calculating the eigenvectors of S (co var-
iance matrix of A—note that in this formula A has to be cen-
tralized, i.e., the mean column vector of A has to lie in the
origin):

S ¼ 1

p� 1
A � A0

where A is the expression matrix (n�p matrix—collection of
p microarray experiments where n gene expression levels
were measured). The eigenvectors or principal components
with the largest eigenvalues also correspond to the linear
combinations with the largest spread for the collection of
microarray experiments represented by A. For a certain
experiment, the linear combinations (or features) themselves
can be calculated by projecting the expression vector (for that
experiment) onto the principal components. In general, only
the principal components with the largest eigenvalues will
be used. So when (1) E (n� 1) is the expression vector for a
certain microarray experiment (where also n gene expression
levels were measured), (2) the columns of P (n�m matrix)
contain the m principal components corresponding to the m
largest eigenvalues of A, and (3) F (m� 1) is given by

F ¼ P0 � E

then the m components of F contain the m features or linear
combinations for the microarray experiment with expression
vector E according to the first m principal components of
the collection of microarray experiments represented by A.

As an unsupervised method, PCA can also be used
in combination with, for example, class discovery or cluster-
ing. Also nonlinear versions of PCA (that use nonlinear
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combinations—kernel PCA—(112) and PCA-similar methods
such as PLS (partial least squares) (113)) AQ6are available.

3.3.1.3. Feature Selection by Clustering Gene
Expression Profiles

As discussed in Sec. 3.2.1, genes can be subdivided into
groups (clusters) based on the similarity in their gene expres-
sion profile. These clusters might contain genes that contri-
bute similarly to the distinction between the different
classes of compounds. If the latter is the case, genes within
a cluster of gene expression profiles can be considered as
one single feature (mathematically represented by the mean
expression in this cluster).

3.3.2. Class Discovery

Compounds or drugs can, according to their effects in living
organisms, be subdivided in different classes. These effects
are reflected in the characteristic expression profiles of cells
exposed to a certain compound (fingerprints, reference pro-
file). The knowledge of these different classes enables classifi-
cation of new substances. However, the current knowledge of
these different classes might still be imperfect. The current
taxonomy may contain classes that include substances with
a high variability in expression profile. Also current class
borders might be suboptimal. All this suggests that a refine-
ment of the classification system and a rearrangement of
the classes might improve predicting the behavior of new
compounds.

Unsupervised methods such as clustering allow automa-
tically finding the different classes=clusters in a group of
microarray experiments, without knowing the properties of
these classes in advance (i.e., the classification system of the
compounds to which the cells were exposed to is unknown).
A cluster, in general, will group microarray experiments (or
the associated xenobiotics) with a certain degree of similarity
in their experiment expression profile or fingerprint. The dis-
tinct clusters identified by the clustering procedure will—at
least partially—match with the existing classification used
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for grouping compounds. However, it is not excluded that
novel, yet unknown entities or classes might originate from
these analyses.

Several methods (e.g., hierarchical clustering (114),
K-means clustering (115), self-organizing maps (108), . . . ) dis-
cussed in Sec. 3.2.2.3 can also be used in this context (i.e.,
clustering of the experiment expression profiles or columns
of the expression matrix instead of clustering the gene expres-
sion profiles or rows of the expression matrix). For some
methods (e.g., K-means—is not able to cluster limited sets of
high-dimensional data points), clustering of the experiment
profiles must be preceded by unsupervised feature extraction
or dimensionality reduction (Sec. 3.3.1) (Fig. F1010).

When clustering gene expression profiles is performed
concurrently with or in preparation of the cluster analysis
of the experiment profiles, this is called biclustering. For
instance, hierarchical clustering simultaneously calculates a
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tree structure for both columns (experiments) and rows
(genes) of the data matrix. One can also start with the cluster
analysis of the gene expression profiles. Subsequently, one or
a subset of these clusters (that seem biologically relevant) is
selected. Cluster analysis of the experiments is based on this
selection (114). Another technique is to find what is called ‘‘a
bicluster’’ (106). A bicluster is defined as a subset of genes
that shows a consistent expression profile over a subset of
microarray experiments (and vice versa), i.e., one looks for a
homogeneous submatrix of the expression matrix (116).

Figure 10 Illustration of class discovery by cluster analysis.
The use of microarrays in toxicological gene expression is taking
a lead from the work that has been carried out in the field of can-
cer research. From this field also the following example was
taken because of its illustrative value. The dataset derived is
from the study of Golub et al. (108) and describes a comparison
between mRNA profiles of blood or bone marrow cells extracted
from 72 patients suffering from two distinct types of acute leuke-
mia (ALL or AML). Class labels (ALL or AML) were known in
advance. In this example, it was demonstrated that the prede-
fined classes could be rediscovered based on unsupervised learn-
ing techniques. Patients were clustered based on their
experiment profiles (column vectors). Since each experiment pro-
file consisted of the expression levels of thousands of genes (it
represents a point in the n-dimensional space), its dimensionality
was too high to use K-means clustering without prior dimension-
ality reduction. Dimensionality was reduced by PCA. The five
principal components with the largest eigenvalues were retained
and K-means clustering (two clusters) was performed in this
five-dimensional space. Patients assigned to the first cluster are
represented by circles, patients belonging to the second cluster
by stars. Patients with ALL are in blue, and patients with
AML are in red. Cluster averages are indicated by black crosses.
For the ease of visualization, the experiments (patients) are
plotted on the first two principal components. Note that all
patients of the first cluster have AML and that almost all
patients (with one exception) of the second cluster have ALL.

3
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3.3.3. Class Prediction

Predictive toxicogenomics tries to predict the toxicological
endpoints of compounds, with unknown properties or side-
effects, by using high-throughput measurements, such as
microarrays. This implicates that first the class membership

Figure 11 Example of a predictive method. This example resumes
the example of Fig. 10 and illustrates the application of a classifica-
tion model to predict the class membership of patients with acute
leukemia based on their experiment profile. A linear classification
model was built using Linear Discriminant Analysis based on the
first two (m¼ 2) principal components of the patients of a training
set containing 38 patients. The line in this figure represents the lin-
ear classifier for which the parameters were derived using the
patients of the training set. Only the patients of the test set
(remaining 34 patients) are shown (after projection onto the princi-
pal components of the training set). The patients above the line are
classified as ALL and below as AML. Note that this resulted in
three misclassifications. Test set: �¼ALL, � ¼AML.
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of the novel compound needs to be predicted. Subsequently,
the properties of the unknown compound will be derived
through extrapolation of the characteristics of the reference
members of the class of compounds to which the unknown
compound was predicted to belong.

To be able to predict the class membership of novel com-
pounds, a classifier has to be built. Based on a set of features
and a training set (reference database), a classifier model
(like neural networks (111), support vector machines (112),
linear discriminant analysis (111), Bayesian networks
(117,118), . . . ) will be trained. This means that the para-
meters of the model will be determined using the data in
the training set (Fig. F1111). This classifier is subsequently used
to predict the class membership of a novel compound.

4. CONCLUSIONS AND PERSPECTIVES

Conclusively, the use high-throughput molecular biological
data have much to offer the mechanistic and predictive toxi-
cologist. The impact of these data on toxicological research
will grow with the size of public datasets and reference data-
bases. The combination and interpretation of all the data gen-
erated will be a major computational challenge for the future
that can only be tackled by an integrated effort of both experts
in toxicology and data analysis.

ACKNOWLEDGEMENTS

De Moor is a full professor at the K.U. Leuven. Kathleen Mar-
chal is a postdoctoral researcher of the Belgian Fund for
Scientific Research (FWO-VLaanderen); Frank De Smet is a
research assistant of the K.U. Leuven. Kristof Engelen is
research assistant of the IWT. B. This work is partially sup-
ported by: (1) IWT projects: STWW-00162, GBOU-SQUAD-
20160; (2) Research Council KULeuven: GOA Mefisto-666,
IDO genetic networks; (3) FWO projects: G.0115.01,
G.0413.03, and G.0388.03; (4) IUAP V-22 (2002–2006).

Computational Biology and Toxicogenomics 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



REFERENCES

1. Ulrich R, Friend SH. Toxicogenomics aad drug discovery: will
new technologies help us produce better drugs? Nat Rev Drug
Discov 2002; 1:84–88.

2. Gerhold D, Lu M, Xu J, Austin C, Caskey CT, Rushmore T.
Monitoring expression of genes involved in drug metabolism
and toxicology using DNA microarrays. Physiol Genomics
2001; 5:161–170.

3. Waring JF, Ciurlionis R, Jolly RA, Heindel M, Uirich RG.
Microanay analysis of hepatotoxins in vitro reveals a correla-
tion between gene expression profiles and mechanisms of
toxicity. Toxicol Lett 2001; 120:359–368.

4. Waring JF, Gum R, Morfitt D, Jolly RA, Ciurlionis R, Heindel
M, Gallenberg L, Buratto B, Ulrich RG. Identifying toxic
mechanisms using DNA microarrays: evidence that an
experimental inhibitor of cell adhesion molecule expression
signals through the aryl hydrocarbon nuclear receptor.
Toxicology 2002; 181:537–550.

5. Amin RP, Hamadeh HK, Bushel PR, Bennett L, Afshari CA,
Paules RS. Genomic interrogation of mechanism(s) underly-
ing cellular responses to toxicants. Toxicology 2002;
181:555–563.

6. Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M.
Interrelating different types of genomic data, from proteome
to secretome: ‘oming in on function. Genome Res 2001;
11:1463–1468.

7. Clarke PA, te Poele R, Wooster R, Workman P. Gene expres-
sion microarray analysis in cancer biology, pharmacology,
and drug development: progress and potential. Biochem
Pharmacol 2001; 62:1311–1336.

8. Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA.
Microarrays and toxicology: the advent of toxicogenomics.
Mol Carcinog 1999; 24:153–159.

9. Hamadeh HK, Amin RP, Paules RS, Afshari CA. An overview
of toxicogenomics. Curr Issues Mol Biol 2002; 4:45–56.

76 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



10. Pennie WD, Kimber I. Toxicogenomics; transcript profiling
and potential application to chemical allergy. Toxicol In Vitro
2002; 16:319–326.

11. Naudts B, Marchal K, De Moor B, Verschoren A. Is it realistic to
infer a gene network from a small set of microarray
experiments. Internal Report ESAT=SCD K.U.Leuven.
http:==www. esat.kuleuven. ac.be=�sistawww=cgi-bin=pub.pl.

12. Pennie WD. Use of cDNA microarrays to probe and under-
stand the toxicological consequences of altered gene expres-
sion. Toxicol Lett 2000; 112:473–477.

13. de Longueville F, Surry D, Meneses-Lorente G, Bertholet V,
Talbot V, Evrard S, Chandelier N, Pike A, Worboys P, Rasson
JP, Le Bourdelles B, Remacle J. Gene expression profiling of
drug metabolism and toxicology markers using a low-density
DNA microarray. Biochem Pharmacol 2002; 64:137–149.

14. Gant TW. Classifying toxicity and pathology by gene-expres-
sion profile—taking a lead from studies in neoplasia. Trends
Pharmacol Sci 2002; 23:388–393.

15. Pennie WD. Custom cDNA microarrays; technologies and
applications. Toxicology 2002; 181–182:551–554.

16. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spell-
man P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton
HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Mar-
kowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U,
Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M.
Minimum information about a microarray experiment
(MIAME)—toward standards for microarray data. Nat Genet
2001; 29:365–371.

17. Gerhold DL, Jensen RV, Gullans SR. Better therapeutics
through microarrays. Nat Genet 2002; 32(suppl):547–551.

18. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expres-
sion profiling using cDNA microarrays. Nat Genet 1999;
21:10–14.

19. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High
density synthetic oligonucleotide arrays. Nat Genet 1999;
21:20–24.

Computational Biology and Toxicogenomics 77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



20. Epstein JR, Leung AP, Lee KH, Walt DR. High-density,
microsphere-based fiber optic DNA microarrays. Biosens
Bioelectron 2003; 18:541–546.

21. Southern EM. DNA microarrays. History and overview.
Methods Mol Biol 2001; 170:1–15.

22. Blohm DH, Guiseppi-Elie A. New developments in micro-
array technology. Curr Opin Biotechnol 2001; 12:41–47.

23. Brown PO, Botstein D. Exploring the new world of the gen-
ome with DNA microarrays. Nat Genet 1999; 21:33–37.

24. Kerr MK, Martin M, Churchill GA. Analysis of variance for
gene expression microarray data. J Cornput Biol 2000;
7:819–837.

25. Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H,
Lehrach H, Herzel H. Normalization strategies for cDNA
microarrays. Nucleic Acids Res 2000; 28:E47.

26. Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nut-
tall RL, Stack R, Becker JW, Montgomery JR, Vainer M,
Johnston R. An evaluation of the performance of cDNA micro-
arrays for detecting changes in global mRNA expression.
Nucleic Acids Res 2001; 29:E41–E41.

27. Kerr MK, Churchill GA. Experimental design for gene
expression microarrays. Biostatistics 2001; 2:183–201.

28. Yang YH, Speed T. Design issues for cDNA microarray
experiments. Nat Rev Genet 2002; 3:579–588.

29. Churchill GA. Fundamentals of experimental design for
cDNA microarrays. Nat Genet 2002; 32(suppl):490–495.

30. Baldi P, Long AD. A Bayesian framework for the analysis of
microarray expression data: regularized t-test and statistical
inferences of gene changes. Bioinformatics 2001; 17:509–519.

31. Marchal K, Engelen K, De Brabanter J, Aerts S, De Moor B,
Ayoubi T, Van Hummelen P. Comparison of different meth-
odologies to identify differentially expressed genes in two-
sample cDNA microarrays. J Biol Syst 2002; 10:409–430.

32. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed
TP. Normalization for cDNA microarray data: a robust

78 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



composite method addressing single and multiple slide sys-
tematic variation. Nucleic Acids Res 2002; 30:el5.

33. Colantuoni C, Henry G, Zeger S, Pevsner J. SNOMAD (Stan-
dardization and NOrmalization of MicroArray Data): web-
accessible gene expression data analysis. Bioinformatics
2002; 18:1540–1541.

34. Engelen K, Coessens B, Marchal K, De Moor B. MARAN: a
web-based application for normalizing micro-array data.
Bioinformatics 2003; 19:893–894.

35. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh
H, Bushel P, Afshari C, Paules RS. Assessing gene signifi-
cance from cDNA microarray expression data via mixed mod-
els. J Comput Biol 2001; 8:625–637.

36. Kerr MK, Churchill GA. Bootstrapping cluster analysis:
assessing the reliability of conclusions from microarray
experiments. Proc Natl Acad Sci USA 2001; 98:8961–8965.

37. Didier G, Brezellec P, Remy E, Henaut A. GeneANOVA—
gene expression analysis of variance. Bioinformatics 2002;
18:490–491.

38. Newton MA, Kendziorski CM, Richmond CS, Blattner FR,
Tsui KW. On differential variability of expression ratios:
improving statistical inference about gene expression
changes from microarray data. J Comput Biol 2001; 8:37–52.

39. Ideker T, Thorsson V, Siegel AF, Hood LE. Testing for differ-
entially-expressed genes by maximum-likelihood analysis of
microarray data. J Comput Biol 2000; 7:805–817.

40. Rocke DM, Durbin B. A model for measurement error for
gene expression arrays. J Comput Biol 2001; 8:557–569.

41. Tusher VG, Tibshirani R, Chu G. Significance analysis of
microarrays applied to the ionizing radiation response. Proc
Natl Acad Sci USA 2001; 98:5116–5121.

42. Pan W. A comparative review of statistical methods for disco-
vering differentially expressed genes in replicated microarray
experiments. Bioinformatics 2002; 18:546–554.

43. Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW,
Baldi P. Improved statistical inference from DNA microarray

Computational Biology and Toxicogenomics 79

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



data using analysis of variance and a Bayesian statistical fra-
mework. Analysis of global gene expression in Escherichia
coli K12. J Biol Chem 2001; 276:19937–19944.

44. Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman
RB. Nonparametric methods for identifying differentially
expressed genes in microarray data. Bioinformatics 2002;
18:1454–1461.

45. Dudoit S, Yang YH, Callow MJ, Speed TP. Statistical meth-
ods for identifying differentially expressed genes in replicated
cDNA microarray experiments. Technical Report #578, Stan-
ford University, 2000:1–38.

46. Storey JD, Tibshirani R. Statistical significance for genome-
wide studies. Proc Natl Acad Sci USA 2003; 100:9440–9445.

47. Moreau Y, De Smet F, Thijs G, Marchal K, De Moor B. Func-
tional bioinformatics of microarray data: from expression to
regulation. IEEE Proc 2002; 30:1722–1743.

48. De Moor B, Marchal K, Mathys J, Moreau Y. Bioinformatics:
organisms from Venus, technology from Jupiter, algorithms
from Mars. Eur J Control 2003; 9:237–278.

49. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster ana-
lysis and display of genome-wide expression patterns. Proc
Natl Acad Sci USA 1998; 95:14863–14868.

50. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T,
Tibshirani R, Botstein D, Altaian RB. Missing value estima-
tion methods for DNA microarrays. Bioinformatics 2001;
17:520–525.

51. De Smet F, Mathys J, Marchal K, Thijs G, De Moor B,
Moreau Y. Adaptive quality-based clustering of gene exp-
ression profiles. Bioinformatics 2002; 18:735–746.

52. Tou JT, Gonzalez RC. Pattern classification by distance
functions. Pattern AQ7Recognition Principles. Adison-Wesley,
1979:75–109.

53. Kohonen T. Self-Organizing Maps. Berlin, Germany:
Springer-Verlag, 1997.

54. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmi-
trovsky E, Lander ES, Golub TR. Interpreting patterns of

80 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



gene expression with self-organizing maps: methods and
application to hematopoietic differentiation. Proc Natl Acad
Sci USA 1999; 96:2907–2912.

55. Tavazoie S, Hughes JD, Campbell MJ, Cho PJ, Church GM.
Systematic determination of genetic network architecture.
Nat Genet 1999; 22:281–285.

56. Ghosh D, Chinnaiyan AM. Mixture modelling of gene expres-
sion data from microarray experiments. Bioinformatics 2002;
18:275–286.

57. Lukashin AV, Fuchs R. Analysis of temporal gene expression
profiles: clustering by simulated annealing and determining
the optimal number of clusters. Bioinformatics 2001;
17:405–414.

58. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL.
Model-based clustering and data transformations for gene
expression data. Bioinformatics 2001; 17:977–987.

59. Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised
growing neural network for clustering gene expression pat-
terns. Bioinformatics 2001; 17:126–136.

60. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data:
identification and analysis of coexpressed genes. Genome Res
1999; 9:1106–1115.

61. Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt
L, Chan WC, Botstein D, Brown P. ‘Gene shaving’ as a
method for identifying distinct sets of genes with similar
expression patterns. Genome Biol 2000; 1:RESEARCH0003.

62. Ben Dor A, Shamir R, Yakhini Z. Clustering gene expression
patterns. J Comput Biol 1999; 6:281–297.

63. Sharan R, Shamir R. CLICK: a clustering algorithm with
applications to gene expression analysis. Proc Int Conf Intell
Syst Mol Biol 2000; 8:307–316.

64. Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M,
Rombauts S, Rouze P, De Moor B, Marchal K. INCLUSive:
INtegrated Clustering, Upstream sequence retrieval and
motif Sampling. Bioinformatics 2002; 18:331–332.
http:==www.esat.kuleuven.ac.be=�dna=BioI=Software.html.

Computational Biology and Toxicogenomics 81

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



65. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J,
Abeygunawardena N, Holloway E, Kapushesky M, Kemme-
ren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA.
ArrayExpress—a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res 2003; 31:68–71.

66. Xia X, Xie Z. AMADA: analysis of microarray data. Bioinfor-
matics 2001; 17:569–570.

67. Azuaje F. A cluster validity framework for genome expression
data. Bioinformatics 2002; 18:319–320.

68. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M,
Radmacher M, Simon R, Yakhini Z, Ben Dor A, Sampas N,
Dougherty E, Wang E, Marincola F, Gooden C, Lueders J,
Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D,
Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Mole-
cular classification of cutaneous malignant melanoma by
gene expression profiling. Nature 2000; 406:536–540.

69. McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC,
Simon R. Methods for assessing reproducibility of clustering
patterns observed in analyses of microarray data. Bioinfor-
matics 2002; 18:1462–1469.

70. Marchal K, Thijs G, De Keersmaecker S, Monsieurs P,
De Moor B, Vanderleyden J. Genome-specific higher-order
background models to improve motif detection. Trends Micro-
biol 2002; 11:61–66.

71. Thijs G, Marchal K, Lescot M, Rombauts S, De Moor B, Rouze
P, Moreau Y. A Gibbs sampling method to detect overrepre-
sented motifs in the upstream regions of coexpressed genes.
J Comput Biol 2002; 9:447–464.

72. Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze
P, Moreau Y. A higher-order background model improves the
detection of promoter regulatory elements by Gibbs sampling.
Bioinformatics 2001; 17:1113–1122.

73. Brazhnik P, de la Fuente A, Mendes P. Gene networks: how
to put the function in genomics. Trends Biotechnol 2002;
20:467–472.

74. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene
expression in a single cell. Science 2002; 297:1183–1186.

82 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



75. Rao CV, Wolf DM, Arkin AP. Control, exploitation and toler-
ance of intracellular noise. Nature 2002; 420:231–237.

76. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Combin-
ing location and expression data for principled discovery of
genetic regulatory network models. Pac Symp Biocomput
2002; 437–449.

77. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z,
Gerber GK, Hannett NM, Harbison CT, Thompson CM,
Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon
DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E,
Gifford DK, Young RA. Transcriptional regulatory networks
in Saccharomyces cerevisiae. Science 2002; 298:799–804.

78. Banerjee N, Zhang MQ. Functional genomics as applied to
mapping transcription regulatory networks. Curr Opin
Microbiol 2002; 5:313–317.

79. Zhang Z, Gerstein M. Reconstructing genetic networks in
yeast. Nat Biotechnol 2003; 21:1295–1297.

80. Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro
L. Global analysis of the genetic network controlling a bacter-
ial cell cycle. Science 2000; 290:2144–2148.

81. Guelzim N, Bottani S, Bourgine P, Kepes F. Topological and
causal structure of the yeast transcriptional regulatory net-
work. Nat Genet 2002; 31:60–63.

82. Rung J, Schlitt T, Brazma A, Freivalds K, Vilo J. Building
and analysing genome-wide gene disruption networks. Bioin-
formatics 2002; 18(suppl 2):S202–S210.

83. Thieffry D, Salgado H, Huerta AM, Collado-Vides J. Predic-
tion of transcriptional regulatory sites in the complete gen-
ome sequence of Escherichia coli K-12. Bioinformatics 1998;
14:391–400.

84. Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse
engineering algorithm for inference of genetic network archi-
tectures. Pac Symp Biocomput 1998; 18–29.

85. Akutsu T, Miyano S, Kuhara S. Algorithms for identifying
Boolean networks and related biological networks based on
matrix multiplication and fingerprint function. J Comput Biol
2000; 7:331–343.

Computational Biology and Toxicogenomics 83

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



86. Akutsu T, Miyano S, Kuhara S. Inferring qualitative rela-
tions in genetic networks and metabolic pathways. Bioinfor-
matics 2000; 16:727–734.

87. Murphy K, Mian I. Modelling gene expression data using
dynamic Bayesian networks. Technical Report 1999, Compu-
ter Science Division, University of California, Berkeley, CA.
http:==www.cs .berkeley.edu=�murphyk=publ.html.

88. Yoo C, Thorsson V, Cooper GF. Discovery of causal relation-
ships in a gene-regulation pathway from a mixture of experi-
mental and observational DNA microarray data. Pac Symp
Biocomput 2002; 498–509.

89. Imoto S, Goto T, Miyano S. Estimation of genetic networks
and functional structures between genes by using Bayesian
networks and nonparametric regression. Pac Symp Biocom-
put 2002; 175–186.

90. Friedman N. Learning belief networks in the presence of
missing values or hidden variables. Proceedings of the 14th
International Conference on Machine Learning (ICML) 1997.

91. Pe’er D, Regev A, Elidan G, Friedman N. Inferring subnet-
works from perturbed expression profiles. Bioinformatics
2001; 17(suppl 1):S215–S224.

92. Friedman N, Nachman I, Linial M, Pe’er D. Using Bayesian
networks to analyze expression data. J Comput Biol 2000;
7:601–620.

93. Ong IM, Glasner JD, Page D. Modelling regulatory pathways
in E. coli from time series expression profiles. Bioinformatics
2002; 18(suppl 1):S241–S248.

94. Smith VA, Jarvis ED, Hartemink AJ. Evaluating functional
network inference using simulations of complex biological
systems. Bioinformatics 2002; 18(suppl 1):S216–S224.

95. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic
Boolean networks: a rule-based uncertainty model for gene
regulatory networks. Bioinformatics 2002; 18:261–274.

96. D’Haeseleer P, Liang S, Somogyi R. Genetic network infer-
ence: from co-expression clustering to reverse engineering.
Bioinformatics 2000; 16:707–726.

84 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



97. Chen T, He HL, Church GM. Modeling gene expression with
differential equations. Pac Symp Biocomput 1999; 29–40.

98. Wahde M, Hertz J. Coarse-grained reverse engineering of
genetic regulatory networks. Biosystems 2000; 55:129–136.

99. Akutsu T, Miyano S, Kuhara S. Algorithms for inferring qua-
litative models of biological networks. Pac Symp Biocomput
2000; 293–304.

100. Kato M, Tsunoda T, Takagi T. Merring genetic networks from
DNA microarray data by multiple regression analysis. Gen-
ome Inform Ser Workshop Genome Inform 2000; 11:118–128.

101. Alter O, Brown PO, Botstein D. Singular value decomposition
for genome-wide expression data processing and modeling.
Proc Natl Acad Sci USA 2000; 97:10101–10106.

102. Yeung MK, Tegner J, Collins JJ. Reverse engineering gene
networks using singular value decomposition and robust
regression. Proc Natl Acad Sci USA 2002; 99:6163–6168.

103. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR,
Fedoroff NV. Firadamental patterns underlying gene expres-
sion profiles: simplicity from complexity. Proc Natl Acad Sci
USA 2000; 97:8409–8414.

104. Raychaudhuri S, Stuart JM, Altman RB. Principal compo-
nents analysis to summarize microarray experiments: appli-
cation to sporulation time series. Pac Symp Biocomput
2000; 455–466.

105. Ideker TE, Thorsson V, Karp RM. Discovery of regulatory
interactions through perturbation: inference and experimen-
tal design. Pac Symp Biocomput 2000; 305–316.

106. Tanay A, Sharan R, Shamir R. Discovering statistically sig-
nificant biclusters in gene expression data. Bioinformatics
2002; 18(suppl 1):S136–S144.

107. Park PJ, Pagano M, Bonetti M. A nonparametric scoring
algorithm for identifying informative genes from microarray
data. Pac Symp Biocomput 2001; 52–63.

108. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M,
Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA,
Bloomfield CD, Lander ES. Molecular classification of cancer:

Computational Biology and Toxicogenomics 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



class discovery and class prediction by gene expression mon-
itoring. Science 1999; 286:531–537.

109. Xu J, Stolk JA, Zhang X, Silva SJ, Houghton RL, Matsumura
M, Vedvick TS, Leslie KB, Badaro R, Reed SG. Identification
of differentially expressed genes in human prostate cancer
using subtraction and microarray. Cancer Res 2000;
60:1677–1682.

110. Wang K, Gan L, Jeffery E, Gayle M, Gown AM, Skelly M,
Nelson PS, Ng WV, Schummer M, Hood L, Mulligan J. Mon-
itoring gene expression profile changes in ovarian carcinomas
using cDNA microarray. Gene 1999; 229:101–108.

111. Bishop CM. Neural Networks for Pattern Recognition. New
York: Oxford University Press, 1995.

112. Suykens J, Van Gestel T, De Brabanter J, De Moor B,
Vandewalle J. Least Squares Support Vector Machines. Sin-
gapore: World Scientific, 2002.

113. Johansson D, Lindgren P, Berglund A. A multivariate
approach applied to microarray data for identification of
genes with cell cycle-coupled transcription. Bioinformatics
2003; 19:467–473.

114. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS,
Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell
JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis
DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC,
Weisenburger DD, Armitage JO, Warnke R, Standt LM. Dis-
tinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature 2000; 403:503–511.

115. Quackenbush J. Computational analysis of microarray data.
Nat Rev Genet 2001; 2:418–427.

116. Sheng Q, Moreau Y, De Moor B. Biclustering microarray data
by Gibbs sampling. Bioinformatics 2003; 19(suppl 2):II196–
II205.

117. Moreau Y, Antal P, Fannes G, De Moor B. Probabilistic gra-
phical models for computational biomedicine. Methods Inf
Med 2003; 42:161–168.

118. Jordan M. Learning in Graphical Models. Cambridge, MA,
London: MIT Press, 1999.

86 Marchal et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



119. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A,
Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D,
Lockhart DJ, Davis RW. A genome-wide transcriptional ana-
lysis of the mitotic cell cycle. Mol Cell 1998; 2:65–73.

REFERENCES AS INTRODUCTORY TO
TOXICOGENOMICS

1. Clarke PA, te Poele R, Wooster R, Workman P. Gene expression
microarray analysis in cancer biology, pharmacology, and drug
development: progress and potential. Biochem Pharmacol 2001;
62:1311–1336.

2. Amin RP, Hamadeh HK, Bushel PR, Bennett L, Afshari CA,
Paules RS. Genomic interrogation of mechanism(s) underlying
cellular responses to toxicants. Toxicology 2002; 181–182:555–
563.

3. Ulrich R, Friend SH. Toxicogenomics and drug discovery: will
new technologies help us produce better drugs? Nat Rev Drug
Discov 2002; 1:84–88.

4. Vrana KE, Freeman WM, Aschner M. Use of microarray tech-
nologies in toxicology research. Neurotoxicology 2003; 24:321–
332.

REFERENCES AS INTRODUCTORY TO
METHODOLOGICAL REVIEWS

1. Quackenbush J. Computational analysis of microarray data.
Nat Rev Genet 2001; 2:418–427.

GLOSSARY AQ8

Additive error: This represents the absolute error on a
measurement that is independent of the measured expression
level. Consequently, the relative error is inversely propor-
tional to the measured intensity and is high for measure-
ments with low magnitude.

Bayesian network: This represents a mathematical
model that allows both a compact representation of the joint
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probability distribution over a large number of variables, and
an efficient way of using this representation for statistical
inference. It consists of a directed acyclic graph that models
the interdependencies between the variables, and a condi-
tional probability distribution for each node with incoming
edges (see Chapter ???) AQ9

Class discovery: This represents the automatic identi-
fication of the hidden classes in a dataset without a priori
knowledge on the class distinction. The data reduction or
grouping is derived solely from the data. This can be obtained
by using unsupervised learning techniques such as, e.g., clus-
tering.

Classification=prediction: This represents determina-
tion for a certain experiment (microarray experiment of a
certain compound) of its class membership based on a classi-
fier or predictive model: objects are classified into known
groups. Classification is based on supervised learning
techniques.

Clustering: This represents unsupervised learning
technique that organizes multivariate data into groups with
roughly similar patterns, i.e., clustering algorithms group
together genes (experiments) with a similar expression pro-
file. Similarity is defined by the use of a specific distance mea-
sure.

Coexpressed genes: These are genes with a similar
expression profile. Genes of which the behavior of the expres-
sion is similar in different conditions or at different time-
points.

Data matrix: This is a Mathematical representation of a
complex microarray experiment. Each row represents the
expression vector of a particular gene. Each column of the
matrix represents an experimental condition. Each entry in
the matrix represents the expression level of a gene in a cer-
tain condition.

Dedicated microarrays: These contain only a
restricted number of genes, usually marker genes or genes
characteristics for a certain toxicological endpoint. Using
dedicated arrays offers the advantage of higher throughput
screening of lead targets at a lower cost.
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Diagnostic or investigative microarrays: These con-
tain probes representing as much coding sequences of a gen-
ome as possible.

DNA Microarray: This is a High-throughput technol-
ogy that enables the measurement of mRNA transcript levels
at a genomic scale. DNA microarrays are produced by high
density depositing thousands of individual spots (called
probes) of synthetic unique oligonucleotides or cDNA gene
sequences to a solid substrate such as a glass microscope slide
or a membrane.

Dye reversal experiment: This is a specific type of
experimental design used for cDNA arrays. On the first array
the test condition is labeled with Cy5 (red dye), while the refer-
ence is labeled with Cy3 (green dye). On the second array, the
dyes are swapped, i.e., reference condition is labeled with Cy5
(red dye), while the test is labeled with Cy3 (green dye)

Dynamic experiment: This is a complex microarray
experiment that monitors adaptive changes in the expression
level elicited by administering the xenobiotic to the system
under study. By sampling the system at regular time inter-
vals during the time course of the adaptation, short-, mid-,
and long-term alterations in xenobiotic-induced gene expres-
sion are measured.

Expression profile of a gene: This is a vector that con-
tains the expression levels of a certain gene measured in the
different experimental conditions tested; corresponds to the
row in the data matrix.

Expression profile of an experiment=compound:
(also ‘‘fingerprint’’ or ‘‘reference pattern’’) This is a vector that
contains the expression levels of all genes measured in the
specific experimental condition represented by the column;
corresponds to the column in the data matrix.

FDR: The FDR (false discovery rate) is considered as a
sensible measure of balance between the number of false posi-
tives and true positives. The FDR is the rate that the features
called significant are truly null or the number of false posi-
tives among the features called significant.

Feature: This represents a gene (single feature) or com-
bination of genes (complex feature) of which the expression

Computational Biology and Toxicogenomics 89

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2397-X Helma Ch03 R1 091104



levels are associated with a class distinction of interest (e.g.,
of which expression is switched on in one class and switched
off in the other class).

Feature extraction: This represents mathematical or
statistical methodology that identifies the features that are
most correlated with a specific class distinction.

Filtering: This represents removal of genes from the data-
set of which the expression does not change over the tested con-
ditions, i.e., genes that are not involved in the process studied.

Global normalization assumption: This is a general
assumption stating that, from one biological condition to the
next, only of a small fraction of the total number of genes
shows an altered expression level and that symmetry exists
in the number of genes for which the expression is upregu-
lated vs. downregulated.

Mechanistic toxicogenomics: This involves the use of
high-throughput technologies to gain insight into the molecu-
lar biological mechanism of a toxicological response.

Missing values: These are gene expression values that
could not be accurately measured and that were omitted form
the data matrix.

Multiple testing: When considering a family of tests,
the level of significance and power are not the same as those
for an individual test. For instance, a significance of a¼ 0.01
indicates a probability of 1% of falsely rejecting the null
hypothesis (e.g., assuming differential expression while there
is none). This means that for a family of 1000 tests, say every
1000 genes tested, 10 would be expected to pass the test
although not being differentially expressed. To limit this
number of false positives in a multiple test, a correction is
needed (e.g., Bonferroni correction).

Multiplicative error: This represents the absolute
error on the measurement increases with the measurement
magnitude. The relative error is constant, but the variance
between replicate measurements increases with the mean
expression value. Multiplicative errors cause signal-depen-
dent variance of the residuals.

Network inference: This represents reconstruction of
the molecular biological structure of regulatory networks
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from high-throughput measurements, i.e., deriving the caus-
ality relationships between genetic entities (proteins, genes)
from the data.

PCA: Principal component analysis (see other Chapter ?) AQ9

Predictive model or classifier: This represents a
mathematical model (neural network, Bayesian model, . . . )
of which the parameters are estimated by the use of a trai-
ningsset (i.e., the reference database). The predictive model
is subsequently used to predict the class membership of a
novel compound, i.e., to assign a novel compound to a prede-
fined class of compounds based on its expression profile.

Predictive toxicogenomics: This involves the predic-
tion of the toxicological endpoints of compounds, with yet
unknown properties or side-effects by the aid of high-through-
put profiling experiments such as microarrays. A reference
database of expression fingerprints of known compounds
and a predictive model or classifier trained on this reference
database are needed.

Preprocessing: This is a pretreatment process, that
removes consistent and=or systematic sources of variation
from the raw data.

Power: This represents the discriminant power of a sta-
tistical test (computed as 1� b) and the probability of reject-
ing the null hypothesis when the alternative hypothesis is
true (a decision known as a Type II error). It can be inter-
preted as the probability of correctly rejecting a false null
hypothesis. Power is a very descriptive and concise measure
of the sensitivity of a statistical test, i.e., the ability of the test
to detect differences.

Probes: These resent the spots=oligonucleotides on the
microarray that represent the different genes of the genome.

Reference databases: This is a compendium of charac-
teristic expression profiles or fingerprints of well-described
agents or compounds, for which both the toxicological end-
points and the molecular mechanisms resulting in them are
characterized.

Rescaling microarray data: This represents transfor-
mation of the gene expression profiles by subtracting the
mean expression level and by dividing by the standard devia-
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tion of the profile. This operation results in a collection of
expression profiles all being 0 and with a standard deviation
of 1.

Significance: This represents the significance level of a
statistical test, referred to as a, and the maximum probability
of accidentally rejecting a true null hypothesis (a decision
known as a Type I error). The significance of a single result
is also called its p-value, i.e., the lowest possible a that would
lead to the acceptance of the null hypothesis for that result.

Static experiments: This is a complex microarray
experiment that tests the induced changes in expression
under several conditions or in different genetic backgrounds
(gene knock out experiments). Samples are taken when the
steady state expression levels are reached.

SVD: Singular value decomposition (see other
Chapter ???) AQ9

Target: These are the labeled transcripts, present in the
mRNA sample that is hybridized to the array.

Test statistic: This value is calculated from the data
points (e.g., a mean) and used to evaluate a null hypothesis
against an alternative hypothesis. In the framework of testing
for differentially expressed genes, the null hypothesis states
that the genes are not differentially expressed.

Toxicogenomics: This is a Subdiscipline of toxicology
that combines large scale gene=protein expression measure-
ments and the expanding knowledge of genomics to identify
and evaluate genome-wide effects of xenobiotics.

Underdetermination: The number of parameters to be
estimated exceeds the number of experimental data points.
The mathematical problem has no single solution.
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