04-93

Dehaene J., De Moor B., **Stabilizer states, conditional Clifford operations, and their possible

role in quantum computation”, in Proc of MTNS
s . 2004, Leuven, Belgi
127 1-127_13., Lirias number: 180624 e, Tl 2004, .

Stabilizer states, conditional Clifford operations, and their possible
role in quantum computation.

Jeroen Dehaene and Bart De Moor

Katholieke Universiteit Leuven, ESAT-SCD,
Kasteelpark Arenberg 10,
B-3001 Leuven, Belgium.

email: jeroen.dehaene@esat.kuleuven.ac.be

abstract: We discuss a possible road towards new quantum algorithms based on earlier
work on stabilizer states and Clifford operations [1], using linear algebra in vector spaces
over finite fields.

1 Introduction

We work with the following (fairly standard) setting for quantum computation. The
computer consists of n qudits, i.e. quantum systems with a d-dimensional Hilbert space.
We will mostly focus on qubits (d = 2) but most of the theory can be generalized for d
prime and we are working on generalizations for general values of d. The initial state is
a basis state reflecting the classical input (possibly including a fixed ancilla part). The
program consists of one or two-qubit unitary operations applied to the state (or rather
computes classically which operations to apply as a function of » and possibly the classical
input), and the output is read by a final measurement of the qudits. The complexity of the
algorithm is roughly speaking determined by the number of unitary operations required
as a function of n. Only a few quantum algorithms exist with an exponential speed up
over the best known classical algorithms., The best known example is Shor’s algorithm
for factoring integers [3].

The search for new quantum algorithms can be viewed as a trade-off between complexity
and transparency. The degrees of freedom in finding sequences of unitary operations that
lead to interesting results are vast but untransparent. For this reason it is necessary to
restrict the freedom in a way that leads to mathematical transparency and enables to
control or understand what the algorithm is doing, without losing the complexity that is
necessary to prevent straightforward simulation on a classical computer. A simple (but
not very general) example of transparent mathematics without allowing efficient simula-
tion is the efficient quantum realization of a Fourier transformation, which is the heart
of Shor's quantum algorithm. An at first sight appealing path to come up with more
general settings is to work with Clifford operations acting on stabilizer states. Stabilizer
states are joint eigenvectors with eigenvalue 1 of maximal commuting subgroups of the
n-qubit Pauligroup. (Generalizations to qudits are possible). Clifford operations are uni-
tary operations that map the Pauligroup to itself under conjugation. Clifford operations
map stabilizer states to stabilizer states. Clifford operations and stabilizer states can
be elegantly desribed by linear {and quadratic} algebra over Z, [1]. However, working

with only stabilizer states and Clifford operations is too restrictive to disallow efficient
simulation on a classical computer (see for instance [2]).

In this paper we add conditional Clifford operations to the above picture. Conditional
operations are conditional in the same sense as the well known conditional not operation
(CNOT). The operation leaves half of the basis states invariant (say, if the first qubit is
|0)) and applies an (n — 1)-qubit Clifford operation to the other basis states. Multiple
conditions are possible but helow we will restrict ourselves to single conditions. In matrix
terms a conditional Clifford operation with the condition that the first qubit is 1, can be
thought of as a block matrix

0 o)

0 Qc

where the partition corresponds to the value of the first qubit and @), is a Clifford opera-
tion. (Note that the overal phase of @, does matter).

The effect of a conditional Clifford operation remains mathematically transparent if the
part of the state on which it acts (the coniponent along the basis states satisfying the
condition) is a stabilizer state. If the full state is a stabilizer state, this is the case. However
the new full state need not be a stabilizer state again. {There is no compelling reason
to stick to stabilizer states but the path looks fruitful). To study when a stabilizer state
is mapped to a stabilizer state, the mathematical setting of (1] in which the coefficients

" of a stabilizer state (in the standard basis expansion) are described by quadratic forms-
over Z2, proves very useful. Different schemes can be worked out where a subset of the
stabilizer states (S} is preserved by a subset of the Clifford group supplemented with a
number of conditional Clifford operations which together generate a group (G).

However in this setting the sequence of stabilizer states obtained by the consecutive Clif-
ford and conditional Clifford operations can still be efficiently simulated. To avoid this
pitfall we propose a scheme in which simulation on an exponentially large (with growing
n) subset of § would be necessary to simulate the algorithm. This is achieved as follows.
The total action of the program (without the final measurement) on the initial state can
be described by a unitary matrix. The columns of this matrix are the final states for the
different possible (standard basis) input states. If the program consists of a first opera-
tion Gp mapping the initial states into S, followed by operations in G, this unitary matrix
can be written as G,Gg where G, € G. We now add an extra initial transformation Ho
yielding the total operation G,Golly. The idea is that GoHy does not take the basis states
into S such that straightforward simulation for a given basis state is no longer possible.
However, we can think of Hy as acting on the right on GpGp. The final states for the dif-
ferent possible inputs are then the columns of G,GoHy which are linear combininations of
(an exponential number of) columns of G,Go. The idea is that understanding the action
of G}, should allow one to understand the complete program GGy Hy without allowing
straightforward simulation.

In sections 3 and 4 we give an example of such a setting, which has not led to new efficient
algorithms, but which we hope provides inspiration for further progress. First, in section 2

2

we recall some of the material of [1], to describe Clifford operations and stabilizer states
with binary linear and quadratic algebra.

2 Stabilizer states, Clifford operations and linear and
quadratic algebra over Z,

In this section we state some definitions and briefly review results of [1].

The n-qubit Pauli group P, consists of tensor products of n matrices from the set

RER o1 J1 0 [o1
Too = 01 yTor = 1 0 yTip = 0 —1 yT11 = -1 0 .

and an overal factor 1,4,—1 or —i. Each element is uniquely coded by specifying a 2n-
dimensional binary vector [uTv¥|? with w,v € Z} and two extra bits § and e, together
coding the 2" x 2" complex matrix

1"6(_1)61—“1”1 R Tunvn'

T

A Pauli group element is Hermitian iff § = u''v,

Below, a stabilizer group is a commutative subgroup of the Pauli group with 27 Hermitian
elements and not containing ¢/,—f or —iI. Such a group is generated by n independent
elements, and can be represented by a 2n X n matrix S and an n-dimensional vector b,
coding the values of w,v and ¢ for the n generators. Such a stabilizer group uniquely
codes a stabilizer state, i.e. an eigenvector with eigenvalue 1 of all group elements. We
will denote such a state as |1g).

The Clifford group consists of unitary 2" x 2" operations {where an overall phase does
not matter), that map the Pauli group onto itself under conjugation: QP,Q" = P,.

A Clifford group element (or Clifford operation) ¢ can be represented by a 2n x 2n
symplectic matrix C' and a 2n-dimensional vector h, coding the images of a standard set
of generators of the Pauli group. We will denote this Clifford operation as Q¢ .

The product of two Clifford operations and the action of a Clifford operation can be
described entirely in terms of linear and quadratic operations in vector spaces over Zs.

To this end, we first introduce the following notation, simplifying the formulas.

0 I,

v = i 0 0
~ g o
v = i 01
c = c((j[' ? where
d = Viiae(CTUC)
}TL _ [h

. i 0
5 = 1 } where

/ :])diag(STUS)

where Vyjqg(X) is a vector with the diagonal elements of X.

Now if QCzl,hm = QCz,h2QC’t.h1 then

?21 Z¢261_ B _ o
hoy = hi+ Clha + Vdiag(clrplo:mrs(cg UCy)Ch)

where Ploye(X) is the strictly lower triangular part of X. (Note that such an operation
appears naturally in the descriptions of quadratic forms, which cannot be described by
g{z) = xT Az with A symmetric when working in binary vector spaces.)

Furthermore, QC,hI¢S,b) = |”¢/)S’,b‘> with

5 =CS) o
B = b+ STh + Viiag(S Piows(CTUC)S)

The representation of a stabilizer by a set of gencrators is 1ot unique. We have |¢g p) =
lpspy if there exists an invertible R such that

5" =38R o
¥ =RTb+ vdiag(RTPIOWS(STUS JR)

The coeficients of a stabilizer state in a standard basis expansion can be described by

quadratic forms over Z2. Here we give only the result for so called graph states described
by

where Z is a symmetric matrix with zero diagonal. Such a state has the standard hasis
expansion

|¢S,b> - 27"/2 Z (—I)ET’PIO\VS(Z):II"FC)T:BI:E)

TEZY

Throughout this text we will mostly drop the factor 2-/2,

3 A concrete set of stabilizer states and Clifford and
conditional Clifford operations

As a concrete example of the general ideas explained in section 1 we consider the subset
S of stabilizer states [z p, p,.c) = (—1)¢[tsp) with

S =

b = (67

where Z is-a zero diagonal symmetric {(binary) m X m matrix and the subscripts 1 and
2 refer to the first m and last n — m qubits respectively. Note that |1z, 5,) is a graph
state. As this will be necessary below we also introduce an overall phase (—1)¢ of the
state. The states considered then have the following standard basis expansion

T T T
W)Z,bl,bz,c) — Z (___1):.!:1 Prows(Z)z1+b] T1+bg :rz+c|[z;])

TEZY
The following Clifford operations map & onto itself.

(1) The operations Ly, = Q¢ with

LT

DO O~
o B B

N~ oo
—_ OO

These operations map a state [Vzp, p,,e) 10 [Pz 4 1) With

VAR
b, =by+ LT,
by, =bs
d =c

(2) The operations Fr = Qc,n with

I 0 00

0 I 00
¢ = o FT 10

F 0 01
h =0

These operations map a state [z, b, o) t0 [Pz b py,er) With

zZ' =7
b, = b+ ZFThy
b’2 ibg

Cl =c+ bngi -+ bgF'PIOWS(Z)FTbQ

(3) The operations Gg = Qc,n with

C =

o O DO
—_— O OO

OO D
Qo ~o

h =0

These operations map a state [z, p.c) 1O [Pz b,e) With

Zz =7
b’l = b]
b, = by

¢ =c+ bgplows(G)b2

(4) The operations J; = Qc,n with

I 0J 0
., loro0o0
67—0010

00 0 I
h =0

These operations map a state [thzp.c} 10 |1z 4 py,r) With

2 =Z4J
¥, =0
by =by
¢ =c

(5) The operations K, », = Qo with

C =

1 O OO
DO‘HO
OH«DD
H«OOD

T _ T
BT = [hyt hor hat haa |
These operations map a state [thzp, by.e) t0 [0z 05,0 With

Z' =z

by =bi+ Zg + hay

b’Z = b2 + hzg

C’ = C _§_ h@?'PiOWS(Z)th + hmf b]_ + hmg‘bQ

As described above, we extend this set of oper atlons with conditional Clifford operations.
We consider a conditional Clifford operation CQ applying the {n — 1)-qubit Clifford
operation {J, if the k-th qubit is 1. As above this means that @, is applied to the
component ¥ in the subspace spanned by the basis states for which qubit & is 1 (k < m).
As the overall phase of ¢, now matters we will assume that the top left element of @),
is real and positive (in the cases below this element is never 0). Assume without loss of
generality that & = 1, then the state to which @), is applied is

T
|'1bz B bz,c:—i—ﬁ Z Z (1)3:1 T Plows{ Z)E1+(b1+£)T 51 +5] :cz+c+£3|[i;])

#1€25' VppeZi ™

where

[+3]
N2

b’{ = [#3 51]
When @), is applied to thlS state a new stabilizer state will be obtained. However, as men-

tioned above, we want CQ to transform the complete n-qubit state into a new stablhzel
state. This is achieved if Q. leaves the quadratic part Z unchanged.

If Q. transforms the (n —1)}-qubit state |55, 5, 00 p) N0 [y o0 g+)» (with the
same quadratic part), the conditional Clifford operation C(ch), transforms |1z, 5,.c) into
llwz’,bi,b’z,c’> With

¥ o=i4d
z =z
g g
1 =b
5 =ba

Now, we apply this idea to derive conditional operations from the operations £, 7 and G
defined above. (The operations K and J are not considered since conditional K operations
yield Clifford operations and J does not leave the quadratic part invariant). First, the
operations £ and F can be made into (n — 1)-qubit operations by choosing I and F to
be {n—m) x (m— 1) instead of (n —m) x m. Then applying the above ideas one obtains
the following conditional Clifford operations

(6) The operations Eg") result in

7 =i+ uL

go=p
(7) The operations .’Fg"} result in

= +bFZ) o
B =B+ bLF(by + 5) + T FPlowe(Z)F by

(8) The operations Qg") result in
ol 3T

2 =z
g =p+ bg‘Plows(G)%

The superscipt (k) refers to the qubit on which the condition is imposed. Note that the
above descriptions are valid for general values of k if Z is defined to be the k-th column of
7 without the k-th clement, Z is Z without the k-th row and column and § is the k-th
element of b;.

By composing the above 5 Clifford operations (with A5 = 0 in the operations Ky, r,, see
below), and 3 conditional Clifford operations one can code the transformation Cpc 1,96
which tranforms [z, 5, ¢} 060 [tz 41 42 o) With

Z’ == R(bz)TZR(bg) + C(bz)

bll = R(bZ)Tbl =+ R(bE)TZf(bZ) + v(iiag(R(I)?)Tplows(Z)R(b.‘l)) + 9(b2) (1)
B, = by

& =4 f02) b+ F(02) Pros(Z) f(bs) + (ba)

where R is an arbitrary maps from Z5~™ into the invertible m x m matrices, ' is an

arbitrary map from Z2 ™ into the zero diagonal symmetric m X m matrices, f and g are
arbitray maps from Z3 ¥ into Z§ and ¢ is an arbitrary map from Z57 into Zy.

To prove this fact, we first show the effect of composing Crc,f,6,0 with the 8 operations
defined above, and then show that it can be decomposed into a product of such operations.

(1) Composing CL with CR,C,f,g,q’) yields CRf,Cr,fr'gf'ér with

R/(by) = R(by)
C'(bs) =C(by)
f'ba) = f(ba)
g’(bg) = g(bz) + LTbg
¢'(b2) = @(b2)

(2) Composing Fr with Crc 4 yields Crr o g g 40 With

R(ba) = R(ba)

C'(ba) = Cby)

F'b} = f(bo) + R(b2) F7 by

g’(bg) = g(bg) + C(bg)FI bz .

¢'(ba) = P(b2) + b5 F Py (C(02)) by + b5 Fg(bs)

(3) Composing Gg with Cr 540 yields Crp o pr g g0 With

R(b2) = R(bs)
C'{by) = C(by)
fiba) = f(ba)
9’(52) = 9(b2)
¢'(b2) = Pba) + b3 Proys(G):

(4) Composing Jy with Cre g6 vields Cr o 1, o With

R(bs) = R(bs)
C'lbs) = Clbn) + J
fi(bs) = flba)
g'(b2) = g(ba)
#'(ba) = d(ba)

(5) Composing Kp, n, (with kg = 0) with Cre 6 vields Cp v pr g o with

R'(by) = R(by)
C'(ba) = C(ba)
fi(ba) = f(b2)
g'(b2) = g(ba)
#'(b2) = dba) + h’minplows(c(bﬂ)hml + hccpfg(b?) + hxgbZ

Note that allowing h,; % 0 would entail a change of b,. However, while this would
complicate the notation, this does not make a significant difference. Therefore we do not
consider this case.

(6) Composing E%) with Cre.f,g.0 vields Cro g1, with

R'(ba) = R(b2)
C'(by) =C(by) + CkC(bg)T + c(by)el
fiba) = f(ba)
g'(bs) = g(ba)
¢'(ba) = p(ba)

where ey is the k-th column of the identity matrix and c(ba) is equal to 0 in its k-th entry
and equal to LTb; in the other entries.

(7) Composing .7-"‘5;') with Cr.c fgs Yields Cpor g0 With

R(bs) = Riba)r(b2)

C'(bg) = ?‘(bg)1 C’(bg)?‘(bg)

J'(b2) = f(ba)) i .
gbe) = glba) + ex(VE F(G(b) +) + b F Pl (C)F by
¢'(ba) = b(b2)

where §,C and ¢ are defined in a similar way as b;,Z and 2.

(8) Composing Qg') with Cr.ta¢ Yields Croor g with

R'(by) = R(bo)
C'(ba) = C(ba)
) = f(be)
g!(bZ) = g(b2) + ekbgP}{)\vs(G)b2
¢'(b) = ¢(ba)

Now we have to prove that composing the above 8 operations leads to Eq. (1). We only
sketch the proof. If m = n — 1 (b is one bit only), one can easily compose the basic
operations to yield Eq. {1). This result can then first be extended for general m and n
and affine dependence of R,C, f,g and ¢ on by. For general nonlinear dependence, the
proof gets more involved, and the decomposition of Eq. (1) is no longer efficient. The
idea is to first code an operation with say C{by) zero for all values of by except one. This
can be done by composing operations which depend linearly on b and making their effect
cancel for all but one value of bs.

4 An approach to quantum algorithms

As explained in the introduction, we consider a program G,GoHy. The operation G takes
a standard basis state |y) into the set S. We will set Go equal to a Hadamard operation

10

on all qubits. The operation G, € G is a composition of Cliffford and conditional Clifford
operations as defined above, G, = Crg 0. It takes states in S into S again. The
program G,Gy can be efficiently simulated for a given input on a classical computer as all
steps can be calculated on the binary representations. However, the operation Hy is an
extra operation which will be carried out first in the actual program. As a result GoHp no
longer takes the initial states into S avoiding the possibility of straightforward efficient
simulation. But we can think of the final state for an input |u}, i.e. column u of G,GoHo,
as a linear combination of the columns of GGy (these are the final states of the program
without Hyg), with the coefficients in colunm u of Hy. This will enable us to understand
what the program does without being able to simulate it efficiently.

We first consider the program (,Gy acting on a basis state |y) (think of y as the column
index of (g, The Hadamard transformation Gy takes the state |y) with y € %, to the
state

[T‘DO‘yx,yz,O) = Z(_l)ming,)

zcZy

According to Eq. (1), the transformation G, = Cg ¢ 4,40 transforms this state to 192,01 () ba (b el
with

Z(y) =Cly)

bi(y) = R(y2) v+ gly2)
ba(y) =12 .

cy) = fl)"n

with standard basis expansion

[Yz¢0).5: 0.2) e)) =
™ ez’] Zz GZ,H‘(_I)U,TP,M(C(M))M+u§"R{yz)Ty1+v'{"g(yz)+v§“ y2+f(yz)Ty1+¢(yz)[,U) (2)
wneLy Vo Zy

Now, for the additional operation Hy we take a Hadamard transformation on only the
first m qubits. (In practice this means that the initial Hadamard transformation on all
qubits is replaced by a Hadamard on the last n — m qubits, but this is not the way to
understand what the program does). With this operation Hy included, column u (the
final state for the actual input [u)) is a linear combination with coefficients (—1)""% of
the cohummns [yf u3]7 of the original program G,Gjy. This yields a state

_ 1y (uz,01,02) vt el Re) Ty flua) m
> (-1 (-1) v}

veZl METD

where v is some function of ug,v; and wve.

11

The sum (for given v;,v2) is nonzero if and only if
Rug)vr + fluz) +u1 =0 (3)

This condition is independent of vo. This means that measuring the first m qubits,
deterministicly vields the answer vy = R{ug) ™ (f(u2) +).

If we think of 1, as the input and uy as an ancilla which may be 0, and if R(ug) = I, the
program calculates the arbitrary boolean function f. However in this way the program
can be efficiently simulated as we can keep track of f through the different steps.

We have not yet found a way of exploiting this scheme to come up with efficient new
quantum algorithms. However, we still hope that our approach can provide inspiration
to achieve this goal, mainly for the following reason. Imagine there were also a linear
dependence on y; of the term €' in Eq. (2). Such a dependence would lead to a quadratic
systems of equations instead of the linear one in Eq. (3). If we now think of u; as the
input and of uy together with the program as coding the quadratic system of equations to
be solved, we have a quantum algorithm for solving a (yet unknown) class of systems of
quadratic equations over Z§', without the a priori possiblility of straightforward efficient
simulation. Actually we can make C in Eq. (2) depend linearly on 3 {(with a slight
extension of the above operations) but up to now only in ways that lead to quadratic
systems that are efficiently solvable classically.

5 Conclusion

We have presented an approach to finding new quantum algorithms. The approach is
based on stabilizer states and Clifford operations with the addition of conditional Clifford
operations. Straightforward efficient simulation on a classical computer is circumvented
through the idea of an additional initial operation with the effect of combining the final
states for an exponential number of original inputs. The approach has not led to new
algorithms that perform better than their classical counterparts yet. But we have argued
why we consider the approach as promising.

Acknowledgements

This research was supported by (1) The Research Council KUL: GOA-Mefisto660, GOA
AMBioRICS (2) The Flemisch government: FWO: projects, G.0240.99 (multilinear alge-
bra), G.0407.02 (support vector machines), G.0197.02 (power islands), G.0141.03 (Iden-
tification and cryptography), G.0491.03 (control for intensive care glycemia), G.0120.03
(QIT), C.0452.04 (new quantum algorithms), G.0499.04 (Robust SVM), research comumu-
nities (ICCoS, ANMMM, MLDM); AWL: Bil. Int. Collaboration Hungary/ Poland; IWT:
PhD Grants,GBOU (McKnow) (3) The Belgian Federal Science Policy Office: IUAP

12

P5/22 (‘Dynamical Systems and Control: Computation, Identification and Modelling’,
2002-2006) ; PODO-II {(CP/40: TMS and Sustainability); (4) The European Union: FP5-
Quprodis; ERNSI; Eureka 2063-IMPACT; Eureka 2419-FliTE;

References

[1] J. Dehaene and B. De Moor, “Clifford group, stabilizer states, and linear and quadratic
operations over gf(2),” Physical Review A, vol. 68, no. 042318, 2003.

[2] D. Gottesman, “The heisenerg representation of quantum computers,” in Group22:
Proceedings of the XXII International Colloguium on Group Theoretical Methods in
Physics (8.P. Corney, R. Delbourgo, and P.ID, Jarvis, eds.), pp. 32-43, International
Press, Cambridge MA, 1998. guant-ph/9807006.

3] P.W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM Journal of computing, vol. 26, p. 1484, 1997,

13

