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Abstract: In this paper we consider the clustering of time series arising from the
class of scalar linear stochastic models. The properties and performance of several
so-called model-free and model-based distances for these time series are compared
on both artificial and real data sets. In particular, the inappropriateness of model-
{ree distances to distinguish between time series of this class is shown, as well as
several important differences between the model-based distances themselves.
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1. INTRODUCTION

Time series arise in many important areas, e.g.
economics (evolution of share prices), bioinfor-
matics (microarray measurements of gene expres-
sion), geology, etc. This paper is concerned with
detecting similarities in the dynamics of differ-
ent time series, i.e. the way in which consccu-
tive measurements are related to each other. We
apply for this a three-step procedure which has
been applied previously in different application
areas such as speech processing (Gray et al., 1980)
and biomedical signal processing (Gersch, 1981).
Firstly, and this is the key step, each time series is
represented by a dynaniical model estimated from
the given data. Secondly, a distance between the
models is defined and computed over all models
estimated in the first stage. Finally, a clustering or
classification is performed based on this distance.

In this paper we mainly focus on the second step,
the definition and computation of the distance. A
lot of research has been done on defining appropri-
ate distances for dynamical models (Gray et al.,
1980; Basseville, 1989; Martin, 2000; De Cock and
De Moor, 2002; Georgiou and Lindguist, 2003),
also in the domain of model reduction (Antoulas,
1999). However, several challenges remain to be
tackled. For instance, while some distances are
defined and computable for both single-input
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single-output (SISO) and multiple-input multiple-
output (MIMO)}) models (Kazakos and Papantoni-
Kazakos, 1980), others are only applicable to SISO
models, e.g. the ones directly based on the cep-
strum (Gray et al, 1980), opening a research
challenge for their multivariable extension.

We will, however, only consider SISO (linear) au-
toregressive moving average (ARMA) processes in
this paper. We will compare the properties and
performance of a (limited) set of distances for
this class of time series, One of the distances we
investigate is based on the concept of subspace an-
gles within and between models. This distance will
be shown, both theoretically ! (Section 4.2) and
experimentally (Section 5.3), to have a cepstral
(ie. a log-spectral) character. The extension of
the concept of subspace angles for MIMO models
could therefore result in a very natural extension
of a cepstral norm for multivariable processes.

The paper is organized as follows. Section 2 de-
scribes the model class we work with. Several
distances for time series of this class are defined in
Sections 3 and 4. In Section 5 these distances are
compared using artificial examples, in Section 6
using real data sets of time series. Finally, Sec-
tion 7 concludes the paper,

! These results are not a contribution of the present paper,
but can be found in (De Cock, 2002).




2. CLASS OF TIME SERIES
2.1 Model class

The model class of time series we work with
are SISO linear time-invariant stochastic models
{ARMA models). We consider the following state
space description of such an nth order model:

{ a(k + 1) = Ax(k) + Bulk),
y(k) = Cx(k) + Dulk) ,

where the output {y(k)}rez € R of the model
is the stochastic process that is being mod-
elled, {z(k)}rez € R™ is the state process and
{u(k)}rez € R is a zero-mean white noise process
with variance I (henceforth, u will also be called
the input process). The corresponding transfer
function from u to y is
H(z) =C(zI, - A)7'B+D.

A stochastic model is fully specified by the four-
some {A, B,C, D} or the singleton {H(z)}, and
will therefore be denoted by its transfer function
I (z) or shortly H. The model is assumed to be

strictly stable and minimum phase, meaning that
its poles and zeros lie strictly inside the unit circle.

(1}

The infinite observability matriz of the model is
r=(C7 (©a)T (Can)T )T .

"The inverse model, denoted by H~'(z}, is imme-

diately derived from the equations in (1):

u(k) = —D~'Cx(k) + D™ y(k) .

{1,(1: F1y={Ad— BD=1CYa(k) + BD™Yy(k) e

Its infinite observability matrix is denoted by I';.

We will compute principal angles between the row
spaces of input and output Hankel matrices. N
output observations y(0),y(1),...,y(N — 1) are
given, then the output Hankel matrix is equal to

y(0) w(1) - @ -1
w) w@ - )
Y= : : : (2)
y{i — 1) y(@) -+ yli+7-2)
where i+ j ~ 1 = N and i and j are user-defined
parameters. [J € BV is defined in a similar way.

2.2 The cepstrum of an ARMA process

The cepstrum of a stochastic process is defined as
the inverse Fourier transform of the logarithm of
the spectrum of the process. It can be easily esti-
mated from data using the fast Fourier transform
(FFT) algorithm and the periodogram estimate of
the spectrum. The cepstrum can also be expressed
in terms of the model parameters. For a model
with poles a,..., o, and zeros By, the
cepstrum of the output process y is equal to:
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log D? k=0,
CU") n a_}ik] n ‘Blk] (3)
& NYE g0,
2T 2

3. MODEL-FREE DISTANCES BETWEEN
ARMA TIME SERIES

In the first class of distances, the Euclidean dis-
tance is measured directly between the observed
time series or a simple transformation of them. Six
types of vector representations will be considered,
each denoted by the code in parentheses: the raw
data (eun), the normalized data (eu,), the first 10
discrete Fourier transform coeflicients of the data
(af) and of the normalized data (df,), the first 10
principal component scores of the data (pc) and of
the normalized data (pc, ). For the normalization,
we subtracted from each time series its mean and
divided by its standard deviation.

4. MODEL-BASED DISTANCES BETWEEN
ARMA TIME SERIES

The second class of distances are measured be-
tween dynamical models. The estimation of a dy-
nantical model from a time series is done using the
MATLAB System Identification Toolbox, namely
the forward-backward least squares approach for
autoregressive (AR) modelling and the N4SID

subspace identification algorithm (Van Overschee

and De Moor, 1996) for ARMA estimation.

4.1 The Hy distance {ha)

The Hy norm of a model H(z)} is defined as the
root-mean-square (rms) gain of the output signal
with respect to the input signal, when a white
noise input is applied to the model. This leads
to the expression | H{2)[17, = 5~ 027' |H (/)| 2dw.
The corresponding distance is dy, (H(1), H®)} =
(HY — H®,,,, which is equal to the rms gain of
yt) — »(2) with respect to u when the same white
noise input signal u is applied to both models.

4.2 A weighted cepstral distance (wcep)

In this section, as in the previous, we define a
model norm by applying a white noise signal to
the model, but instead of measuring the input-
output rms gain, we now follow a geomelric ap-
proach by computing the principal angles? be-
tween subspaces of input and cutput data. This

2 The principal angles between the row spaces of the
matrices A € BPX™ of rank ro and B € R¥*™ of rank ry,
with ra < rp, are denoted by (81,...,6r,) = [4 <« B} and
are a generalization of the angle between two vectors. The



approach will be elaborated in a first subsection
and a connection with the cepstrum of the process
(hence the code wcep) will be shown in a second.
All statements were proven in (De Cock, 2002).

The angles within and befween models. Consider
an nth order model H(z), to which a white noise
input signal u is applied.

Theorem 1. The largest n principal angles be-
tween the row spaces of the input and output
Hankel matrices U and Y (see (2)), of the model
I (z) are equal to the principal angles between
the column spaces of the observability matrices of
H(z) and of the inverse model H~1(z}, provided
the number of rows and columns of U and Y goes
to co. The other principal angles are equal to 0:

U ay]={r" «r]],0,0,...

The n non-zero angles are called the subspace
angles within the model H(z).

In a similar way, we can define angles between
two models (M (2) and H®)(z), of orders n(
and n(? respectively, by looking at the principal
angles between their output spaces when they are
both driven by the same white noise input signal.

Theorem 2. The largest n{") 4 n(? principal an-
gles between the row spaces of the output Hankel
matrices of H{V(2) and H®(z) are equal to the
principal angles between the column spaces of
(r v} and (1 T}, provided the number
of rows and columns of Y1) and ¥ (@ goes to oo:

[« v®] [(F(l) r@) (1@ Fgl))TJ 0.0,...

The n -+ 22 pon-zero angles are called the
subspace angles between the models HY and H(®,

From both theorems it can be easily shown that
the subspace angles between H(Y and H® are

equal to the subspace angles within %};} ar

g—:g‘ Analogously, the subspace angles within the

model H{z) = B(z) are equal to the subspace
2%

a(z)
angles betwee_n tl.le AR model-s ;f(z—) and Ok They
consequently indicate a certain ‘distance’ between
the pole- and zero-part of the transfer function.

]

Relation with a weighted cepstral norm and dis-
tanee. We consider a particular weighted cepstral
distance, defined in (Martin, 2000):

Breap(HO, HO) = 5 k(D) — D02, )

k=0
with e(? and ¢ the cepstra of H(® and H®. De
noting the subspace angles within the model H(z)

number of angles equal to zero, is equal to the dimension of
the intersection between the row spaces. More information
and a formal definition can be fourd in {De Cock, 2002).
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by #1,...,%,, and the subspace angles between
12 12
Hz) and H?(2) by 1,b§ L ,1,/)‘(1(]))4_"(2),

oo n
HlGcep = D hetk)? = ~tog [T eos? ys,  (5)
k=0 i=1

00 (@
dicop(HO HD) = —tog J[  cos?yf? .
i=1

So the angles within a model are related to its
wcep norm, the angles between two models to
their weep distance. Tt is now also clear that

H)
H®

H{2)
dyeep(H, H®) = Hm (6)

weep weep

Using (3), we can express (5) as (Martin, 2000):
e 1 ey
[I5out =TI, (1 8:5)
where a is the complex conjugate of a. Using
the equality (6), this formula can also be used to
compute the weep distance between AR or ARMA
models as a function of their poles and zeros.

ilII"a'ccp = log , (7)

4.3 The unweighted cepstral distance {cep)

The unweighted cepstral distance deep s defined
as the Euclidean distance between the cepstra (1)
and ¢(® of H( and .

L
QRop(HD, HD) =57 (D) - D (k)

Using Parseval’s relation this distance can be seen
to be equivalent to the Ly distance between the
log-spectra of the (normalized) models H) and
H® for infinite L. As in (Kalpakis ef al., 2001),
L = 10 was chosen for the experiments in this
paper. Note that in the case of the weighted
cepstral distance {4) there is no need to cut off
the cepstral sequences, since the distance can be
computed exactly through (7).

4-4 Distance between spectra (sp)

The L; distance between the spectra (1) and &2
of two models H(" and H® is defined as

}_ m
dgp(H{l):H(Q)) = _2—,_,/, (@(])(W}—q’(g)(“"))zd“-’ -

-
In our experiments we calculated the Euclidean
distance between the vectors consisting of the au-
tocovariances 2(—10),..., R(0)},..., R(10), which
are expressible in terms of the model parameters.

4.5 The M, distance (h,,)

The He, norm of a model H(z) is defined as
the maximum energy of the output signal over
all possible input signals with energy one ap-
plied to the model. Tt is equal to |[H(z)|,,




SUP,epo.2+) [H(e#)]. The distance is equal to
dy. (HO, H®) = |HO — F&p,

The Hankel and Hilbert-Schmidt-Hankel (HSH)
norm were also included in this paper’s exper-
iments. We will however not farther report on
these norms since their results were very similar
to those with the H,, norm. For strictly proper
systems these three norms are in fact equivalent
(see e.g. (Schelfhout, 1996)).

4.6 A distance between ARMA coefficients {coef)

As a last distance we consider the Euclidean dis-
tance between the vectors of AR or ARMA coef-
ficients in H(z) = f:((;)}, as proposed in (Bagnall
and Janacek, 2004). The vectors of polynomial
coefficients are first scaled so that the highest
order coefficient in 2z is equal to one.

5. COMPARISON OF THE DISTANCES
USING ARTIFICIAL DATA

In this section we will compare the properties
of the defined distances on simulated data. All
experiments were performed using all distances
mentioned in Sections 3 and 4, but we will for
each experiment only report on the ones that
allow the most important conclusions. We also
~gomputed - the -distances - cep;-wcep--and.-sp-in
a non-parametric way using the FFT algorithm
and the periodogram estimate of the spectrum.
However, for the same amount of data (and for
various choices of cut-off length), they always
performed worse than their model-based variants
(using (3), (7) and parametric expressions for
the autocovariances, respectively). So we will not
further report on these non-parametric estimates.

5.1 Clustering methodology

The cluster algorithm we use in this paper is a
partitioning around medoids algorithm (van der
Laan ef al., 2003) which aims at finding a clus-
tering with maximum average silhouetfe over all
objects. The silhouette of an object measures how
well the object belongs to its cluster and always
lies between —1 (very badly) and +1 (very well).
The input of the algorithm is a matrix of pairwise
distances and a number of clusters.

All cluster experiments in this paper involve time
series of which the true cluster partition is known.
Therefore, we evaluate the experimentally ob-
tained cluster result by measuring its similarity
with the true partition, using the adjusted Rand

 Raqy indices for-each of- the Admodetranges M to. ... ..
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index Ryq; (Hubert and Arabie, 1985). The maxi-
mum {and best} value of Raqj is 1, denoting equal-
ity of both partitions, while its expected value in
the case of random clusters is equal to 0. It is a
meaningful quantity irrespective of the number of
clusters and the cluster sizes of both partitions,

5.2 Model-free versus model-based distances

As a frst experiment we used the same set-up
as in (Xiong and Yeung, 2004). We sampled 15
models from each of the following 5 mocdel ranges:
M) consisting of AR models of order 1 {(AR(1)
models) with their only pole uniformly distributed
in the range 0.30 & 0.01, M) to M® with their
pole distributed in the ranges 0.40 £ 0.01 up to
0.55 £ 0.01 with steps of 0.05. From each of the
75 sampled models, a time series of length 250
was generated. We then performed a clustering
with the 15 time series from M) and the 15
time series from one of the other model ranges
M), thus trying to detect two clusters. The Hagj
index of this cluster result was computed, using
the known labels of these 30 time series. This was
done for i = 2 to 5, resulting in 4 Rand indices.
The correct model structire was always assumed
to be known for the identification.

The whole procedure {sampling 75 models, gen-
erating 75 time series, performing 4 clusterings)
was then repeated 9 times, thus resulting in 10

M3}, The minimum, average and maximum value
of these 10 indices can be found in Table 1. In this
table the results of wcep are representative of the
results of all model-based distances (cep, wcep,
sp, hy, hy, and coef), while mfree contains in
each row the best value of all model-free distances
{see Section 3). There was not much difference
among the model-based distances. As expected,
their Rand index rises as the poles of the two sets
of models are farther apart. The model-free dis-
tances, however, all appeared unable to deal with
the stochastic nature of the time series. Therelore,
we conclude that they are clearly unsuited for de-
tecting similarity between these kinds of objects.

5.8 Spectral versus cepstral distances

In this section we compare the spectral distances
sp, hy and hy with the cepstral distances cep
and wcep. One of the main differences between
spectral and cepstral distances is the logarithm
which appears in the cepstrum. This explains why
we investigated the following two characteristics.

Distinguishing between zeros. Consider the exper-
iment of Section 5.2 with the 5 model ranges, and
the results in Table 1. When replacing for the



Table 1. Clustering results for time
series generated from two AR(1)
model ranges, one of which always
has its pole in the range 0.30:£0.01,
while the other has its pole in the
range given in the table.

Table 2. Clustering results for time series (now

of

length 500) generated from two ARMA(1)

model ranges, both always having their pole at
—0.70, and one of which always has a zero in
the range 0.30:20.01, while the other has a zero

in the range given in the table.

Range of Adjusted Rand index Range of Adjusted Rand index
AR pole {min/avg/max) ARMA zero (min/avg/max}

mbased (wcep) miree wcep ho heg
0.40+001 (0.04/0.32/0.63) [0.03/0.01/0.08) "0.401001 (0.01/0.39/0.63) (0.00/0.02/008) (-0.01/6.01/0.13)
045£0.01 (0.19/0.54/0.74)  (-0.03/0.0L/0.14) 0452001 (0.43/0.68/0.87) (0.00/0.07/0.34) {(-0.02/0.00/0.08)
0504001 (0.43/0.82/1.00) (-0.03/0.04/0.34)  0.50:£0.01 (0.74/0.90/1.00) (0.01/0.16/0.52) (-0.03/0.01/0.05)
0564001 (063/0.92/1.00) (0.03/0.01/0.13)  0.564001 (0.74/0.97/1.00) (0.01/0.33/1.00) (-0.02/0.00/0.04)

models in each of the 5 model ranges their {non-
random) zero at 0 by a zero at ~0.70, thereby
obtaining ARMA(1) sampled models, and redo-
ing the experiment with these adjusted M®) tq
M) all model-based distances performed again
roughly similarly well,

However, when we redid this experiment with the
roles of pole and zero in the ARMA(1) model
ranges switched, thereby obtaining ARMA(1)
sampled models with a (non-random) pole at
—0.70 and a random zero in one of the 5 given
ranges, we obtained the results in Table 2, where
wcep is now representative of cep, wcep and coef;
he of both sp and h,. Clearly, hy and especially
hy, and sp have much more difficulty discrimi-
nating between these sets of models. When redo-
ing this last experiment with the (non-random)
pole at —0.70 replaced by a pole at 0, all model-
based distances performed again approximately
similarly well, so that the reason for deterioration
of hy, hoo and sp lies in the combination of slightly
different ranges of zeros and a pole which is strong
enongh to conceal these differences.

We conclude that the spectral distances, espe-
cially hy, and sp, are less sensitive to differences
in zeros than the cepstral, when an additional and
sufficiently strong pole is present in the spectrum.

Distinguishing between secondary peaks. Now con-
sider two AR models: FF(!) of order 2 having a pole
pair at radius 0.96 and angles £150 degrees, and
H? of order 4 having the same pole pair and an
additional pair at radius 0.80 and angles +109 de-
grees (Fig. 1}. We did a 10 times repeated cluster-
ing experiment, each time with only two sets of 15
time series, each set of time series generated from
just one model, H®) or H®), The goal being to
distinguish between both sets, the (min/avg/max)
adjusted Rand index was (0.01/0.30/0.63) for sp,
(0.19/0.40/0.74} for hyo, (0.42/0.68/0.87) for hy
and (1.00/1.00/1.00) for cep and wcep.

We can conclude that the spectral distances, espe-
cially ho, and sp, are less sensitive to differences in
small peaks than the cepstral, when an additional
and larger peak is present in the spectrum.

3%

Bode Biagram
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— redw 1
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Frequency {raciw/sec)

Fig. 1. Bode diagram of the AR(2) model H(!)
{full line} and the AR(4} model H(? (dash-
dotted line), which have a common pole pair
at frequency 2.62 rad/sec.

6. APPLICATION TO REAL DATA

In this section we use the distances of Sections 3
and 4 on a real data set used in (Xiong and
Yeung, 2004). We applied the same preprocessing
steps and model structure choices as they did.

The EEG (electroencephalogram) data set was
obtained from the UCI KDD Archive (http://
kdd.ics.uci.edu/) and contains 10 trials of the 1
second multi-channel EEG recordings of a control
subject and an alcoholic subject for three different
conditions, denoted by ‘1’, ‘m’ and ‘n’. We inchided
the recordings from two channels (F4, P8) and
thereby obtained six experiments, each consisting
of 20 time series (of length 256) where we wish to
discriminate between the control subject and the
alcoholic subject time series.

Following the approach in (Keirn and Aunon,
1990; Xiong and Yeung, 2004), AR(6) models were
estimated for the time series after a differencing
step to make the time series stationary. The
clustering results are in Table 3. The best results
are obtained with wcep, followed by cep, sp,
h; and h,,. The model-free distances generally
perform worse than these. coef however performs
the worst, probably because of the relatively high
model order. The coef distance appeared also




Table 3. Clustering results for real data.

Data Set Adjusted Rand index

cap veep sp ha beo coef wirea
EEG) Fa 0.62 1.00 1.00 0.62 0.80 0.04 .04
EEG ps ¢.80 1.00 0.80 0.80  0.80 .12 0.62
EEG, P4 1.00 1.00 1.09 1.60  0.80 d.11 0,21
EEG,.,prs ¢.80 0.80 062 0.62 0.46 ¢.22 0.04
EEG,,r4 0.62 0.21 0.22  0.33 0,21 0.21 0.62
EEG, ps 0.80 0.80 .80 0.62 .80 -0.03 0.i2

with other data sets and artificial examples to
perform worse with complexer model structures.

7. CONCLUSIONS AND DISCUSSION

In this paper we considered distance-based clus-
tering of scalar ARMA time series. The cluster ex-
amples investigated in Sections 5.2 and 6 showed
that model-free distances are not appropriate for
clustering AR(MA) time series, and that the
model-based distances (except coef) had a much
better performance than model-free distances on
the considered data sets of EEG recordings.

It was also shown in Section 5.3 that the spectral
distances (hy and especially ho, and sp) are less
sensitive to differences in zeros or small spectral
peaks than the cepstral (cep and wcep), when
there is an additional and sufficiently large peak
present in the spectrum. It also appeared from
experiments that the coef distance degrades in
performance for complexer model structures, such

as ARMA {not shown) or high order AR models.

An important remark to be made with respect
to the experiments in Section 5, is that for model
estimation the correct model structure was always
assumed to be known, We did some experiments
with wrong model structures for identification
(too simple or too complex) too. This decreased
the performance of the model-based distances,
although they remained substantially better per-
forming than the model-free distances. In order,
however, to state general conclusions about the
effects of mismodelling on the different model-
based distances, more research will be needed.

Another important future topic is the extension
of the weep distance for MIMO models. The 8150
distance was shown in this paper to have a cepstral
character. Since the distance can be defined in
terms of angles between certain subspaces, an ex-
tension of these angles could result in a very nat-
ural extension of the distance to a MIMO cepstral
distance, thereby avoiding the difficulty of taking
the logarithm of the spectrum or transfer function
matrix. It could also give ideas for a definition of
the cepstrum for multivariable models.
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