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Abstract

We present an algorithm that modifies the original formulation proposed in Wan and Kothare [Efficient robust constrained model predictive
control with a time-varying terminal constraint set, Systems Control Lett. 48 (2003) 375-383]. The modified algorithm can be proved to
be robustly stabilizing and preserves all the advantages of the original algorithm, thereby overcoming the limitation pointed out recently by
Pluymers et al. [Min—-max feedback MPC using a time-varying terminal constraint set and comments on “Efficient robust constrained model
predictive control with a time-varying terminal constraint set”, Systems Control Lett. 54 (2005) 1143-1148].
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1. Introduction

The survey paper [1] on constrained finite horizon MPC re-
veals the presence of three ‘ingredients’—a terminal cost % (),
a terminal constraint set Z ¢, and a local controller « ¢ (-)—that
have been found useful in developing stabilizing MPC. In gen-
eral, a stabilizing MPC steers the state into 2"y over a finite
horizon. Inside Z ¢, a local stabilizing controller x ¢ (-) is em-
ployed over the remaining infinite horizon, and the terminal
cost is bounded by % (-). A modified infinite horizon opti-
mal control problem [1] is formulated to minimize the perfor-
mance cost over the finite horizon plus the terminal cost 7 ().
The decision variables are the control moves over the finite
horizon.

For an N-step fixed control horizon, at time k, if the system is
linear time invariant, there is only one realization of the system
evolution over the N-step control horizon. The optimization
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solves a single sequence of N-step control moves. Only the
first control move is implemented at time k. At time k + 1,
the remaining N — 1 control moves solved at time k can move
the system into 2"y, the Nth control move at time k + 1 can
be constructed as the first control action of the local controller
Kr().

If the system is linear time varying (LTV) within a polytope
Q2 with L vertices, the optimization at time k solves one move
at time k|k, L moves for the L vertices of the polytope (2 at time
k + 1|k, and so on, LY ~! moves for the LN~ vertices of the
polytope @V ~! at time k+ N — 1|k. We then implement only the
control move at time k|k. At time k + 1, since the state x(k+ 1)
is a linear combination of the L predicted state x(k + 1]k),
a feasible solution for the optimization at time k + 1 can be
constructed by linear combination of the control moves solved
at time k (see [2] for details). For both linear time invariant and
LTV systems, once a feasible solution is constructed from the
optimization solved at a previous time, proving feasibility and
asymptotic stability is straightforward [1,3,2].

For a linear varying system, the above formulation with a
fixed control horizon will lead to high computational complex-
ity. In this paper, we propose an alternative approach, which
uses a variable control horizon and can significantly reduce the
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computational complexity. This approach is a modified version
of the approach in [4]. The proposed algorithm can be proved
to be robustly stabilizing and preserves all the advantages of
the original algorithm of [4], thereby overcoming the limita-
tion of the original algorithm pointed out recently by Pluymers
et al. [2].

For the sake of brevity, we will refer to the contents of the
original paper [4] with notation (.)*.

2. A modified robust constrained MPC with a time
varying terminal constraint set

Consider a LTV system

x(k+1)=A(k)x(k) + B(ku(k), (D
where x(k) € R" is the state of the plant, u(k) € R™ is the
control input subject to

r=1,2,...,m,

2

and [A(k) B(k)] € @ =Cof{[A; Bil,...,[Ar Br]} with Co
denoting the convex hull. The nominal model [A é] € Q can
be defined as the model that is most likely to be the actual plant.
x(k +1ilk) is the state of the nominal model. Z'(k + N|k) is the
uncertain terminal state set of the LTV system (1).

In Algorithm 1%, we construct a continuum of terminal sets
(X r0), kp(0,-), 7 (0,-)(0<0L1), which is a convex com-
bination of the largest terminal set (% r(1), x¢(1,-), #(1,-))
and the smallest terminal set (2 7(0), k£ (0, ), Z (0, -)).

[uy (k)| < Uy, max

1.5
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The main algorithm is summarized as follows.

Theorem 1. Given a dynamical system (1). Off-line, construct
a continuum of terminal constraint sets by using Algorithm 1*.
On-line, given x(0|0) at time k =0, N > 0.
_Step 1: If N >0, minimize the nominal infinite horizon cost
Joo (k)

N-1
Joolkey =" [R(k +ilk)" 2% (k +ilk)

i=0

+ ulk + il T Ruk + 1)1 + 7 (1, £ (k + NIk))

subject to (1), (2) and the terminal constraint
Z(k+ Nlk)y C Zy(1).

Apply the first control move u(k\k). Letk := k+1, N := N—1.
If N >0, go to Step 1; otherwise, let 0 = 1 and go to Step 2.

Step 2: If N =0, i.e, x(klk) € Zy(1) and 0 >0, minimize
0 to find the smallest terminal set such that x(k|k) € 2 y(0).
Apply u(klk) = k7 (0, x(k|k)). Let k :== k + 1. If 0> 0, go to
Step 2; otherwise, go to Step 3.

Step 3: If 0 =0, ie., x(klk) € Z(0), apply u(klk) =
K7 (0, x(k|k)). Let k := k + 1. Go to Step 3.

Suppose the algorithm is initially feasible, then it robustly
asymptotically stabilizes the system.

Proof. Suppose the algorithm is initially feasible in Step 1.
Consider a feasible N-step control sequence solved at time
k, which steers Z'(k + N|k) into Z"¢(1) for all models in €.
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Fig. 1. Closed-loop response comparison on the example in [2] using the algorithm of [4] (dotted), the algorithm of [2] (solid) and the proposed algorithm in

this paper (dash-dotted) for the cases r; =0.35 and r; = 0.34.
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Fig. 2. Closed-loop responses. (Solid line with initial N =4, dotted line N =2, dashed line N = 1, dash-dot line N =0.)

After u(k) is implemented, the remaining N — 1 control moves
provide a feasible solution for the optimization with a control
horizon N — 1 at time k + 1. Using the above argument re-
peatedly, we can show that the optimization solved from k to
k + N — 1 with the control horizons strictly decreasing from N
to 1 are all feasible. After the last optimization with N =1 is
solved and the current control move implemented, the state is
brought into 2" ¢(1) and N = 0.

If at time k, the state enters 2 (1), we go to Step 2. Since
Z r(0(k)) is positively invariant for the closed-loop system with
the control law ¢ (0(k), -), the control move « r(0(k), -) will
move the state further into 2"y (0(k)). Therefore, there exists a
feasible solution of O(k+-1) such that 2" ¢ (0(k+1)) C Z r(0(k))
which implies 0(k + 1) < 0(k). The optimal solution of 0(k+1)
is smaller than or equal to the feasible solution of 0(k + 1).
So, the minimization of 0 guarantees the monotonic decrease
of the optimal 0 at each sampling time, and brings the state to
the smallest terminal set 2" (0).

When the state enters 2" ¢(0), we go to Step 3. Step 3 will
be feasible and brings the state to the origin. [

It is straightforward to demonstrate asymptotic stability of
the proposed algorithm for the counterexample in [2]. This is
also verified in Fig. 1 which shows the closed-loop response for
the counterexample system in [2] using the original algorithm
of Wan and Kothare [4] (dotted), the modification proposed
by Pluymers et al. [2] (solid) and the proposed algorithm in
this paper (dash-dotted). Simulations for both r; = 0.35 and
r1 =0.34 are shown. The corresponding computation times are,
respectively, 0.3, 0.58 and 0.16 s for r1 =0.34, and, respectively,
0.28, 0.56 and 0.14s for r; = 0.35, thereby clearly showing

the computational advantage of our proposed algorithm. These
calculations were done on a Pentium M 1.7 GHz computer,
using matlab 6.5 and LMILab 1.0.8.

We also apply the improved algorithm to the original two-
mass-spring example from [4]. Fig. 2 shows the closed-loop re-
sponses with different initial N’s. All the simulations were per-
formed on a Gateway PC with a Pentium III processor (speed
1000 MHz, Cache RAM 256kB and total memory 256 MB)
and using the software LMI Control Toolbox in the MATLAB
environment to compute the solution of the linear minimiza-
tion problem. The following table shows the on-line computa-
tional demands for the different optimization problems solved
in Theorem 1.

Optimization problem Time to compute (s)

Step 1 with N =4 0.42
Step 1 with N =3 0.16
Step 1 with N =2 0.08
Step 1 with N =1 0.04
Step 2 and 3 0.02

Since the major contributor to computational complexity is
uncertainty propagation over the control horizon and enforce-
ment of terminal constraints over the uncertain set of terminal
states, shortening of the control horizon with an enlarged ter-
minal region drastically reduces on-line computation.
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