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Abstract

Motivation: We describe an approach to normalizing spotted microarray data, based on a 

physically motivated calibration model. This model consists of two major components, 

describing the hybridization of target transcripts to their corresponding probes on the one hand, 

and the measurement of fluorescence from the hybridized, labeled target on the other hand. The 

model parameters and error distributions are estimated from external control spikes.

Results: Using a publicly available data set, we show that our procedure is capable of adequately 

removing the typical non-linearities of the data, without making any assumptions on the 

distribution of differences in gene expression from one biological sample to the next. Since our 

model links target concentration to measured intensity, we show how absolute expression values

of target transcripts in the hybridization solution can be estimated up to a certain degree.

Contact: kathleen.marchal@biw.kuleuven.be
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Introduction

Normalization of microarray measurements, the first step in a microarray analysis trajectory, aims 

at removing consistent and systematic sources of variations to allow mutual comparison of 

measurements acquired from different slides and experimental settings. Obviously, normalization

largely influences the results of all subsequent analyses (such as e.g. clustering), and therefore is 

a crucial phase in the analysis of microarray data. For normalization of spotted microarrays, 

different methods have been described (for overviews, see for instance Leung and Cavalieri, 2003 

(Leung and Cavalieri, 2003), Quackenbush, 2002 (Quackenbush, 2002) and Bilban et al., 2002 

(Bilban et al., 2002)). In general, preprocessing of spotted microarrays largely depends on the 

calculation of the log-ratios of the measured intensities. For complex designs, using ratios 

complicates comparing different experimental conditions, especially when they are not measured 

with the same reference condition. To cope with this, some approaches inherently work with 

absolute intensities (e.g. ANOVA (Wolfinger et al., 2001; Kerr et al., 2000)), or use a universal 

reference to estimate absolute expression levels from the ratio’s (Dudley et al., 2002). A common 

ratio normalization step consists of the linearization of the Cy3 versus Cy5 intensities (e.g. 

LOESS (Yang et al., 2002)), sometimes followed by, or inherently combined with, techniques for 

variance stabilization (Durbin et al., 2002; Huber et al., 2002). These methods assume that the 

distribution of gene expression shows little overall change and is balanced between the biological 

samples tested (from here on referred to as the ‘Global Normalization Assumption’). If this 

assumption is violated, for instance when comparing two drastically different biological 

conditions or when working with dedicated arrays, using such a normalization may yield erratic 

results. Normalization algorithms that do not require this Global Normalization Assumption have 
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been proposed (Wang et al., 2005; Zhao et al., 2005), but a more reliable strategy to avoid 

making any assumptions regarding the distribution of gene expression, is to use external control 

spikes (exogenous RNA species that are added to the hybridization solution in known 

concentrations, prior to labeling) to estimate normalization parameters. Other types of 

experimental normalization controls, such as housekeeping genes, spotted clone pools or spotted 

genomic DNA, have also been proposed (for an overview, see Kroll and Wölfl, 2002 (Kroll and 

Wolfl, 2002)), but none of these are able to compensate for unbalanced gene expression changes. 

By using external control spikes, it has been shown that global mRNA changes, resulting in an 

uneven distribution of expression changes, occur more frequently than what was previously 

believed (van Bakel and Holstege, 2004; van de Peppel et al., 2003), and that these changes can 

have a significant impact on the interpretation of data normalized according to the Global 

Normalization Assumption (Radonjic et al., 2005). 

External control spikes have previously been employed for quality control and normalization

(Radonjic et al., 2005; van de Peppel et al., 2003; Badiee et al., 2003; Wang et al., 2003; Benes 

and Muckenthaler, 2003; Hughes et al., 2001; Girke et al., 2000; Eickhoff et al., 1999), but have

seldom (Carter et al., 2005) been exploited to their full potential. In fact, spikes are genuine 

calibration points, in that they relate the measured intensity to the actual RNA concentration in 

the hybridization solution. In this paper, we propose a normalization procedure that can be used 

to estimate absolute expression levels, and is based on spike measurements and a calibration 

model. This procedure is capable of adequately removing the typical non-linearities of the data, 

without making any assumptions on the distribution of gene expression from one biological 

sample to the next. Moreover, estimates of absolute expression levels instead of expression ratios, 

can greatly simplify inter platform comparisons and the analysis of large, complex designs 

comparing multiple biological conditions. 
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Models and algorithms

The proposed normalization procedure is straightforward in principle: intensity measurements of 

external control spikes serve to estimate the parameters of a calibration model. These parameters 

can then be used to obtain absolute expression levels for every gene in each of the tested 

biological conditions. The calibration model consists of two components, a hybridization reaction 

and a dye saturation function. In the following sections a more detailed description of this model 

is given, along with its corresponding parameters and error distributions. 

Hybridization reaction

This component of the model takes spot related errors into account, which have been shown to 

have a large effect on the final, observed signal (Rocke and Durbin, 2001). How these errors 

manifest themselves in the measured intensities, becomes clear when comparing the behavior of 

the data in Figure 1. A plot of the Cy3 versus Cy5 spike intensities (Figure 1, panel A) illustrates 

the relatively small scanner errors: ratios of these controls seem highly conserved, especially at 

upper intensity levels. Figure 1, panel B on the other hand, displays the relation between the 

measured intensities of these external control spikes to their actual concentration in the 

hybridization solution. A large variation in intensity for a single spike concentration can be 

observed. In view of the relatively small scanner errors, the level of variation seen in this plot is 

remarkable. Heterogeneous ‘spot capacities’, in terms of the available quantity of probe, offer an 

explanation: imperfections in the spotting process allow distinct spots to bind different amounts 

of target from the hybridization solution. Whether the main source of this variation in ‘spot 

capacity’ can be attributed to the actual amount of deposited cDNA, or to a measure of spot 
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quality (e.g. probe density (Peterson et al., 2001), cDNA probe length (Stillman and Tonkinson, 

2001), etc.), the implications are equivalent. 

To explain these large variations of absolute intensities observed for a single spike concentration, 

a hybridization component was included in our model to account for these spot errors. The 

relation between the amount of hybridized target (xs) and the concentration of the corresponding 

transcript in the hybridization solution (x0) is modeled by the steady state of the following 

reaction: 

s

K

xsx
A

⇔+0 (1)

In our model the hybridization constant KA is assumed to be equal for all spots on a single 

microarray. Differences in hybridization constants should therefore be interpreted as variations 

caused by microarray related factors such as temperature, salt concentrations, hybridization time, 

etc., but do not account for gene specific hybridization efficiencies.

A second assumption underlying our model is that the hybridization is a first order reaction, and 

that x0 is in excess (i.e. x0 is constant). The latter assumption ensures that the amount of 

hybridized target at the end of the reaction only depends on the initial concentration in the 

hybridization solution. The amount of probe of a spot (s) available for hybridization will decrease 

with an increasing amount of hybridized target xs (s = s0 - xs, s0 being the spot size or maximal 

amount of available probe), so that we can write at thermodynamic equilibrium:

( ) A
s

s K
xsx

x
=

−00
(2)

The spot capacity s0 follows a certain distribution around an average spot capacity µs: sss εµ +=0

(i.e. additive spot error) or ses s
εµ=0 (i.e. multiplicative spot error) with εs ~ N(0,σs). Whichever 
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distribution is more appropriate in any particular case will depend largely on the type of 

microarray slide and spotting procedure used, and should be evaluated after performing the 

normalization procedure e.g. by testing the normality assumptions of the spot error distribution.

The distribution parameters µs and σs can be considered equal for all measurements of a single 

array, or treated differently on a per pin group basis to compensate for spotting pin related 

variations. Finally, we assume that the presence of distinct labels (Cy3 and Cy5) does not 

influence the hybridization efficiency of the differentially labeled target transcripts, i.e.:

5,03,00 CyCy xxx += and 
3,

5,

3,0

5,0

Cys

Cys

Cy

Cy

x

x

x

x
=

5,3, CysCyss xxx += (3)

 In the above equations, it would be more accurate to explicitly model the amount of non-labeled 

target in the solution (i.e. to write 5,03,000 CyCy xxxx ++= ∗ , with ∗
0x being the amount of non-

labeled target), and to include parameters for labeling efficiencies. However, since the external 

control spikes are added to the hybridization solution before the actual labeling reaction, effects 

attributed to labeling efficiency are accounted for in the dye saturation function, described below.

Dye saturation function

A second component of our model is the dye saturation function, which describes the relationship 

between the measured intensity y and the amount of labeled target xs, hybridized to a single spot 

on the microarray: 

as pexpy m εε ++= 21 (4)

This dye saturation function is a simple linear equation incorporating an additive and 

multiplicative intensity error, respectively represented by εa ~ N(0,σa) and εm ~ N(0,σm). This type 
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of function has already been used in other normalization strategies (Durbin et al., 2002; Rocke 

and Durbin, 2001). 

In total, there are three different error distributions that are assumed to influence intensity 

measurements: additive intensity error εa, multiplicative intensity error εm, and spot capacity error 

εs.  The parameters of the saturation function and the variances of the intensity error distributions 

are considered specific for all measurements of a single array and dye combination. The 

parameters of the hybridization reaction and variance of the spot error on the other hand, apply to 

all measurements of a single array. As such, Cy3 and Cy5 intensities obtained from the same 

array element are modeled with different saturation parameters and intensity errors, but will share 

the same hybridization parameters and spot error. Based on equations (2), (3), and (4), the 

intensities yCy3 and yCy5, measured on a single spot s0 of the array, are related to the amount of 

corresponding target x0,Cy3 and x0,Cy5 in the hybridization solution as:

332

5030

1

030

313
3
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(6)

 

The differentially labeled targets x0,Cy3 and x0,Cy5 will compete for the same spotted probe DNA 

s0.  As shown in the equations above, the intensity measured for the Cy3 channel (yCy3) is not only 

dependent on the amount of Cy3 labeled target (x0,Cy3), but also on the amount of target labeled 

with Cy5 (x0,Cy5), and visa versa.
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Parameter estimation

The model parameters are estimated separately for each microarray, based on the measured 

intensities y of the external control spikes and their known concentration in the hybridization 

solution x0. In order to determine these model parameters, it is important to have initial, reliable 

values for σm and σa. Estimates for σa,Cy3 and σa,Cy5 can easily be obtained by computing the 

standard deviation of the intensities for the negative control spikes (not present in the 

hybridization solution). Finding a reliable for σm,Cy3 and σm,Cy5 is less evident. Although the 

additive intensity error can be neglected, the multiplicative errors are still confounded with the 

influence of spot errors at high intensity levels. Estimatingσm,Cy3 and σm,Cy5 independently for

both channels from these higher intensity replicate measurements is not feasible. Obtaining an 

adequate approximation is nevertheless possible. In the higher intensity range where the 

calibration controls (ratio 1:1) exhibit a log linear behavior in a yCy3 versus yCy5 plot (Figure S1), 

the main contribution to the observed variation can be assigned to the multiplicative intensity 

error. Indeed in this range, differences in spot size will obviously nullify themselves and the 

additive intensity error can be neglected. If we then assume that σm,Cy3 and σm,Cy5 contribute 

equally to the observed variation (σm = σm,Cy3 = σm,Cy5), a value for σm can be obtained (Figure 

S1). Performing an orthogonal regression of Cy5 versus Cy3 intensities on the selected data 

points will yield an error distribution of which the standard deviation is an estimate of σm√2.

Obtaining a solution for the remaining parameters (dye saturation and hybridization parameters 

p1,Cy3, p1,Cy5, p2,Cy3, p2,Cy5 and KA respectively; µs is kept constant at an arbitrary value) is done in a 

least squares sense. The error sum of squares that is minimized is that of spot capacity errors, i.e. 

( ) 







=∑

i
ss iSSE 2min ε (7) 
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with respect to 31 Cy,p , 32 Cy,p , 51 Cy,p , 52 Cy,p  and AK ; i indicates a single spot.

The minimization of SSEs is done numerically.  The individual spot errors εs(i), necessary to 

calculate the SSEs in every iteration (i.e. for any given set of parameter values), are of course 

unknown.  For every spot on the microarray, they are estimated by comparing the expected 

intensity (a function of target concentration x0,Cy3 and x0,Cy5, and a set of parameter values as 

indicated by (5) and (6)) to the measured intensity values (yCy3 and yCy5) for both channels, and 

scoring the difference based on the estimators of additive and multiplicative intensity variances.  

More precisely, for each pair of measurements obtained from a single spot, the following object 

function is minimized with respect to that spots error εs(i), i.e.:

( )53min Cy
estim

Cy
estimestim QQQ += (8) 

with respect to εs(i), where:

D
a

a

m

m

,

D
estim

am

minargQ
























+










=

22

22 σ
ε

σ
ε

εε
5,3 CyCyD = (9) 

subject to equations (5) and (6), i.e.
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This object function is related to the probability of observing the measured Cy3 and Cy5

intensities given the amount of hybridized target (can be calculated according to (5) and (6) as

target concentrations of spikes are known) and intensity error distributions. The procedure for an 

entire microarray is illustrated in Figure 2. The parameters of the intensity error distributions, σm

and σa, determine the spread of measurements around the Cy3 and Cy5 saturation curves. The 
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gray dots in Figure 2 depict the relation between measured intensity and amount of hybridized 

target under the assumption of equal spot sizes (i.e. all εs(i) are zero). Most of these are localized 

in regions of high intensity error and are therefore very unlikely. 

However, by allowing errors εs(i) on individual spot’s capacities, and thus altering the amount of 

hybridized target per spot for both dyes (xs,Cy3 and xs,Cy5), a good correspondence between 

intensities and saturation curves can be obtained for both channels, and across the entire 

measurement range (indicated by the black dots). It is notable how well the Cy3 and Cy5

intensities, and the relationships between them, can be explained by our model. For instance in 

the example given, at lower intensities, Cy3 intensities are persistently higher than Cy5 for equal 

amounts of hybridized target, while the opposite is true for higher levels, a trend that is nicely 

reflected by the fitted model. Notice also that, while the ratios between Cy3 and Cy5 intensities 

are highly conserved –at least at higher intensity levels-, absolute intensities may vary to a large 

extent for transcripts with the same target concentration x0 due to spot inhomogenities.

Normalization: estimation of target expression levels

The obtained parameter values can be used to estimate a single x0(t,u) (i.e. the absolute 

expression level of a single gene t in a single biological condition u) based on all measurements 

that were obtained for this combination of gene and condition. Although each array and dye 

combination is attributed with its own set of parameters, the normalization can be considered a 

global one. Namely, for each combination of a gene and a tested biological condition, a single 

expression level is estimated, irrespective of the number of microarray slides, or the number of 

replicate spots on a slide, for which this gene condition combination was measured. In this sense, 
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the results format of this normalization is comparable to the VarietyGene interaction factor effects 

in the models of Kerr et al. (Kerr et al., 2000), or similar factors in other ANOVA-models. 

Although this procedure can be applied to any design, its complexity does depend on the used 

experimental setup. For a single gene, it requires the estimation of expression values for all the 

biological conditions at once. These x0(t,u) can be estimated by minimizing the following object 

function (an extension of the one used to estimate the model parameters):

( )
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
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subject to equations (5) and (6)

The subscript C indicates the set of biological conditions under survey; it applies to all conditions 

that are present in the experimental design. The set of intensities, and the relevant array-dye 

combinations of parameters, that measure an expression value x0(t,u), is represented by Su (a 

single measured intensity belonging to this set is designated by Su(k)). So for a single gene t, 

expression values for all of the biological condition present in the experiment are estimated 

simultaneously (and together with all the relevant spot errors), and in such a way that the total 

contribution of the three random errors (i.e. the combined spot errors and additive and 

multiplicative intensity errors for all intensity data points that are a measure of gene t) is 

minimized as dictated by the cost function in (10).
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Results

A publicly available data set (Hilson et al., 2004), specifically designed for quality control and 

the assessment of experimental variation (Allemeersch et al., 2005; Hilson et al., 2004), was 

chosen to illustrate the workings of our normalization method. This experiment was ideally suited 

to validate our procedure because firstly, it contained the necessary spots for measuring external 

control spikes, which are required for estimating the parameters of our model. A series of external 

controls (Lucidea Universal Scorecard; Amersham Biosciences), consisted of ten calibration 

spikes (added to the hybridization solution in a ratio 1:1 and spanning up to 4.5 orders of 

magnitude), eight ratio spikes provided at both low and high concentration and two negative 

controls, was spotted once per pin group, resulting in a total of twenty-four repeats of each spike 

probe per array. Secondly, the experimental design included only a single biological condition 

(self-self experiments; all hybridizations were conducted with the same RNA sample, extracted 

from aerial parts of germinating Arabidopsis thaliana seedlings), which allows assessing the 

performance of our normalization method in removing non-linear tendencies present in 

microarray data. Lastly, they were outfitted with an additional set of control spikes that could be 

used to verify to what extent our method was capable of approximating the absolute target

concentrations. 

The results presented in this paper were obtained from non-background corrected measurements, 

since no marked improvements were observed after performing a background subtraction (results 

not shown). The distribution of spot capacities s0 was modeled as ses s
εµ=0  with εs ~ N(0,σs). 

The distribution parameters µs and σs were assumed to be equal for all measurements of a single 

array.
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Removal of non-linear artifacts

Figure 3 illustrates the result of applying our method on a selection of two arrays from the 14-

array experiment. As this is a self-self design, the same biological sample was measured 4 times 

on these 2 arrays (twice labeled with Cy3 and twice with Cy5). For the purpose of our test, we 

treated this self-self experiment as a dye swap design with two hypothetically different samples 

(designated C1 and C2). Estimated expression levels x0 of the approximately 19.000 genes are 

plotted in Figure 3 for C1 vs. C2. Because in reality C1 and C2 represent the same biological 

condition, all estimates being centered along the bisector indicates that our model adequately 

accounts for the major sources of non-linear variation in the data. The increased variance of the 

estimates observed at lower target levels is inherent to microarray technology. This range of 

expression corresponds to the saturation observed in the lower intensity region, i.e. where the 

additive error has a significant influence, considerably blurring the relationship between 

measured intensity y and target expression level x0. Because of these saturation effects, estimates 

of lower concentration are prone to be less reliable. 

As mentioned previously, our method is not bound by experimental design. To illustrate that 

these results are not only achievable with simple experimental setups, such as a color flip, we 

normalized a set of 4 arrays as if it concerned a loop design with 4 different biological conditions. 

A comparison of the estimated expression levels is shown in Figure 4. 

Evaluation of target expression level estimates

Although we have shown that our method is capable of estimating absolute expression levels that 

respect true ratios between the different conditions compared, the previous experiment does not 

reveal anything about the accuracy of these absolute estimates, i.e. it does not show to what 
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extent these absolute expression levels approximate the actual concentrations of target in the 

hybridization solution.

To verify the accuracy of estimated target concentrations, they should be compared with their 

actual concentrations in the hybridization solution. Doing this for the entire population of 

transcripts is impossible; as for most of the genes this concentration is unknown. However, the 

data set contains an additional set of non commercial spikes for which the absolute concentrations 

in the hybridization solution are known. The extracted RNA samples were complemented with 

fourteen external controls at amounts of 104, 103, 102, 10, 1, 0.1 or zero copies per cell. In all 

fourteen hybridizations, these controls were compared with a unique reference RNA, capable of 

binding to all of the 14 spike cDNA probes, always added at a concentration of 100 copies per 

cell. The experimental design for these control spikes is summarized in Table 1. Results obtained 

after performing our normalization are shown in Figure 5 (one spike was omitted from analysis

because of quality issues (Allemeersch et al., 2005)). Because the estimated target concentrations, 

expressed in pg/ml, were not directly comparable to the units of copy number per cell, a linear 

rescaling of these values by a factor that set our estimate of the unique reference RNA to ‘100’ 

(copies per cell) was performed. Figure 5 shows that, except for the lowest concentrations,

estimated values correspond fairly well to the true target concentrations as present in the 

hybridization solution. As explained above, also here estimates of the lowest concentrations show 

a higher error variance. 

Comparison of target concentrations between genes

Although Figure 5 shows that concentrations can be accurately estimated, there are several gene-

dependent factors that could influence the obtained results, possibly hampering the comparison of 

estimated concentrations between different genes. Gene specific hybridization efficiencies for 
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instance, are not taken into account by our model. ‘Consistent spot errors’ are another factor for 

which it is theoretically impossible to compensate. Microarrays are usually spotted in batch: 

experimental errors that influence the DNA probe solutions used for spotting will affect an entire 

set of microarrays in a similar way. This type of ‘consistent spot error’ will manifest itself on 

individual spots across multiple microarray slides, contrary to e.g. variations related to the 

spotting pins themselves, which would also affect multiple spots on a single array. The particular 

setup of the 13 external controls, used for assessing the accuracy of estimated target levels, can 

provide some insight. Because the universal reference RNA can hybridize to all the probes of 

these spikes, it couples the spot errors of all probes during the estimation of target concentrations. 

As a consequence of this coupling, consistent spot errors could partially be compensated for, as 

illustrated in Figure 6. For certain spikes (e.g. Dil2a), estimated spot capacities were persistently 

above or below the average spot capacity µs, a feature that was only detectable through the 

presence of the universal reference RNA. As a result, estimated target concentrations can be 

subject to gene specific rescaling, hampering the comparison of these concentrations between 

genes. They can nevertheless be interpreted as absolute values of expression when comparing 

different concentrations for a single gene.

Influence of background corrections

In our model the combination of the additive intensity error εa and intercept of the dye saturation 

function p2 can be regarded as an elementary model for the entire slide’s background. Having a 

single background for all spots is different from the spot specific background corrections 

performed during standard microarray analysis, which estimate a spot specific background from 

pixels corresponding to the area of the glass slide surrounding the spotted probe. This background 
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model is by no means a restriction concerning the use of background corrected values; our 

normalization can be applied to both raw and background corrected intensities. Moreover, our 

method is perfectly capable of working with negative intensity values that may arise when 

measurements are laying below background. Whether or not using background corrected 

measurements is advisable, depends largely on the data quality. This is illustrated in Figure S2. 

Performing a spot specific background correction prior to applying our model would ideally 

result in the lower saturation limit of our model (p2) becoming zero. In reality, the estimate for p2

will indeed be lower, but never reaches a zero level. In general, we’ve observed a trade off: 

background corrected measurements have a larger linear range, but at the expense of increased 

measurement errors for lower concentrations. 
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Discussion

In this paper we present an approach for normalizing microarray data, using external control 

spikes to fit a calibration model. This model incorporates parameters and error distributions 

representing both the hybridization of labeled target to complementary probes, and the 

subsequent measurement of fluorescence intensities. External control spikes serve to estimate the 

model parameters. The obtained parameters values are then employed to estimate absolute levels 

of expression for the remaining genes. For each combination of a gene and a tested biological 

condition, a single absolute target level is estimated, taken the specificities of the design.

The model in itself is fairly basic, in that, with the exception of spot size errors, it is aimed at 

capturing the global characteristics of an experiment and their overall influence on intensity 

measurements, generalizing on hard to quantify local sources of variation. The combination of 

the additive intensity error εa and intercept of the dye saturation function p2 for instance, can be 

regarded as a global model for the entire slide’s background. 

The array specific hybridization constant KA, another global factor, obviously does not account 

for transcript specific hybridization efficiencies. Therefore, care should be taken when 

interpreting the estimated expression levels as actual concentrations or when comparing 

estimated target levels between genes. On the other hand, probe sequences for spotted

microarrays are often specifically selected to have properties that obviate large differences in 

transcript specific hybridization effects. Besides these gene specific hybridization effects,

comparison of estimated target levels between genes is also complicated by ‘consistent spot 

errors’ across multiple slides. These errors, resulting from experimental inaccuracies in the probe 
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preparation, can arise when microarray slides are spotted in batch. Due to the characteristics of 

microarray technology, they cannot be dealt with model wise.

Although our model is a simplification of physical reality dealing with errors in a global, non-

gene specific way, results show that our method is capable of adequately linearizing and 

normalizing microarray data. An important difference over most existing normalization methods 

is that our procedure does not rely on any assumptions on the distribution of gene expression 

levels from one biological sample to the next. Hence, our procedure is particularly well suited to 

normalize experiments for which the Global Normalization Assumption may not be entirely 

valid, i.e. experiments for which there is no symmetry in the amount of genes that are up 

regulated versus down regulated. Such is typically the case with experiments comparing 

drastically contrasting biological conditions or with dedicated microarrays, containing only a 

limited number of probes, representing genes involved in the studied biological process. 

In contrast to other normalization methods that use spikes to circumvent the Global 

Normalization Assumption (van de Peppel et al., 2003), our procedure computes absolute 

expression levels, avoiding the use of ratios. Moreover, for the described experiment, the 

estimated absolute expression levels approximate the actual concentrations fairly well. Some 

caution is nevertheless advised when interpreting estimated concentrations as such. This is only 

problematic as far as comparing expression levels between different genes; the points discussed 

above have little or no consequence if a comparison is made between estimated target levels 

across biological conditions for a single gene. Conclusively, our method offers a novel approach 

to normalizing spotted microarrays, that combines the advantages of some ANOVA based 

approaches, which also estimate absolute expression levels, and methods that perform data 

linearization (e.g. LOESS). The procedure offers independence of assumptions concerning the 
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distribution of gene expression and retains much of the inherent calibration information of 

external control spike measurements. 
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Tables

Table 1: Mixes of the 14 control spikes. These spike mixes were added to the hybridization 

samples, prior to labeling. From the total of 14 arrays, 7 were hybridized with the respective spike 

mixes labeled in Cy5, each time against the reference mix labeled in Cy3. The remaining 7 arrays 

were hybridized with the respective spike mixes labeled in Cy3, each time against the reference 

mix labeled in Cy5. Concentrations are given in copy number per cell. DilB6 was omitted from 

analysis due to quality issues (Allemeersch et al., 2005).

Spike Spike Mix 1 Spike Mix 2 Spike Mix 3 Spike Mix 4 Spike Mix 5 Spike Mix 6 Spike Mix 7 Reference Mix

DilA1, DilB1 10000 0 0.1 1 10 100 1000 100

DilA2, DilB2 1000 10000 0 0.1 1 100 100 100

DilA3, DilB3 100 1000 10000 0 0.1 1 10 100

DilA4, DilB4 10 100 1000 10000 0 0.1 1 100

DilA5, DilB5 1 10 100 1000 10000 0 0.1 100

DilA6, DilB6 0.1 1 10 100 1000 10000 0 100

DilA7, DilB7 0 0.1 1 10 100 1000 10000 100
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Figures

Figure 1: External control spikes. A) Measured Cy5 intensities (yCy5) plotted against Cy3

intensities (yCy3) for all external control spikes (Cy5/Cy3 ratios 1:10, 1:3, 1:1, 3:1 and 

10:1). This plot illustrates the relatively small scanner errors, especially compared to the 

large variation in intensities that is observed in panel B. B) Non-linear relationship 

between measured intensity y and corresponding concentrations x0 (pg/ml) of target 

transcripts in the hybridization solution for all external control spikes with a Cy5/Cy3

ratio of 1:1.
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Figure 2: Parameter estimation. At given parameter values (red and green curve), spot erro

obtained by estimating the amount of hybridized target xs for the measured intens

of the external control spikes (black dots). Grey dots depict the amount of hybr

target, assuming equal spot capacities (no spot errors).
xs
y
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Figure 3: Removal of non-linear artifacts. Estimated expression levels for C1 are plotted 

against estimated levels for C2 after normalizing a color flip experiment. C1 and C2 

in fact represent the same biological mRNA sample. The centering of data points 

around the bisector (solid line) indicates that typical microarray non-linearities are 

adequately accounted for.
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Figure 4: Removal of non-linea
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Figure 5: Evaluation of absolute expression level estimates. Estimated target concentrations 

(copy number per cell) for all of the 13 controls are plotted against the actual, spiked 

concentrations. The solid line depicts the bisector.
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Figure 6: Consistent spot errors. Estimated spot capacities, corresponding to the 14 microarrays 

of the experimental design, are plotted for each of the 13 external controls, 

revealing consistent across-array spot errors. The solid line represents the mean spot 

capacity. 
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Figure S1: Multiplicative intensity error. Estimation of multiplicative intensity error σm is done 

on a subset of spikes (black dots). Performing an orthogonal regression of Cy5 vs. 

Cy3 intensities on the selected data points (red line) will yield an error distribution of 

which the standard deviation is an estimate of σm√2.
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Figure S2: Effect of background correction. A) Model parameters (thick line) and 99% 

confidence interval for intensity errors (thin lines), estimated from raw, non-

background corrected data (red = Cy5; green = Cy3). B) Model parameters and 99% 

confidence interval for intensity errors, estimated from background corrected data. 

Compared to panel A, an increased linear range, as well as an increased error 

variance, can be observed for lower intensity measurements.
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