
Ambiguity elimination in frequency–domain
subspace identification

Koen Eneman1,2 Marc Moonen3

1 ExpORL – Dept. Neurosciences – Katholieke Universiteit Leuven
O & N 2, Herestraat 49 bus 721,

B–3000 Leuven – Belgium
koen.eneman@med.kuleuven.be

2 GroepT Leuven Engineering School
Vesaliusstraat 13,

B–3000 Leuven – Belgium
koen.eneman@groept.be

3 ESAT/SCD – Katholieke Universiteit Leuven
Kasteelpark Arenberg 10,

B–3001 Leuven (Heverlee) – Belgium
marc.moonen@esat.kuleuven.be

January 8, 2007

Abstract

During the last years, many blind subspace–based system identification techniques have
been developed for channel equalization in digital communications. These techniques have
been extended to speech enhancement applications, with limited success so far. In this pa-
per both time–domain and subband/frequency–domain subspace–based system identification
techniques are presented that are intended for speech enhancement and audio signal process-
ing applications. Furthermore, an appropriate ambiguity elimination algorithm is proposed to
remove the subband–dependent ambiguity factors that occur in frequency–domain subspace
identification.
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List of symbols:

Lower case bold–faced letters are used to denote vectors and upper case bold–faced letters to
denote matrices. In addition the following notation is used throughout the paper:

⋆ convolution operation
(·)D↓ downsampling operator, retains each Dth sample
F Fourier transform
x[k] discrete–time–domain signal x
x(f) frequency–domain representation of x[k]
X(z) z–transform of x[k]

AT transpose of A

A∗ complex conjugate of A

A† pseudo–inverse of A

AH Hermitian transpose of A

1 vector with all elements equal to 1
0 zero matrix
0N N × N zero matrix
0M×N M × N zero matrix
IN N × N identity matrix
J exchange matrix : zero matrix with 1’s along its main

anti–diagonal
F DFT matrix
[T(z)]m,n element (m,n) of polynomial matrix T(z)

Other notation is explained in the text.
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1 Introduction

During the last decades, many blind subspace–based system identification techniques have been
successfully derived for channel equalization in digital communications [6] [7] [11] [12]. Later on,
these techniques have been extended and applied to speech enhancement applications [5], with
limited success so far. There are mainly three reasons to explain this. First of all, finding the
correct system order is a first, yet essential step in subspace identification. Unfortunately, system
order mismatches typically lead to an important decrease in the quality of the identified model,
certainly for higher–order systems, which are regularly encountered in speech enhancement. Sec-
ondly, the quality of the model is compromised by the additive noise that is superimposed on the
signals. Subspace techniques are known to be quite sensitive to small amounts of additive noise.
Finally, subspace–based identification procedures tend to give rise to a high algorithmic cost for
parameter settings that are typically used in speech and audio applications. Advanced matrix
operations are required, which result in a computational cost of the order of O(N3), where N is
the length of the unknown transmission paths, and a memory storage capacity that is a multiple
of N2. This easily leads to computational and memory requirements that exceed the capabilities
of many modern computer systems.
Dereverberation probably is the most important application of blind subspace identification tech-
niques in speech enhancement. Various hands–free communication applications such as telecon-
ferencing, hands–free telephony and voice–controlled systems suffer from degraded signal quality,
which is most often attributed to the presence of so–called acoustic echo or background noise–
like disturbances. A third type of disturbance, which is generally less often considered, is caused
by the reverberation that is added to the signals as they propagate through the recording room
and thereby reflect against walls, objects and people. Although signals (music e.g.) may sound
more pleasant when reverberation is added, (especially for speech signals) the intelligibility is
typically reduced. In order to cope with this kind of deformation, dereverberation or deconvo-
lution techniques are called for. Whereas enhancement techniques for acoustic echo and noise
reduction are well–known in the literature, high–quality, computationally efficient dereverberation
algorithms are, to the best of our knowledge, not yet available. An overview and evaluation of
speech dereverberation algorithms can be found in [2].

2 Blind subspace–based system identification

During the last decade, many blind system identification techniques have been developed for
channel equalization in digital communications [7] [11]. These techniques can also be extended to
other types of applications such as audio signal processing and signal enhancement.

2.1 Data model

Consider the M–channel setup of figure 1. An unknown signal x is filtered by unknown impulse
responses h1 . . . hM, resulting in M sensor signals y1 . . . yM. Sometimes, a compensator C is
added to reconstruct the unknown signal x, which is the case for the dereverberation application
mentioned in section 1.
The following data model will be used throughout the text:

y[k] = H · x[k], (1)

relating the system input to the sensor outputs, where

y[k] =
[

y1[k] . . . y1[k − L + 1] . . . yM[k] . . . yM[k − L + 1]
]T

, (2)

and
x[k] =

[
x[k] x[k − 1] . . . x[k − L − N + 2]

]T
. (3)
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Figure 1: Multi–channel setup

Furthermore,

H =
[

HT
1 . . . HT

M

]T
, (4)

with

Hm
∀m
=










hT
m

hT
m

. . .

hT
m










, hm
∀m
=






hm[0]
...

hm[N − 1]




 , (5)

where it is assumed that h1 . . . hM are FIR filters of length N .

2.2 Multi–channel subspace identification

System identifications aims to estimate the system impulse responses h1 . . . hM, or in other words
the system matrix H. Thereto, the L × K Toeplitz matrices

Ym[k]
∀m
=








ym[k − K + 1] ym[k − K + 2] . . . ym[k]
ym[k − K] ym[k − K + 1] . . . ym[k − 1]

...
. . .

. . .
...

ym[k − K − L + 2] ym[k − K − L + 3] . . . ym[k − L + 1]








, (6)

are defined. It follows from Eqs. 1–3 and 6 that

Y[k] =
[

YT
1 [k] . . . YT

M[k]
]T

= H
[

x[k − K + 1] . . . x[k]
]

︸ ︷︷ ︸

X[k]

. (7)

If L ≥ N ,

vmn =
[

01×(n−1)L hT
m 01×(L−N) 01×(m−n−1)L −hT

n 01×(L−N) 01×(M−m)L

]T
(8)

can be defined. Then, for each pair (n,m) for which 1 ≤ n < m ≤ M, it is seen that

vT
mnHX[k] = vT

mnY[k] = 0, (9)

as vT
mnH = [ wmn[0] . . . wmn[2N − 2] 0 . . . 0 ], where wmn = hm ⋆ hn − hn ⋆ hm is equal

to zero. Hence, the transmission paths can be found in the left null space of Y[k], which has
dimension

ν = ML − rank{Y[k]}
︸ ︷︷ ︸

r

. (10)
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By appropriately combining the ν basis vectors1 vρ, ρ = r + 1 . . .ML, which span the left null
space of Y[k], the filter hm can be computed up to within a constant ambiguity factor αm. This
can for instance be done by solving the following set of equations :

[
vr+1 . . . vML

]








β
(m)
r+1
...

β
(m)
ML−1

1








=











αmhm

0(L−N)×1

0(m−2)L×1

−αmh1

0(L−N)×1

0(M−m)L×1











, ∀m : 1 < m ≤ M. (11)

Eq. 11 can be rearranged, resulting into the following set of ML equations in ν+2N−1 unknowns











vr+1 . . . vML−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0N IN

0(L−N)×N 0(L−N)×N

0(m−2)L×N 0(m−2)L×N

−IN 0N

0(L−N)×N 0(L−N)×N

0(M−m)L×N 0(M−m)L×N




















β
(m)
r+1
...

β
(m)
ML−1

αmh1

αmhm










︸ ︷︷ ︸

ǫm

= −vML. (12)

The vector of unknowns ǫm can be computed if Eq. 12 defines an (over)determined set of equations
that has full column rank ν+2N−1. Observe that in practice an (over)determined set of equations
is obtained if the left-hand matrix in Eq. 12 does not have more columns than rows, i.e. if
ML ≥ L + N − 1, which by inserting Eq. 10 reduces to rank{Y[k]} ≥ 2N − 1. An exact solution
to Eq. 12 does exist in the noise–free case. If noise is present Eq. 12 has to be solved in a
least–squares sense.
In order to eliminate the different ambiguity factors αm, it is sufficient to compare the coefficients
of e.g. α2h1 with αmh1 for m > 2. In this way the different scaling factors αm can be compensated
for, such that only a single overall ambiguity factor α remains.

2.3 Channel order estimation

From Eq. 12 the transmission paths hm can be computed [7], provided that the channel order N
is known. Now, observe from Eq. 7 that

rank{Y[k]} = min{ML,L + N − 1} (13)

if it is assumed that

1. K ≥ L + N − 1, i.e. X[k] has more columns than rows

2. X[k] has full rank min{K,L + N − 1} = L + N − 1

3. H has full rank min{ML,L + N − 1}.

These assumptions are fulfilled if signal x is randomly chosen or obtained from a generic setup
and if the impulse responses hm do not have common zeros. So for generic systems for which
K ≥ L + N − 1, the rank of Y[k] equals L + N − 1 if L ≥ N−1

M−1 . Hence, the channel order can be
found from

N = rank{Y[k]} − L + 1, (14)

provided that there is no noise added to the system. If there is noise in the system one typically
attempts to identify a “gap” in the singular value spectrum to determine the rank of Y[k]. This

1Assuming Y
T [k]

SVD
= UΣV

H , V =
[
v1 . . . vr vr+1 . . . vML

]
is the singular value decomposition

of Y
T [k].
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Figure 2: Multi–channel subband setup

gap is due to a difference in amplitude between the large singular values, which are supposed to
correspond to the desired signal, and the smaller noise-related singular values.
Finally, following the same reasoning it appears that for multi-channel generic systems, Eq. 12 is
an (over)determined set of equations with full column rank if L ≥ N and K ≥ L + N − 1. Hence,
once N is known, the transmission paths can be found based on Eq. 12.

3 Subband–domain subspace–based identification

In order to overcome the high computational and memory requirements of the time–domain sub-
space approach subband processing can be put forward as an alternative.

3.1 Subband implementation scheme

In a subband implementation all sensor signals ym[k] are fed into identical analysis filter banks
{a0, ..., aP−1}, as shown in figure 2, and are in this way divided in P subbands. All subband
signals are subsequently D–fold subsampled. Unlike in the standard time–domain approach of
section 2, the system model is estimated based on the downsampled signals y

(p)
m [k]. The processed

subband signals can be equalized by e
(p)
m [k] and be upsampled, and are then finally recombined in

the synthesis filter bank {s0, ..., sP−1}, leading to the system output x̂. As the channel estimation
procedure is performed in the subband domain at a downsampled sampling rate, a substantial
cost reduction is expected.
If there are P subbands that are D–fold subsampled, one might expect that the transmission path
length reduces to N

D
, lowering the memory storage requirements from O(N2) to O(P N2

D2 ). As
typically P ≈ D, it follows that O(P N2

D2 ) ≈ O(N2

D
). As far as the computational cost is concerned

not only the matrix dimensions are reduced, also the updating frequency has been lowered by a
factor D, leading to a huge cost reduction from O(N3) to O(P N3

D4 ) ≈ O(N3

D3 ). In practice however,
the cost reduction is less spectacular, as the transmission path length will have to be larger than
N
D

to appropriately model the acoustics (see also section 3.2). Secondly, we so far neglected the
filter bank cost, which will furthermore lower the complexity gain that can be reached with the
subband approach. Nevertheless, a significant overall cost reduction can be obtained, given the
O(N3) dependency of the algorithm.
In order to reduce the amount of overall signal distortion that is introduced by the filter banks
and the subsampling, perfect or nearly perfect reconstruction filter banks are employed [3] [10].
Oversampled filter banks, for which P > D, are applied to minimize furthermore the amount of
aliasing distortion that is added to the subband signals during the downsampling. DFT modulated
filter bank schemes are then typically preferred. In many applications very simple so–called DFT
filter banks are used (see also section 3.3).
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Figure 3: Subband–domain representation of hm[k]

Summarizing, the advantages of a subband implementation are the substantial cost reduction and
the subband dependent processing, which is expected to give rise to improved performance. The
disadvantages are extra processing delay, possible signal distortion and aliasing effects caused by
the subsampling [4].

3.2 Subband–dependent data model

If we leave out the subsampling for the time being, the following subband–dependent data model,
similar to Eq. 7, can be put forward:

Y(ap)[k] = H · X(ap)[k], ∀p = 0 : P − 1. (15)

H is defined by Eqs. 3 and 5, and Y(ap)[k] and X(ap)[k] are constructed similar to Eq. 7, based on
the subband signals x(ap)[k] = ap ⋆ x[k] and y

(ap)
m [k] = ap ⋆ ym[k] = ap ⋆ hm ⋆ x[k] = hm ⋆ x(ap)[k].

If the analysis filter bank filters ap are frequency selective and filter out contingent frequency
bands with a total bandwidth smaller than 1/D, the subband signals can be D–fold subsampled
without introducing aliasing. The subsampling operation however affects the data model. It was
proven in [4] that for a P–band, D–fold downsampled ideally frequency selective DFT modulated
filter bank

y(p)
m [n] = h(p)

m ⋆ x(p)[n], (16)

where y
(p)
m [n] =

(

y
(ap)
m [k]

)

D↓
and x(p)[n] =

(
x(ap)[k]

)

D↓
are D–fold subsampled equivalents of

the filtered fullband signals y
(ap)
m [k] and x

(ap)
m [k], and h

(p)
m [n] is an infinitely long, anti–causal

interpolation–like filter, with decaying amplitude for increasing values of |n|:

h(p)
m [n]

∀m
=

(

hm[l] ⋆

(

e−j
2πlp

P sinc

(
πl

D

)))

D↓

. (17)

Hence, for perfect system identification infinitely long subband filters need to be estimated. In
practice however, we hope to obtain a quasi–perfect identification by taking into account only the
most dominant ND

s filter taps of h
(p)
m [n], where typically ND

s = O(N
D

).

3.3 Ambiguity elimination

With blind system identification techniques the transmission paths can only be estimated up to
within a constant factor. Contrary to the fullband approach where a global uncertainty factor α
is encountered (see section 2.2), in a subband implementation there is an ambiguity factor α(p)

in each subband. This leads to significant signal distortion if the ambiguity factors α(p) are not
compensated for.
Assume that a set of filters ĥ

(p)
m [n], m = 1 : M, p = 0 : P − 1, are computed with a blind subspace

channel estimation procedure in the subband domain. If there is no noise in the system and the

filters ĥ
(p)
m [n] are sufficiently long, then ĥ

(p)
m [n] = α(p)h

(p)
m [n], where h

(p)
m [n], p = 0 : P − 1, are a

subband representation (cf. Eq. 17) of the true m–th time–domain transmission path filter hm[k],
as shown in figure 3.
Remark that in general, due to the ambiguity, the set of filters ĥ

(p)
m [n] does not describe a valid
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︸ ︷︷ ︸
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[
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]

︸ ︷︷ ︸

C(z)

D

D
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D

D

z−1

z−1

z−1

z−1

i = 0

i = D − 1

h
(1)
m = γ(1)ĥ

(1)
m

h
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m = γ(P−1)ĥ

(P−1)
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Figure 4: Partitioned block frequency–domain representation of hm[k]. Matrix J is the P × P
exchange matrix and F is the P × P DFT matrix. The P × D polynomial matrix B(z) and the
D × P matrix C(z) are defined in the figure.

linear convolution operation. In order to remove the ambiguity, scaling factors γ(p) = 1/α(p) need
to be found such that a valid convolution is obtained. In that case, γ(p)ĥ

(p)
m [n] will approach the

true transmission paths h
(p)
m [n]. In this way the subband filters ĥ

(p)
m [n] are transformed into a valid

linear convolution operation.
In this section we will derive an ambiguity elimination procedure for subband schemes that make
use of simple DFT filter banks. As mentioned in section 3.1, DFT filter banks are often used in
practical applications for their low complexity and ease of implementation. If the analysis filter
bank is defined as

ap[k] = e−j
2π(P−1−k)p

P , k = 0 : P − 1, p = 0 : P − 1, (18)

for instance, and is combined with the following synthesis filter bank

sp[k] =
1

P
ej

2π(P−D+k)p

P , k = 0 : D − 1, p = 0 : P − 1, (19)

an elegant perfect reconstruction subband system is obtained (in the absence of intermediate

subband operations, i.e. if all h
(p)
m = 1). Despite the rather poor frequency characteristic of the

filter banks an efficient solution is obtained: observe from Eqs. 18 and 19 that the filter bank
operations come down to the computation of an (I)FFT. If the filter banks are as defined in Eqs.
18 and 19, figure 3 can be redrawn, resulting in figure 4. It can be shown that this subband system
is related to overlap–save fast convolution techniques [4] [8].

In the case of DFT filter banks as defined in Eqs. 18 and 19, the filters h
(p)
m [n] are a frequency–

domain representation of the true time–domain transmission paths hm[k]. For a typical parameter
setting [4]:









h
(0)
m [n]

h
(1)
m [n]

...

h
(P−1)
m [n]









= F








hm[nD]
...

hm[nD + D − 1]
0(P−D)×1








, ∀n = 0 :
N

D
− 1, (20)

where it is assumed that the transmission path length N is a multiple of D. Otherwise, hm[k]
must be padded with zeros. Moreover, one typically chooses P = 2D, where P is a power of 2
such that fast Fourier transforms can be used.
If now a set of frequency–domain filters ĥ

(p)
m [n] are computed with the scheme of figure 4 using a

blind channel estimation procedure as presented in section 2.2, a set of scaling factors γ(p) = 1/α(p)

has to be found such that a valid linear convolution is obtained. As we want the subband system
of figure 4 to be equivalent to the time–domain filter hm[k] (up to a delay), the chain of subband
operations should represent a time–invariant filter operation. It can be proven that a time–
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invariant filter operation is obtained2 if

Tm(z) = C(z)JF−1diag{γ(p)Ĥ(p)
m (z)}FJ

︸ ︷︷ ︸

Um(z)

B(z) (21)

is a pseudo–circulant matrix [10], i.e.

[Tm(z)]q+1,n+1 = [Tm(z)]q,n

[Tm(z)]q+1,0 = z−1 [Tm(z)]q,D−1

}
∀q = 0 : D − 2

∀n = 0 : D − 2.
(22)

As FJUm(z)JF−1 is diagonal, Um(z) must be a right–circulant matrix :

Tm(z) =
[
ID 0

]

︸ ︷︷ ︸

C(z)








Um0
(z) Um1

(z) . . . UmP−1
(z)

UmP−1
(z) Um0

(z) . . . UmP−2
(z)

...
. . .

...
Um1

(z) Um2
(z) . . . Um0

(z)








︸ ︷︷ ︸

Um(z)






ID

z−1ID

. . .






︸ ︷︷ ︸

B(z)

. (23)

It can be easily verified based on Eqs. 22 and 23 that

Ump
(z) = 0, ∀p : P − D < p < P. (24)

must be true for Tm(z) to be a pseudo–circulant matrix.
As Um(z) is a circulant matrix, the diagonal elements of FJUm(z)JF−1 are the DFT coefficients
of the first row of Um(z). Hence, from Eqs. 21, 23 and 24 it follows that







γ(0)Ĥ
(0)
m (z)
...

γ(P−1)Ĥ
(P−1)
m (z)







= F








Um0
(z)

...
UmP−D

(z)
0(D−1)×1








. (25)

By comparing Eq. 25 with 20, and by requiring that γ(p)ĥ
(p)
m [n] = h

(p)
m [n], it is observed that

the filters Ump
(z) contain the coefficients of hm[k]. As equation 20 holds for a typical parameter

setting that is used for the scheme of figure 4, only the first D filters Ump
(z) are different from 0 :

Ump
(z) = 0, ∀p : D ≤ p < P. (26)

Hence, it follows that Ump
(z), p = 0 : D − 1 are the Dth order polyphase components of hm[k].

Observe from Eq. 25 that for each filter tap n and each channel m an equation

H
[n]
m






γ(0)

...
γ(P−1)






︸ ︷︷ ︸

γ

=

[

u
[n]
m

0(P−Q)×1

]

(27)

can be set up with

H
[n]
m =

[

H
[n]
m1

H
[n]
m2

]

= F−1







ĥ
(0)
m [n] . . . 0

...
. . .

...

0 . . . ĥ
(P−1)
m [n]







, (28)

2Ĥ
(p)
m (z) is the z–transform of ĥ

(p)
m [n]
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H
[n]
m1 a Q × P matrix, H

[n]
m2 a (P − Q) × P matrix and

u[n]
m =






um0
[n]

...
umQ−1

[n]




 , (29)

with Ump
(z) =

∑Ln−1
n=0 ump

[n]z−n and Q ≤ P − D + 1. Remark that for the scheme of figure 4,
Q = D and Ln = N/P . Now, define

Hm =






H
[0]
m

...

H
[Ln−1]
m




 , um =











u
[0]
m

0(P−Q)×1

...

u
[Ln−1]
m

0(P−Q)×1











and ūm =









u
[0]
m

u
[1]
m

...

u
[Ln−1]
m









. (30)

Then, γ can be computed by combining Eq. 27 for each filter tap n and each channel m






H1

...
HM











γ(0)

...
γ(P−1)






︸ ︷︷ ︸

γ

=






u1

...
uM




 , (31)

which can be rewritten as











H
(0)
11 IQ 0Q×(LnM−2)Q 0Q

H
(0)
12 0 0(P−Q)×(LnM−2)Q 0
...

. . .
. . .

...

H
(Ln−1)
M1 0Q 0Q×(LnM−2)Q IQ

H
(Ln−1)
M2 0 0(P−Q)×(LnM−2)Q 0


















γ

−ū1

...
−ūM








= 0. (32)

Hence, vector γ can be found in the right null space of the (P − Q)LnM× P matrix H:







H
(0)
12
...

H
(Ln−1)
M2







︸ ︷︷ ︸

H

γ = 0. (33)

If (P −Q)LnM < P the null space becomes multi–dimensional, which should be avoided as in this
case γ cannot be retrieved based on Eq. 33. The vectors u

[n]
m (and hence hm[k]) can be obtained

from 





u
[0]
1
...

u
[Ln−1]
M







=







H
(0)
11
...

H
(Ln−1)
M1







γ. (34)

In the presence of noise, γ can be found as the right singular vector that corresponds to the smallest
singular value. Remark furthermore that γ and the set of filters hm[k] can only be estimated up
to within an unknown global constant.
Rahbar, Manton et al. [9] proposed a similar, probably more noise robust method, to compensate
for the frequency–dependent ambiguity in the case of 1–tap filters ĥ

(p)
m [n]. They maximize the

energy in the first part of the impulse response (first N coefficients of F−1[ĥ
(0)
m . . . ĥ

(P−1)
m ]T ) under

the constraint that the total energy of F−1[ĥ
(0)
m . . . ĥ

(P−1)
m ]T stays constant. This then leads to a
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generalized eigenvalue decomposition.
Both ambiguity elimination algorithms are quite computationally involving, as the eigenvalue or
singular value decomposition has to be computed of a large matrix. This certainly is a drawback
of the subband–domain subspace identification approach. It further appeared that both ambiguity
elimination methods are sensitive to system order mismatches. Finally, in our simulations with
the algorithm of Rahbar and Manton we sometimes encountered numerical problems during the
computation of the generalized eigenvalue decomposition.
In [1] a promising dereverberation algorithm was presented that relies on 1–dimensional frequency–
domain subspace tracking. An LMS type updating scheme was proposed that offers a low cost
alternative to the matrix based algorithms of section 2. A major drawback of this approach is
that the norm of the transfer function matrix β(f) =

[
h1(f) . . . hM(f)

]
(with hm(f) the

frequency-domain representation of hm[k], see figure 1) needs to be known in advance. We can
get around this by measuring parameter β(f) beforehand. This is however unpractical, hence
an alternative is to fix β(f) to an environment–independent constant, e.g. β(f) = 1. Now, if
the frequency–domain subspace estimation algorithm is combined with the ambiguity elimination
algorithm presented in Eqs. 27–34 the transmission paths hm(f) can be determined up to within
a global scaling factor. Hence, β(f) can be computed and does not need to be known in advance.
Uncertainties on β(f), however, which are due to the limited precision of the channel estimation
procedure and the lagging behind of the algorithm during tracking of time–varying transmission
paths, affect the performance of the subspace tracking algorithm.
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5 Conclusions

In this paper subspace identification techniques are discussed for speech enhancement and audio
signal processing. Both time–domain and subband/frequency–domain algorithms are presented.
It is shown that the unknown transmission paths can be estimated only up to within a global
constant, provided that appropriate ambiguity elimination algorithms are employed.
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