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ABSTRACT

This paper proposes a novel region-based scheme for dynam-
ically modeling time-evolving statistics of video background,
leading to an effective segmentation of foreground moving
objects for a video surveillance system. In [1] statistical-
based video surveillance systems employ a Bayes decision
rule for classifying foreground and background changes in
individual pixels. Although principal feature representations
significantly reduce the size of tables of statistics, pixel-wise
maintenance remains a challenge due to the computations and
memory requirement. The proposed region-based scheme,
which is an extension of the above method, replaces pixel-
based statistics by region-based statistics through introduc-
ing dynamic background region (or pixel) merging and split-
ting. Simulations have been performed to several outdoor and
indoor image sequences, and results have shown a signifi-
cant reduction of memory requirements for tables of statistics
while maintaining relatively good quality in foreground seg-
mented video objects.

Index Terms — video surveillance, object tracking, Bayes
classification, statistical background modeling.

1. INTRODUCTION

Foreground object detection and segmentation from a video
is one of the essential tasks in many applications for exam-
ple, video surveillance, object-based video coding, and mul-
timedia. A simple way of extracting foreground objects from
videos captured by a stationary camera is through background
subtraction techniques [2, 3]. However, these simple meth-
ods do not work well if the background contains illumina-
tion variations and other dynamic changes. A range of meth-
ods have been proposed in previous studies, e.g., filters are
used along the temporal direction for smoothing illumina-
tion variations [4]; characterizing the intensity of an image
pixel by mixture of Gaussians [5, 6, 7] followed by updating
Gaussian parameters to adapt to gradual background changes.
[1] has proposed a statistical method by Bayesian classifica-
tion of foreground and background changes and by maintain-
ing statistics of background changes dynamically. The esti-

mated pdfs of background pixels are obtained by using prin-
cipal feature representations and tables of statistics. Subse-
quently, these tables are updated at different rates depending
on whether background changes are due to slow illumination
changes (static background) or movement in the background
(dynamic changes), hence it is more robust to a variety of
background changes. A main disadvantage in [1] is that each
pixel requires three tables of statistics. When the image size
is large, this not only leads to using large memory space, but
also to a significant amount of computations in updating ta-
bles. Motivated by this, we improve the previous method by
using a region-based scheme through introducing dynamic
pixel/region grouping and region splitting, which takes into
account the spatial correlations of image pixels.

2. SYSTEM DESCRIPTION

The proposed system, aimed at foreground object segmenta-
tion from complex background, consists of 4 basic processing
blocks: change detection, change classification, foreground
segmentation, and region-based background maintenance. In
the change detection block both temporal changes and the
changes to a background reference image are detected. In
the change classification block, pixels with detected changes
are classified as either dynamic or static, each is then further
classified between the foreground and the background by us-
ing the Bayes rule. In the foreground segmentation block,
connected pixels are formed into segments where small holes
are filled afterwards. In the region-based background main-
tenance block, tables of statistics for background regions are
updated which include joining some background pixels/regions
with similar statistics into regions, or splitting some back-
ground regions when the statistics of pixel(s) in a region start
to deviate.

3. STATISTICAL MODELING USING PRINCIPAL
FEATURE REPRESENTATIONS

3.1. Feature Selection

Let I(s, t) be an input image, v = v (s, ¢) be the pixel-related
feature vector extracted from I(s,t), s = (z,y) be the po-
sition of pixel and ¢ be the time instant. Two types of fea-



ture vectors are used, one is associated with changes in static
background and another in dynamic background. A change
in static background is mainly caused by illumination vari-
ations such as change of indoor lighting or outdoor weather
resulting differences to a pre-stored background reference im-
age. A change in dynamic background is related to a tempo-
ral change in two consecutive images commonly caused by
movement in the scene. For changes in static background,
we set 2 components for the feature vector. They are (color)
intensity and gradient values,

v =[c e]’, wherec=1I(s,t), e =

{61((92 t) alésy, t)}

These two component vectors of v¥ are assumed to be inde-
pendent. For changes in dynamic background, we define the
feature vector as the co-occurrence of intensities,

ve = [cc]T, where cc = [I(s,t —1),1(s, )]

3.2. Estimation of Probability Distributions of Features
using Principal Feature Representations

For characterizing image statistics, the probability distribu-
tions of features associated with a region r = {s} (see Sec-
tion 5 for pixel/region grouping). Each region contains con-
nected pixel(s) with similar background. The pdf’s in each
region are estimated using histograms and then truncated to
a few principal feature components. We refer to this process
as principal feature representation. Let a training set of fea-
ture vector samples be denoted as {vi,va, -+, vk}, where
v € {v*, v}, P.(b), P,(v;) and P.(v;|b) be the prior and
conditional probabilities. For each region r = {s}, tables
of statistics (i.e., histograms with small values truncated) are
stored as the approximation of pdf’s.

Let P.(v;|b),i = 1,--- , K, be arranged according to the
descending values of P,.(v;). For given M; and M, 1.0 >
My > Ms > 0.0, there exists a small integer number N (v)
such that the probability satisfies,

N(v) N(v)

> Pu(vilb) > My and Y Pu(vilf) <My (1)

i=1 =1

where b and f denote the background and foreground, L is
the number of the quantization levels and n is the size of v,
and N(v) < L™. The small N(v) is supported empirically
that the effective spread of histograms for background regions
is much narrower as compare with the entire support L™. De-
termining N (v) is dependent on the feature vector type, the
quantization level L and 6, (see Section 4.2). A table of sta-
tistics is formed as follows:

. _ Pvf(vi)7
niv) ={ i)
(2)

where M (v) > N(v) is set, v; is the ith feature vector in
the table, P.(v;) and P.(v;|b) are sorted out according to the

Pi(v;|b), i=1,--- ,M(v)

descending order of P,(v;), and v € {v*,v?}. The N(v)
features in the table are defined as the principal features for a
background region r. For feature type v® two separate ta-
bles T,.(t;c) and T,.(t;e) are formed since the component
vectors are assumed to be independent. It is shown [1] that
for M1=0.85, M5=0.15, dy-=0.005, d,,2=2, N(v*) = 15 and
N(v%) = 50 are good approximations when the features are
quantized to L4=256 and L;=32 levels, respectively.

4. BAYES CLASSIFICATION OF CHANGES
4.1. Detect Regions with Different Types of Changes

For a new input image I(s, t), region-based change detection
is applied. If changes in pixels are detected from the tempo-
ral differencing |I(s,¢) — I(s,t — 1)| and the average change
within a region exceeds a pre-specified threshold then it is
specified as a dynamic change region where the feature type
v = v% is selected. Otherwise, if changes are detected from
the differencing pixel values from the image frame and back-
ground reference image |I(s,t) — B(s,t)| and the average
change in a region exceeds a threshold then it is specified as a
static change region where the feature type is set as v = v°.

4.2. Estimate Probabilities for Input Image Regions

After the type of changes are determined, the probabilities
of an input image region (including single-pixel regions) are
estimated by using the existing table of statistics,

@) = S Plv), PEB = S Plvilb)

v;eU (V) v;eU(¥)

where v = ¥(s) are feature vectors extracted from r = {s}
inI(s,t), U(¥) ={v; € T.(¢t) | d(¥V, v;) < dy; j < N(v)}
is a subset of features from the table 7,.(¢; v) if the distance
d(v,v;)=1- H02H<2V+7|V\$>\|2 is smaller than a pre-specified dy,.
4.3. Bayes Classification of Background and Foreground

In the 2-class (foreground and background) case, the Bayes
decision rule for classifying a background region is,

Pr(blv) > P(fv) 3)

where {v(s)| s € r}. Noting the posterior probability of a re-
gion r being the background b, or the foreground f for feature
vectors is P.(b|v) = 7PT(‘};[§()£T(b), P.(flv) = 7&(‘;‘7’?3(”
where P,.(v) denotes the prior probability for feature type
v € {v*,v?}. Since P.(v) = P.(v|b) P.(b)+ P.(v|f)P.(f)
holds, the Bayes decision rule becomes,

2P, (v[B)Pu(b) > Po(v) @)

For feature type v°, 2P.(c|b) P-(e|b) P-(b) > P.(c)P,(e) is
replaced to Eq.(4) due to independent components. Eq.(4)
can be used to classify image regions once P.(b), P,.(v) and
P,.(v|b) are estimated.



5. REGION-BASED BACKGROUND MAINTENANCE
5.1. Dynamic Region Merging and Splitting

Background maintenance based on regions takes into account
of spatial correlation of pixels and may significantly reduce
the computations and memory requirements. Using back-
ground regions instead of individual pixels is justified since
most background pixels are connected patches whose statis-
tics are similar and are evolving with time in similar ways.
However, due to the dynamic nature of videos, background
regions changes (e.g., merge, split, re-group, or, shift). There-
fore, a region-based background maintenance scheme must be
able to dynamically cope with these situations.

Dynamic region merging: Noting merging pixels is a special
case of merging regions that contain single pixels, pixel merg-
ing and region merging are handled by the dynamic merging
method described below. Dynamic region merging is per-
formed after updating tables of statistics at each t. The mean
peak of intensity distribution, which is a good approximation
to the local maximum of pdf (or, the local mode) is used to
characterize a region. Since a table of statistics is an approx-
imation of pdf, the mean peak estimate of region r is com-
puted using a few elements in the table of statistics (sorted in
descending order) as follows

> iy vibr(vi)
Zz 1 Pr(vi)

where m is small integer number whose value is a trade-
off between the computation and the accuracy of mean peak
estimate (m=5 in our tests). If two connected regions 7.,
and r, whose learned statistics have a similar local mode,
|ttpk (Tm) — pk(rn)| < d,, then they will be merged into
one. Since pixels in a large region are unlikely to be evolving
in a same rate over a long run, a constraint of a maximum re-
gion size A is imposed. Once regions are merged, their tables
of statistics are merged.

pipk (1) = &)

Dynamic region splitting: Intensities of individual pixels in
a background region from a new input may deviate from the
previously learned statistics when time evolves. For exam-
ple, one part of the region may become a part of a foreground
object, while another part remains in the background; or sta-
tistics in different parts of the region start to evolve in differ-
ent ways. Dynamically splitting background regions is hence
necessary to maintain the effectiveness of the scheme. Region
split is performed before a new image frame at ¢ is processed.
To determine whether a region is split, the intra-region image
intensity spread is computed for r in a newly input image:

Sy = mazse,r{v(s)} — minge, {v(s)} (6)

If S, > T is satisfied (7}, is an empirically determined thresh-
old, 7T,,=15 in our tests), then the region r is split in two possi-
ble ways: (a) split into a foreground and a background region.

This is related to two clusters of intensities. (b) split into two
or more background regions, each containing connected pix-
els and allowing different behavior when time evolves.

Assume r contains n,. pixels, and I(s;, t) are sorted out in
descending order resulting 1(8;,¢), 7 = 1,2,---n,, §; € r.
For case (a), pixels §; are split from the region and moved to
the foreground if they satisfy,

I(gi,t) — I(§i+1,t) > 55’ i=1,---,

ds is chosen to be larger than the average feature spread in
background. If no pixels satisfy (7), then case (b) is assumed.
Pixels whose intensities are far away from the mean intensity
of the region are removed from the current region and a new
region is formed. It is worth mentioning the constraint that all
pixels within each split region are spatially connected.

n.-—1,s8er (7)

5.2. Type-Dependent Learning and Updating

Since video scenes change with time, statistics for each region
are time-varying. It is also unrealistic to assume that there ex-
ist training sequences in advance for each image sequence to
be processed. Therefore, the statistics from the previous im-
age frames should be absorbed during the dynamical learn-
ing. For robust to various changes, two types of table update
strategies are adopted as in [1] however modified to regions.
For sudden changes due to switching foreground and back-
ground, ZN(V P.(v;)—P.(b) vaz(lv) P,(v;|b) > M is sat-
isfied. Tables of statistics T.(¢; v) are updated by using:

Pf-&-l(b) =1- Pf(b), pf+1( ) = P*(vz) ©
PE(vifb) = (P{(v) = P(B)PL(vilb)) /PEH(b)

fori = 1,---,N(v), and the learning rate is set as o >
1 — (1 — M;)*N where N is the number of frames required
to learn the new background appearance (e.g. o > 0.00473
implies the designed system will respond to a sudden back-
ground change in 20 seconds for M; = 85% and video frame
rate 20fps). After updating, the contents in T,.(t + 1;v) are
re-sorted according to the descending order of P! (v;).

For the remaining regions containing static or dynamic back-
ground changes, tables T,.(t; v) are updated by using:

PHL(b) = (1 — a)PL(b) + L,

PH(v;) = (1 — a)Pi(v;) + aLt )

P (v;|b) = (1 — a) Pt (v;|b) + aLtLt
where v; is chosen according to the feature type, the learning
rate « is a small positive number, i = 1,--- , M (v), Li=1 if
7 is classified as background otherwise L}=0, and L, v, = Lif

v matches v; otherwise L), = 0. Further, if L, = 0, the
M -th component in the table is replaced by,
Pf+1(VM) = Q, P7t+1(VM‘b) =, Vpy =V (10)

In addition to table updating, updating background reference
image region is performed by,

| I(s,t) for sudden changes
B(s,t+1) = { (1 - 03)B(s,t) + fI(s,t) other changes
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Fig. 1. Results obtained from the proposed method. Row 1-2: original image frame and segmented foreground objects (before post-processing of filling
small holes). Columns 1-2: from outdoor video 'rain’; Columns 3-4: from outdoor video ’car parking’; Columns 5-7: from indoor video ’laboratory room’.

where s € r, and 3 controls the updating speed.

6. SEGMENTATION OF FOREGROUND OBJECTS

For detected pixels classified as foreground changes, segmen-
tation of foreground objects is then applied followed by post-
processing that fills small holes within segments, e.g. by
morphological operators (this implies shifts some background
pixels to the foreground) and merges small segments to a large
neighboring segment.

7. SIMULATIONS AND RESULTS

Preliminary simulations have been conducted for several out-
door and indoor image sequences with some promising re-
sults. Fig.2 includes some statistics on the distribution of dif-
ferent sized regions as well as the average number of pixels
per region for different image frames. The statistics show that
aregion contains an average of 5 pixels for the outdoor image
sequence ’'rain’, hence in overall saved approximately 4/5 of
memory used for the table of statistics. Since usually about
50% pixels (satisfying Fpq(s,t) = 0 and Fi4(s,t) = 0) are
removed during the change detection step, the required mem-
ory unit (Bytes) for a color image sequence is approximately
equal to (1/5 * 0.5 % (# pixels in an image) *(20 * 11 +
20 % 12 + 60 * 14)), (where M (v%)=60, M (c)=20, M (e)=20
were used, v® = {c, e}, see (2), unsigned-char was used for
color components and integer for probabilities). For exam-
ple, for a color QCIF image sequence (image size 176%144),
the required memory is about 3.3MB. Fig.1 includes sev-
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Fig. 2. Resulting statistics for 'rain’ image sequence (statistics were
computed from image frames I(z,y,t) in a small region =z € [120, 200],
y € [160, 260]). Left: the total number of regions which contains the num-
ber of pixels indicated in the x axis; Right: the average region size versus
image frames (merging regions starts from 20th frame).

E

eral image frames from segmented outdoor and indoor videos,
containing the segmented foreground results from the pro-
posed region-based scheme. The parameters in the program
were set to be My =0.85, M5=0.15, 5=0.7, a=0.005, d,a=2,
0y+=0.005, the table sizes were 15 and 50 for feature types
v*® and v, respectively. The segmented foreground images
(before the post-processing of filling small holes) have shown
that the proposed method works well however with some degra-
dation as compared with the pixel-based method. Fine tuning
of the parameters is required for obtaining a good tradeoff be-
tween the computations and region sizes.

8. CONCLUSION

The proposed region-based scheme, taking into account of
the spatial correlation of pixels, is shown to be promising in
dynamically modeling time-evolving statistics of video back-
ground and in effective segmenting foreground moving ob-
jects. The method has led to a significant reduction in the
memory requirement and computation of tables of statistics
at the price of some quality degradation in foreground object
segmentation.
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