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Abstract

The stabilization diagrams, used in modal analysis, relyhenintuitive notion of a spurious pole. In this
paper, we give a definition of a spurious pole, based on the pugerful unfalsified model (MPUM) of
the data, i.e., on an exact model for the data. The poles dfifPldM are by definition physical and a pole
that is not physical is by definition spurious. Our definitames not make assumptions about the data, apart
from the basic postulation of the linear time-invariant reloclass. In this sense it is unprejudiced. Since the
MPUM can be constructed from the data, one can compute the&qathypoles and thus answer the question
in the title. If, however, one knows a priori that the datarespond to a noise corrupted trajectory of a true
data generating system or that there is an unobserved prooee acting on the true system, one should use
this knowledge. In this case, the MPUM concept has to be naatiiéi allow for approximation. Methods for
approximate system identification and model reduction eriewed and applied for spurious pole detection
of simulated data.

1 Introduction

In modal analysis, it is a common practice to draw what isecedl stabilization diagram and identify a model
for the observed data by visually selecting certain polemfthe diagram. Empirical observations suggest
that the stabilization diagram gives a good indication feciding which of the model poles correspond to
poles of the true system. These poles, called physical peled to stabilize on the diagram. The extra poles,
resulting from the fact that the model order is selected dnighan the true system order are called spurious
poles and do not stabilize on the diagram. Techniques fanaatic detection of the physical and spurious
poles are of high interest in modal analysis.

The separation of the identified poles into physical andisparones, however, is rather speculative. First,
the observed data might not be generated by a linear tinsgtamt (LTI) system, so that one might not be
able to properly talk about physical poles and as a conseguaipout spurious poles. Second, if the data
happen to be (or are very close of being) generated by an IStésyof a low (compared to the data length)
order, it is the total behavior of the model (with contriloutiof all poles) that approximates the given data,
so it is not justified to keep some of the poles and discard thers. For poorly identified physical poles,
the spurious poles might carry equally important inform@atabout the true system. This is manifested in
model reduction techniques, such as the balanced modaitieaumethod [6] that use the full order model
to arrive at a good reduced order model and do not simply tsetece of the poles.

Despite the loose connection between physical poles ares wbla true data generating system, the stabi-
lization diagrams are a successful and very much used mahiniOne possible explanation for this is that
they are good heuristics for model order selection. Thelprolof deciding when a pole is spurious is re-
lated toorder selectiorandmodel reductionAll subspace identification methods, see, e.qg., [7], inithfi do
order selection and subsequently model reduction by cdngpttie singular value decomposition of certain
matrices derived from data and counting the number of sargialues that are larger than a given tolerance.

Another method that is related to the detection of spurialegpappeared in the signal processing literature.
In [2], Kumaresan and Tufts argue that identifying a largdeormodel from the extended Yule-Walker
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equations and reducing that model gives better result themtifying directly a low order model from the
extended Yule-Walker equations. Choosing a high modelrandéudes spurious poles in the model, which
need to be eliminated on the reduction step. The method ofdfesan and Tufts is based on the fact that
when the least norm solution of the extended Yule-Walkeagqus is chosen, the spurious poles are outside
the unit circle while the physical poles (for a stable trustegn) tend to be inside the unit circle. Thus the
separation problem reduces to the one of picking the staidés pf the identified high order model.

Another commonly used method for order selection is to glet misfit versus model complexity trade-
off curve and (visually) select the order correspondinght® ¢orner of the curve. The order is a measure
of the model complexity and the misfit refers to the lack of ifit gome sense) between the data and the
model. When used in combination with a maximum likelihoodntification method, the trade-off curve
has a natural candidate for the misfit measure: the objefiivetion being minimized by the maximum
likelihood method.

In this paper, we put forward a definition for the notions oygibal and spurious poles and apply
e the method of Kung [3], which is based on balanced model itémhyc
e the stochastic subspace identification method of [7, Cin&jte
¢ the method of Kumaresan and Tufts [2], and

e the maximum likelihood method combined with order selatfimm the misfit-complexity trade-off
curve,

as alternatives to the stabilization diagram method foeat&in of spurious poles.

2 Model class: autonomous LTI systems

Let .Z be the discrete-time LTI model class anddebe the shift operatofow)(t) := w(t +1). If we need
to specify the number of variables:= dim(w) of a trajectoryw of the model#, we write Z € V. Two
common representations of a modéle .# are the constant coefficients difference equation

Roo°W+RioW+---+R o' w=0 (1)
and an input/state/output representation
w=Tcol(uy), ox=Ax+Bu y=Cx+Du, 2)
wherefll is a permutation matrix. The polynomial matrix
R(§) :=Ro&%+ R+ +R & e RIVE]

and the tuple of matricg®\, B,C,D, M) are parameters of the model. The notatighdR) and-%iso(A, B,C,D)
stand for the systems defined by (1) and (2), respectively, i.

BR)={we (RMY| (1) holds} and %yso(A,B,C,D,M) = {we (R (2) holds}.

The integer is called thelag of the difference equation (1) and the integeis called theorder of the
state space representation (2). For a givér ., the smallest lag(#) and ordem(%) of a difference
equation and state space representation are by definitimpémdent of the representations and are called
the lag and the order of the syste#h The difference equation representatigiiR) = 4 is called minimal

if the degree of the representation is equal to the lag ofytsem4, i.e., degrefR) = [(£). The state space
representatioys/o(A,B,C,D, M) = A is called minimal if diM{A) = n(%).

The representation®(R) = % and %is/0(A,B,C,D, M) = £ of a systemZ € . are not unique due to



FLITE EUREKA 2 1617

e equivalence transformations:
AB(R) = A(UR), for any unimodular matrixJ
and

Biisio(A,B,C,D, M) = Bysjo(VAVL,VB,CV~1 D, M), for any nonsingular matri¥ .
e non-minimality of the representations.

In addition, the state space representatigi (A, B,C,D,IM) is not unique due to nonuniqueness in the
choice of the input/output partition, i.e., the choice of fpermutation matriXx1. In this paper, however,
we consider the subclaﬁo” of the LTI model class#P consisting of autonomous systems (the subscript 0
stands for “no inputs”), so that the input/output partitiapissue does not occur.

The difference equation and state space representatiora fautonomous syste# € % specialize to,
respectively,

|
Poly+Pioly+ - +Ra'y=0, where P(§):= 'Z)Rafi cRP*P[E], det(P(§)) #0  (3)

and
ox=Ax, y=Cx (4)

2 (P) denotes the system defined by (3) addA,C) denotes the system defined by (4).

The zeros of the characteristic equation(Bé£)) = 0 of (3) determine the asymptotic behavior (growth,
oscillation, or decay) of the mode¥(P) and are callegholesof the system. Note that although the parame-
ter P is not unique, the poles a®(P) are invariant of the representation. We denote\ ) the set of the
poles of%, i.e.,

A(#):={zeC| det(P(z)) =0}, where Pisany polynomial matrix, such tha#(P) = 2.

If a state space representatigf(A,C) is minimal, then the set of eigenvaluesAtoincides with the set of
poles of Z(A,C). If, however, the order of the representatigh— %(A,C) is higher than the order of the
systemZ, then there are eigenvalues Atthat do not correspond to poles. Such eigenvalues do not have
effect onZ and can be arbitrary complex numbers.

The complexity of a general LTI syste® € £V, can be measured by the number of inputs?%), the
lag 1(#), and the orden(#). The model class of LTI systems (with variables) ofbounded complexity
—m(B) <ml(A) <|,n(H)<n,wherem |, andn are given integers — is denoted kiﬁn"qvi”. For an
autonomous system® € .7, m(%) = 0, so that the complexity specification is given only by thg aad
the order. Note that(#) < n(Z) for any# € .Z, andl(#) = n(#), for any single-output system.

A trajectoryw € (R")" of the systemz € £ C (R")" is an infinite time seriew(1),...,w(t),...). The
restriction ofw to the interval[ty,t;] is denoted bywy, ,,;:= (W(t1),...,w(tz)) and the restriction of the
system behaviog to the intervallty, to] is denoted byZ|y, 1,):= { W, 1, | WE # }.

t1,lo

3 Spurious poles: definition using exact modeling

By definition, a pole is physical if and only if it is not spuni®. Thus, instead of talking about spurious poles,
we can equivalently talk about physical poles. This turnst@lbe more convenient.

Intuitively, a pole is physical with respect to dajaif it is a pole of atrue data generating systezﬁT €%
for yq. The difficulty in making this intuitive idea precise is inexjifying the meaning of the statement
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“B € % Is a data generating system fgy”. The classical approaches to define this statement are to
introduce process or measurement noise in the descriptittre anodel class and adopt a stochastic setting.
Using measurement noise, the true data generating systémasitput error model

Va=Yy+Y, where ye Zec % and y~N(0,02), (5)

i.e., the data are assumed to be a noise corrupted trajemtagy where the noise is zero mean, Gaussian,
with covariance matrix known up to a scaling factor. Usingpinocess noise, the true data generating system
is an ARMA model. In this caseZ is augmented with an inpaétthat is a white Gaussian process, and it is
assumed that cOlq, e4) € £ for some noise realizatiogy.

There are two basic problems with the classical approach.

1. One has tassume priori that a true data generating systér(i.e., an output error or ARMA model)
exists. In practice, such assumptions need not hold, soi@nnot an approximated data generating
system is needed.

2. Even whenz exists, typically it is not computable from the data. Theotlyeensures that the result of
a “good” (i.e., consistent) identification method converteZ asymptotically as the number of data
points increases. The mod@, however, is attained exactly only when an infinite amourdaif are
available.

We use a deterministic approach. The sys@n@ 2y is defined as the most powerful unfalsified model
(MPUM) for yq [8], which makes no assumptions about the data and allowsrtstizict a modet# for any
finite time seriegy € (RP)T.

Definition 1 (Most powerful unfalsified model)Consider a time serigg € (RP)". The systenZmpum(Yd)
is called the MPUM ofyq in the model class#y if

1. Brmpum(Ya) is unfalsified byyq, i.€.,Yd € Bmpum(Yd),
2. PBmpum(Ya) is in the model class, i.eZmpum(Yd) € ZP . and

3. any other unfalsified model in the model class is less piilyére.,

Ya € B € gop - f@mpum(yd) C4A.

It can be shown that the MPUM exists and is unique. Moreovgprithms for computing it have been
developed; see [8, 7, 5, 4].

With a “true data generating syste#for y4” defined to be the MPUMZmpum(Yd) Of Yg, the intuitive notion
of a spurious pole leads to the following definition.

Definition 2 (Physical poles) Consider a time serigg € (RP)T. The poles\ (Zmpum(Yq)) of the MPUM
of yq are called physical with respect to the dgga Any z € C, such thatz ¢ A (%mpum(yd)), is called a
spurious pole.

Clearly, by computing the MPUM, we can answer the basic dquestWhen is a pole spurious?” Next we
discuss the question:

Assuming that there is a true data generating sy%?mr Yd, i-€.,Yd € 2, under want conditions
the MPUM Zmpun(Ya) of yq coincides with#?

The conditions turn out to be restrictive, so the notion oV#UM is modified in Section 5 to allow for an
approximation.
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4 Recovering the data generating system from exact data

In the general case when the true data generating systasin " (rather than inéfop as considered in
the previous section), a key condition fat = Zmpum(Wg) turns out to be the persistency of excitation of an
input component of the datey. The time seriesly = (ud(l), e ud(T)) is persistently exciting of ordér if

the Hankel matrix

[Ua(1)  uw(2) ug(3) - ug(T—L+1)]
ud(2) ud(3) Ud(4) o ug(T—=L+2)
S (ug) = |W(3)  Ud(4) W5 - u(T—-L+3)
_UdéL) Ud(L'-i- 1) Ud(L'—l- 2) - Uqg (T) ]

is of full row rank.

Theorem 1([9]). If the systen¥Z € Z" and the time series e (R%)" satisfy the following identifiability
conditions:

1. wye %‘[171'],
2. % is controllable, and

3. an input componentyof wy is persistently exciting of ordé(.%#) + 1+ n(%),

The first condition is the most restrictive one: it requires tlata to be exact. In practice, the data are almost
never exact, because

e it is likely to be generated by a more complex system than dnysystems of bounded complexity
(cf., the model clas<Z"),

e there are unobserved inputs that act on the system (cf. rtloegs noise in the ARMA model),

e there are measurement noises (cf., the measurement nofseantput error model (5)).

The second condition of the theorem is more restrictive thiaright look at first. For example, autonomous
models do not satisfy it. The third condition is the leastrietive but its verification requires prior knowledge
(1(#) andn(#)) about the true data generating system.

Next we modify the result for the case at hand: autonomousehubass.

Theorem 2. If the systemZ € ;" and the time seriesqyc (RP)T satisfy the following identifiability
conditions: '

1. y4 € &1y, and

2. Yy is persistently exciting of order(%#),
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Proof. In the infinite time caseT = ®) Zmpum(Yd) = spanyd, oY, - .,0'Yd,-..). On one hand, since is
LTI and by assumption 1, we have

Ya € Z = sparyd, 0V, .-,0'Yd,--.) = Bmpum(Ya) C B.
On the other hand, by assumption 2, we have
dlm (yd7 Gyd7 RS thd7) t ) Z n(%) - r%jmpum(Yd) 2 ,@

Therefore, % = Bmpun(Yd)-
In the finite horizon caseZmpum(Yd) = colspar(%’i_(yd)), for all L > 1. By the LTI assumption and by
assumption 1,

Yd € Blj1.1) = colspan((ya)) = BrmpurYa) [0S Bliwn)-

By assumption 2,
dim (% (Ya)) = N(#)|1n) = PBmpum(Yd)|[Ln)2 Bl1n)-

Therefore, #|(1 nj= Pmpum(Yd)|j1,n)- But # is an autonomous system of ordey so that dinf%#) = n.
Therefore, % = Bmpum(Yd)- O

In Theorem 2, we again assume that the data are exact so timessusnmade for Theorem 1 hold also for the
modified result. Next, we show a numerical illustration af tlesult in the exact case and the implication of
the presence of a (small) perturbation of the data. Then wsider methods for approximate identification
and show their performance on the data in the example.

5 Simulation example and the approximation issue

Consider an exact data generating syEﬁZr& ,2”0%4 and a trajectoryy € R?%° of that system that is persis-
tently exciting of order 4. The poles oF are 085564 0.4674j and 08980+ 0.3797j. Figure 1 shows the
corresponding modes. The MPUM wf, computed by Algorithm 8.1 of [4], is the syste#i(P), where

P(£) =0.1278° - 0.471651 +0.7037 %2 — 0.4961£ 3 + 0.1414 %,

The assumptions of Theorem 2 are satisfied and indeed theqfdlee MPUMZ(P) are the poleg 0.8556+
0.4674j, 0.8980+0.3797] } of A.

First mode 08556+ 0.4674j Second mode.8980+ 0.3797]

Figure 1: Physical modes in the example.

Next, we perturb the exact daya by a zero mean white Gaussian noise with standard deviatith The
perturbed data are no longer exact for the true data gengrsyistem but the signal-to-noise (SNR) ratio
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is high. The MPUM for the perturbed data fit the sigaald the noise and is not equal to the true data
generating system. Due to the high SNR ratio, however, éleively close to it.

Note that for noisy datgy, the order of the MPUMZmpum(Ya) is high (1(ZBmpum(Yd)) = T), while the true
data generating syster# is by assumption in a model class, of bounded complexity. If we know the
parametet , we could find an approximatio® of Zmpum(Yd) in Zo, . The optimal approximating system

P* = arg Am(in | Bmpum(Yd) — al

%’Efm

satisfies the inequality A _ _
12" — 2| < || Brmpum(Ya) — 2,

i.e., in the|| - |-distance sense* is a better approximation cﬂ?than%mpum(yd).

The question occurs of how to infer from the data only whahéspgarameter . Equivalently, how to infer
from the data what is the right model class. This questiorbleas addressed in different communities under
different names: it is called order selection in systemiifieation, hyper parameter estimation in machine
learning, and is closely related to the choice of the regrddon parameter in numerical linear algebra.
Correspondingly, different algorithms for model selecatare derived: the Akaike information criterion, the
cross-validation, and the L-curve, are a few examples.

Surprisingly in modal analysis, it is generally not recagui that the spurious pole detection problem ad-
dresses precisely the same issue and the stabilizatioradiagare actually a method for selection of the
model class. Next, we illustrate on the simulation examgéscribed above, the following techniques for
model selection:

. a stabilization diagram using a covariance-driven sistib subspace identification method,

. the pole separation method of Kumaresan and Tufts,

1

2

3. the singular value analysis in Kung’s algorithm,

4. the principal angle analysis in output-only subspacatitieation, and
5

. the trade-off curve, used with a maximum likelihood metho

Our aim is to show the performance of a few alternatives tathkilization diagrams. We are not exhaustive
in covering the various available methods for model sedect.g., we do not consider the well known Akaike
information criterion and the cross-validation method. Arencomplete comparison of model selection
methods on real-life data is a topic for further research.

5.1 A stabilization diagram

Given an identification method and dat@ a set of models of orders 1, 2, 3, ... are identified and the
modal frequencies (which are related to the poles’ anglg) plotted against the model order. Typically,
the horizontal axis represents the frequency and the aédixis represents the model order. Thus, going
upwards the diagram, one observes an increasing numbeted, porresponding to the increasing number
of modes of the identified systems. Some of the poles “staliilin the sense that their frequencies do
not change much, while some of the poles fluctuate. Accorttirey heuristic rule behind the stabilization
diagram, the former are physical and the latter are spupoles.

Figure 2 shows the stabilization diagram, obtain using adaxce-driven stochastic subspace identification
method, for the perturbed data in the simulation example. The ea@rtiotted lines correspond to the modes

1The authors are thankful to Bart Peeters from LMS, Leuverpfoviding the necessary software for plotting the staatlan
diagram.



1622 PROCEEDINGS OF ISMA2006

that stabilize. The method detects 6 stabilizing modesgesponding to frequencies 0.0225Hz, 0.0638Hz,
0.0797Hz, 0.0866Hz, 0.1116Hz, and 0.1358Hz. The ones &88HYr and 0.0797Hz correspond to the
physical modes, however, the other four are spurious.
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Figure 2: Stabilization diagram for the example.” pole that does not stabilize, “v” pole that stabilize in
frequency only, “s” pole that stabilize in frequency and mathape (however note that in this example the
mode shape is a scalar because the system is single output).

5.2 The pole separation method of Kumaresan and Tufts

The model clasgo%l with distinct poles corresponds to the “sum of damped exptigls” model class,
considered by Kumaresan and Tufts [2]. The aim of the methogkented in [2], is to recover the data
generating system® from the datayy, without knowing its lag or equivalently its orden.

If the datayy were exact, then rar(l%{ (yd)) <n, forallL, because by assumptiggsatisfies an autonomous
LTI system of ordemn. Moreover, assuming that, is persistently exciting of orddr, rank(%’i_(yd)) =n,
forallL > 1. Consider the first tim& =1 + 1 whenJ# (yq) becomes rank deficient and let the rowdPof
form a basis for its left null space, i.e.,

P 1(ya) = 0.

Let#(P) = % be a difference equation representation of the true datergting systen@? and let

|
P=[R P - R], where P(Z)=: 5 RE'

Due to the persistency of excitation assumption

rowspariP) = rowspariP).
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Therefore, with

A(B(P) =A(B(P)).

In the scalar casp = 1, if P andP are normalized® = 1 andP = 1, moreover we have th&= P.

With L > | +1, the Hankel matrix# (yq) has a left kernel of dimensidmp — n. Let the rows of® form a
basis for that space. Assume for simplicity that | p. (This assumption holds always in the scalar case
and generically in the multivariable case.) Then there isange of basis matriX, such that

P P - B 0 -~ O
B 0O P P --- R
0O - 0 P P --- R

In a polynomial notation A
P(&) =S(E)P(&),
where degregS(§)) =L —1 — 1, so that

A(BP)) =A(ZB(P)UA(SB(9).

Define# = 2(P) to be the identified model. It contains the poles#{physical poles) and the—1 — 1
zeros ofS (spurious poles).

The choice ofS (and therefore the choice of the spurious poles) dependseoidéntification method being
used. For example, in the scalar case we are looking for aiviahtsolution P € R*L of the system
ﬁjﬁ(yd) = 0. In [2], the normalizatior, = 1 is used and thkeast normsolution of the resulting system of
equations is chosen. The least norm solution is shown tothaveroperty that the spurious poles are outside
the unit circle. Moreover, their exact locations dependg/@amiL andT and not oryy.

The fact that the spurious poles corresponding to the least BolutionP are outside the unit circle is used
to separate them from the physical poles. The physical dlasstable systen® are inside the unit circle
and can be distinguished from the spurious poles. Figureo@slthe poles plot of a 20th order system
identified by the method of Kumaresan and Tufts. The polesnar&ed by crosses, the zeros by circles, and
the four poles of8 by squares. The only identified poles that are stable areltysiqal poles, so that they
can be detected by the method of Kumaresan and Tufts.

5.3 The singular value analysis in Kung's algorithm

Kung’s algorithm [3] is a realization algorithm: it compata state space representation of a system from its
impulse response. Algorithms for impulse response re@izahowever, can be used for autonomous system
identification by a trivial substitution, so Kung’s algdmit is applicable in the setting of our simulation
example.

A feature that makes Kung’s algorithm extremely popularystem identification and signal processing
is that it allows to compute very good approximate modelsha ¢ase when the data are not exact. The
reason for this is that in the infinite time cage= ») Kung’s algorithm corresponds to the balanced model
reduction method, which is known to be a very effective tatiarifor model reduction. In the finite time
case, Kung's algorithm perfornfaite-timebalanced model reduction. In many cases, finite-time batanc
model reduction is virtually as good as its infinite-time otarpart.
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Figure 3: Poles plot for the system identified by the methodwharesan and Tufts.
x — poles of the identified syster] — physical poles.

In Kung's algorithm, the order selection is done on the baéithe singular values of the Hankel matrix
A (Ya), Where the parametdr is chosen large enough compared to the lag of the true datrajemy
system. (For examplé, can be chosen, so that{ (yq) is nearly square.) Figure 4, right, shows the singular
values plot of7#0(yq). The first four singular values are much larger than the reimaisingular values,
which indicates that there is a very good approximate mofiefrdern = 4. Computing an approximate
model in the model clasgo%4 by Kung’'s method, we obtain an approximation of the true golehich is
correct up to the 4th digit.

Balanced model reduction has been used for spurious padiestide in [1].

5.4 The principal angle analysis in output-only subspace id entification

Similar to the order selection in Kung'’s algorithm, in outfmnly subspace identification the system order
is chosen from what are called principal angles (betweerstihspaces spanned by the past and the future
data). Figure 4, left, shows the principal angles computethé N4SID method when evoked with the data
in the example. Four of the principal angles are close’tawbile the others are close to Q0T his is again

an indication that there is a very good model of ondet 4.

5.5 The misfit-complexity trade-off in a maximum likelihood identification

Finally, we consider an optimization-based identificatioathod that is the maximum likelihood method
in the output error model (5). In this case, an indicationdaelevant model class is given by the misfit—
complexity trade-off curve. This curve shows the fittingoerimisfit) of the identified model and the data as
a function of the model order and typically has an “L’ shapegodd model class is indicated by the corner:
it indicates a simple model that fits still well the data. Feb shows the misfit—-complexity trade-off curve
for the data in the example. The order of the true data gangraystem is easy to infer from the curve:
models of order 4 or higher achieve virtually the same fit amdlets of order less than 4 have significantly
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singular valuess
degrees

Figure 4: Left: Singular values of/2o(yq). Right: Principal angles in output-only subspace ideratfan.

higher misfit with the data. Therefore, the simplest modat ftis well the data is of order 4, which is the
true system’s order.

M (Yd, 2)

a0

Figure 5: Order selection from the misfit-complexity traufeeurve.

6 Conclusions

A basic presumption used in spurious poles detection methmabed on stabilization diagrams, is that as
the model order increases, the estimation accuracy improvkis presumption is not universally valid. It
depends on

1. the identification method being used, and

2. how much the model order is increased.

For example, for the Yule-Walker estimation method it is d Weown rule-of-thumb that the approximation
accuracy is highest for model order about 2/3 the data lemdtlth is typically much more than the intended
model order. Therefore, a subsequent model reductionstegeided. For the maximum likelihood methods,
however, the increased number of parameters is likely terideate the results due to the increased number
of tunable parameters and the resulting increased dangengeérgence to a local minimum.

Once a model of complexity higher than intended is estimdtexinext step is to perform model reduction
in order to obtain a model of certain desired lower compjexodel reduction is as hard as the identifica-
tion step itself; optimal model reduction as optimal apjmate system identification, in general, requires
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a nonconvex optimization. In addition, it is not a priori atevhy the two step procedure (first identify a
high order model and then do model reduction) should be gupever the direct procedure. In fact, from
an optimization point of view, the direct identification af aptimal low complexity model can not be out-
performed. An advantage of the two step procedure, howsvire existence of effective heuristic methods
for performing the two steps separately. This is exploitethe methods of Kumaresan and Tufts, Kung, and
the subspace identification methods.
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