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Abstract
The stabilization diagrams, used in modal analysis, rely onthe intuitive notion of a spurious pole. In this
paper, we give a definition of a spurious pole, based on the most powerful unfalsified model (MPUM) of
the data, i.e., on an exact model for the data. The poles of theMPUM are by definition physical and a pole
that is not physical is by definition spurious. Our definitiondoes not make assumptions about the data, apart
from the basic postulation of the linear time-invariant model class. In this sense it is unprejudiced. Since the
MPUM can be constructed from the data, one can compute the physical poles and thus answer the question
in the title. If, however, one knows a priori that the data correspond to a noise corrupted trajectory of a true
data generating system or that there is an unobserved process noise acting on the true system, one should use
this knowledge. In this case, the MPUM concept has to be modified to allow for approximation. Methods for
approximate system identification and model reduction are reviewed and applied for spurious pole detection
of simulated data.

1 Introduction

In modal analysis, it is a common practice to draw what is called a stabilization diagram and identify a model
for the observed data by visually selecting certain poles from the diagram. Empirical observations suggest
that the stabilization diagram gives a good indication for deciding which of the model poles correspond to
poles of the true system. These poles, called physical poles, tend to stabilize on the diagram. The extra poles,
resulting from the fact that the model order is selected higher than the true system order are called spurious
poles and do not stabilize on the diagram. Techniques for automatic detection of the physical and spurious
poles are of high interest in modal analysis.

The separation of the identified poles into physical and spurious ones, however, is rather speculative. First,
the observed data might not be generated by a linear time-invariant (LTI) system, so that one might not be
able to properly talk about physical poles and as a consequence about spurious poles. Second, if the data
happen to be (or are very close of being) generated by an LTI system of a low (compared to the data length)
order, it is the total behavior of the model (with contribution of all poles) that approximates the given data,
so it is not justified to keep some of the poles and discard the others. For poorly identified physical poles,
the spurious poles might carry equally important information about the true system. This is manifested in
model reduction techniques, such as the balanced model reduction method [6] that use the full order model
to arrive at a good reduced order model and do not simply select some of the poles.

Despite the loose connection between physical poles and poles of a true data generating system, the stabi-
lization diagrams are a successful and very much used technique. One possible explanation for this is that
they are good heuristics for model order selection. The problem of deciding when a pole is spurious is re-
lated toorder selectionandmodel reduction. All subspace identification methods, see, e.g., [7], implicitly do
order selection and subsequently model reduction by computing the singular value decomposition of certain
matrices derived from data and counting the number of singular values that are larger than a given tolerance.

Another method that is related to the detection of spurious poles appeared in the signal processing literature.
In [2], Kumaresan and Tufts argue that identifying a large order model from the extended Yule-Walker
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equations and reducing that model gives better result than identifying directly a low order model from the
extended Yule-Walker equations. Choosing a high model order includes spurious poles in the model, which
need to be eliminated on the reduction step. The method of Kumaresan and Tufts is based on the fact that
when the least norm solution of the extended Yule-Walker equations is chosen, the spurious poles are outside
the unit circle while the physical poles (for a stable true system) tend to be inside the unit circle. Thus the
separation problem reduces to the one of picking the stable poles of the identified high order model.

Another commonly used method for order selection is to plot the misfit versus model complexity trade-
off curve and (visually) select the order corresponding to the corner of the curve. The order is a measure
of the model complexity and the misfit refers to the lack of fit (in some sense) between the data and the
model. When used in combination with a maximum likelihood identification method, the trade-off curve
has a natural candidate for the misfit measure: the objectivefunction being minimized by the maximum
likelihood method.

In this paper, we put forward a definition for the notions of physical and spurious poles and apply

• the method of Kung [3], which is based on balanced model reduction,

• the stochastic subspace identification method of [7, Chapter 3],

• the method of Kumaresan and Tufts [2], and

• the maximum likelihood method combined with order selection from the misfit–complexity trade-off
curve,

as alternatives to the stabilization diagram method for detection of spurious poles.

2 Model class: autonomous LTI systems

Let L be the discrete-time LTI model class and letσ be the shift operator(σw)(t) := w(t +1). If we need
to specify the number of variablesw := dim(w) of a trajectoryw of the modelB, we writeB ∈L w. Two
common representations of a modelB ∈L are the constant coefficients difference equation

R0σ0w+R1σ1w+ · · ·+Rlσlw = 0 (1)

and an input/state/output representation

w = Πcol(u,y), σx = Ax+Bu, y = Cx+Du, (2)

whereΠ is a permutation matrix. The polynomial matrix

R(ξ ) := R0ξ 0+R1ξ 1 + · · ·+Rlξ l ∈R
g×w[ξ ]

and the tuple of matrices(A,B,C,D,Π) are parameters of the model. The notationsB(R) andBi/s/o(A,B,C,D)
stand for the systems defined by (1) and (2), respectively, i.e.,

B(R) = {w∈ (Rw)N | (1) holds} and Bi/s/o(A,B,C,D,Π) = {w∈ (Rw)N | (2) holds}.

The integerl is called thelag of the difference equation (1) and the integern is called theorder of the
state space representation (2). For a givenB ∈ L , the smallest lagl(B) and ordern(B) of a difference
equation and state space representation are by definition independent of the representations and are called
the lag and the order of the systemB. The difference equation representationB(R) = B is called minimal
if the degree of the representation is equal to the lag of the systemB, i.e., degree(R) = l(B). The state space
representationBi/s/o(A,B,C,D,Π) = B is called minimal if dim(A) = n(B).

The representationsB(R) = B andBi/s/o(A,B,C,D,Π) = B of a systemB ∈L are not unique due to
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• equivalence transformations:

B(R) = B(UR), for any unimodular matrixU

and

Bi/s/o(A,B,C,D,Π) = Bi/s/o(VAV−1
,VB,CV−1

,D,Π), for any nonsingular matrixV.

• non-minimality of the representations.

In addition, the state space representationBi/s/o(A,B,C,D,Π) is not unique due to nonuniqueness in the
choice of the input/output partition, i.e., the choice of the permutation matrixΠ. In this paper, however,
we consider the subclassL p

0 of the LTI model classL p consisting of autonomous systems (the subscript 0
stands for “no inputs”), so that the input/output partitioning issue does not occur.

The difference equation and state space representations for an autonomous systemB ∈ L0 specialize to,
respectively,

P0σ0y+P1σ1y+ · · ·+Plσly = 0, where P(ξ ) :=
l

∑
i=0

Riξ i ∈R
p×p[ξ ], det

(

P(ξ )
)

6= 0 (3)

and
σx = Ax, y = Cx. (4)

B(P) denotes the system defined by (3) andB(A,C) denotes the system defined by (4).

The zeros of the characteristic equation det(P(ξ )) = 0 of (3) determine the asymptotic behavior (growth,
oscillation, or decay) of the modelB(P) and are calledpolesof the system. Note that although the parame-
ter P is not unique, the poles ofB(P) are invariant of the representation. We denote byλ (B) the set of the
poles ofB, i.e.,

λ (B) := {z∈ C | det
(

P(z)
)

= 0}, where P is any polynomial matrix, such thatB(P) = B.

If a state space representationB(A,C) is minimal, then the set of eigenvalues ofA coincides with the set of
poles ofB(A,C). If, however, the order of the representationB = B(A,C) is higher than the order of the
systemB, then there are eigenvalues ofA that do not correspond to poles. Such eigenvalues do not have
effect onB and can be arbitrary complex numbers.

The complexity of a general LTI systemB ∈ L w, can be measured by the number of inputsm(B), the
lag l(B), and the ordern(B). The model class of LTI systems (withw variables) ofbounded complexity
— m(B) ≤ m, l(B) ≤ l, n(B) ≤ n, wherem, l, andn are given integers — is denoted byL

w,n
m,l . For an

autonomous systemB ∈L
p
0 , m(B) = 0, so that the complexity specification is given only by the lag and

the order. Note that,l(B)≤ n(B) for anyB ∈L , andl(B) = n(B), for any single-output system.

A trajectoryw∈ (Rw)N of the systemB ∈L w ⊆ (Rw)N is an infinite time series
(

w(1), . . . ,w(t), . . .
)

. The
restriction ofw to the interval[t1, t2] is denoted byw|[t1,t2]:=

(

w(t1), . . . ,w(t2)
)

and the restriction of the
system behaviorB to the interval[t1, t2] is denoted byB|[t1,t2]:= {w|[t1,t2] | w∈B }.

3 Spurious poles: definition using exact modeling

By definition, a pole is physical if and only if it is not spurious. Thus, instead of talking about spurious poles,
we can equivalently talk about physical poles. This turns out to be more convenient.

Intuitively, a pole is physical with respect to datayd if it is a pole of atrue data generating system̄B ∈L0

for yd. The difficulty in making this intuitive idea precise is in specifying the meaning of the statement

FLITE EUREKA 2 1617



“B̄ ∈ L0 is a data generating system foryd”. The classical approaches to define this statement are to
introduce process or measurement noise in the description of the model class and adopt a stochastic setting.
Using measurement noise, the true data generating system isthe output error model

yd = ȳ+ ỹ, where ȳ∈ B̄ ∈L0 and ỹ∼N(0,σ2I), (5)

i.e., the data are assumed to be a noise corrupted trajectoryof B̄, where the noise is zero mean, Gaussian,
with covariance matrix known up to a scaling factor. Using the process noise, the true data generating system
is an ARMA model. In this case,̄B is augmented with an inpute that is a white Gaussian process, and it is
assumed that col(yd,ed) ∈ B̄ for some noise realizationed.

There are two basic problems with the classical approach.

1. One has toassumea priori that a true data generating system̄B (i.e., an output error or ARMA model)
exists. In practice, such assumptions need not hold, so a notion of an approximated data generating
system is needed.

2. Even whenB̄ exists, typically it is not computable from the data. The theory ensures that the result of
a “good” (i.e., consistent) identification method converges toB̄ asymptotically as the number of data
points increases. The model̄B, however, is attained exactly only when an infinite amount ofdata are
available.

We use a deterministic approach. The system̄B ∈ L0 is defined as the most powerful unfalsified model
(MPUM) for yd [8], which makes no assumptions about the data and allows to construct a modelB̄ for any
finite time seriesyd ∈ (Rp)T .

Definition 1 (Most powerful unfalsified model). Consider a time seriesyd ∈ (Rp)T . The systemBmpum(yd)
is called the MPUM ofyd in the model classL p

0 if

1. Bmpum(yd) is unfalsified byyd, i.e.,yd ∈Bmpum(yd),

2. Bmpum(yd) is in the model class, i.e.,Bmpum(yd) ∈L
p
0 , and

3. any other unfalsified model in the model class is less powerful, i.e.,

yd ∈B ∈L
p
0 =⇒ Bmpum(yd)⊆B.

It can be shown that the MPUM exists and is unique. Moreover, algorithms for computing it have been
developed; see [8, 7, 5, 4].

With a “true data generating system̄B for yd” defined to be the MPUMBmpum(yd) of yd, the intuitive notion
of a spurious pole leads to the following definition.

Definition 2 (Physical poles). Consider a time seriesyd ∈ (Rp)T . The polesλ
(

Bmpum(yd)
)

of the MPUM
of yd are called physical with respect to the datayd. Any z∈ C, such thatz 6∈ λ

(

Bmpum(yd)
)

, is called a
spurious pole.

Clearly, by computing the MPUM, we can answer the basic question “When is a pole spurious?” Next we
discuss the question:

Assuming that there is a true data generating systemB̄ for yd, i.e.,yd∈ B̄, under want conditions
the MPUMBmpum(yd) of yd coincides withB̄?

The conditions turn out to be restrictive, so the notion of anMPUM is modified in Section 5 to allow for an
approximation.
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4 Recovering the data generating system from exact data

In the general case when the true data generating systemB̄ is in L w (rather than inL p
0 as considered in

the previous section), a key condition for̄B = Bmpum(wd) turns out to be the persistency of excitation of an
input component of the datawd. The time seriesud =

(

ud(1), . . . ,ud(T)
)

is persistently exciting of orderL if
the Hankel matrix

HL(ud) :=















ud(1) ud(2) ud(3) · · · ud(T−L+1)
ud(2) ud(3) ud(4) · · · ud(T−L+2)
ud(3) ud(4) ud(5) · · · ud(T−L+3)

.

.

.
.
.
.

.

.

.
.
.
.

ud(L) ud(L+1) ud(L+2) · · · ud(T)















.

is of full row rank.

Theorem 1([9]). If the systemB ∈L
w,n
m,l and the time series wd ∈ (Rw)T satisfy the following identifiability

conditions:

1. wd ∈B|[1,T],

2. B is controllable, and

3. an input component ud of wd is persistently exciting of orderl(B)+1+n(B),

thenB = Bmpum(wd).

The first condition is the most restrictive one: it requires the data to be exact. In practice, the data are almost
never exact, because

• it is likely to be generated by a more complex system than any LTI systems of bounded complexity
(cf., the model classL w,n

m,l ),

• there are unobserved inputs that act on the system (cf., the process noise in the ARMA model),

• there are measurement noises (cf., the measurement noise inthe output error model (5)).

The second condition of the theorem is more restrictive thanit might look at first. For example, autonomous
models do not satisfy it. The third condition is the least restrictive but its verification requires prior knowledge
(l(B) andn(B)) about the true data generating system.

Next we modify the result for the case at hand: autonomous model class.

Theorem 2. If the systemB ∈ L
p,n
0,l and the time series yd ∈ (Rp)T satisfy the following identifiability

conditions:

1. yd ∈B|[1,T], and

2. yd is persistently exciting of ordern(B),

thenB = Bmpum(yd).
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Proof. In the infinite time case (T = ∞) Bmpum(yd) = span(yd,σyd, . . . ,σ tyd, . . .). On one hand, sinceB is
LTI and by assumption 1, we have

yd ∈B =⇒ span(yd,σyd, . . . ,σ tyd, . . .) = Bmpum(yd)⊆B.

On the other hand, by assumption 2, we have

dim
(

yd,σyd, . . . ,σ tyd,) . . .
)

≥ n(B) =⇒ Bmpum(yd)⊇B.

Therefore,B = Bmpum(yd).

In the finite horizon case,Bmpum(yd) = colspan
(

HL(yd)
)

, for all L ≥ l. By the LTI assumption and by
assumption 1,

yd ∈B|[1,T] =⇒ colspan
(

Hn(yd)
)

= Bmpum(yd)|[1,n]⊆B|[1,n].

By assumption 2,
dim(Hn(yd))≥ n(B)|[1,n] =⇒ Bmpum(yd)|[1,n]⊇B|[1,n].

Therefore,B|[1,n]= Bmpum(yd)|[1,n]. But B is an autonomous system of ordern, so that dim(B) = n.
Therefore,B = Bmpum(yd).

In Theorem 2, we again assume that the data are exact so the comments made for Theorem 1 hold also for the
modified result. Next, we show a numerical illustration of the result in the exact case and the implication of
the presence of a (small) perturbation of the data. Then we consider methods for approximate identification
and show their performance on the data in the example.

5 Simulation example and the approximation issue

Consider an exact data generating system̄B ∈L 1
0,4 and a trajectoryyd ∈ R

250 of that system that is persis-
tently exciting of order 4. The poles of̄B are 0.8556±0.4674j and 0.8980±0.3797j. Figure 1 shows the
corresponding modes. The MPUM ofyd, computed by Algorithm 8.1 of [4], is the systemB(P), where

P(ξ ) = 0.1278ξ 0−0.4716ξ 1 +0.7037ξ 2−0.4961ξ 3 +0.1414ξ 4
.

The assumptions of Theorem 2 are satisfied and indeed the poles of the MPUMB(P) are the poles{0.8556±
0.4674j, 0.8980±0.3797j } of B̄.
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Figure 1: Physical modes in the example.

Next, we perturb the exact datayd by a zero mean white Gaussian noise with standard deviation 0.05. The
perturbed data are no longer exact for the true data generating system but the signal-to-noise (SNR) ratio
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is high. The MPUM for the perturbed data fit the signaland the noise and is not equal to the true data
generating system. Due to the high SNR ratio, however, it is relatively close to it.

Note that for noisy datayd, the order of the MPUMBmpum(yd) is high (n(Bmpum(yd)) = T), while the true
data generating system̄B is by assumption in a model classL0,l of bounded complexity. If we know the
parameterl, we could find an approximation̂B of Bmpum(yd) in L0,l. The optimal approximating system

B̂
∗ = arg min

B̂∈L0,l

‖Bmpum(yd)− B̂‖

satisfies the inequality
‖B̂∗− B̄‖ ≤ ‖Bmpum(yd)− B̄‖,

i.e., in the‖ · ‖-distance sense,̂B∗ is a better approximation of̄B thanBmpum(yd).

The question occurs of how to infer from the data only what is the parameterl. Equivalently, how to infer
from the data what is the right model class. This question hasbeen addressed in different communities under
different names: it is called order selection in system identification, hyper parameter estimation in machine
learning, and is closely related to the choice of the regularization parameter in numerical linear algebra.
Correspondingly, different algorithms for model selection are derived: the Akaike information criterion, the
cross-validation, and the L-curve, are a few examples.

Surprisingly in modal analysis, it is generally not recognized that the spurious pole detection problem ad-
dresses precisely the same issue and the stabilization diagrams are actually a method for selection of the
model class. Next, we illustrate on the simulation example,described above, the following techniques for
model selection:

1. a stabilization diagram using a covariance-driven stochastic subspace identification method,

2. the pole separation method of Kumaresan and Tufts,

3. the singular value analysis in Kung’s algorithm,

4. the principal angle analysis in output-only subspace identification, and

5. the trade-off curve, used with a maximum likelihood method.

Our aim is to show the performance of a few alternatives to thestabilization diagrams. We are not exhaustive
in covering the various available methods for model selection, e.g., we do not consider the well known Akaike
information criterion and the cross-validation method. A more complete comparison of model selection
methods on real-life data is a topic for further research.

5.1 A stabilization diagram

Given an identification method and datayd, a set of models of orders 1, 2, 3, . . . are identified and the
modal frequencies (which are related to the poles’ angles),are plotted against the model order. Typically,
the horizontal axis represents the frequency and the vertical axis represents the model order. Thus, going
upwards the diagram, one observes an increasing number of poles, corresponding to the increasing number
of modes of the identified systems. Some of the poles “stabilize” in the sense that their frequencies do
not change much, while some of the poles fluctuate. Accordingto a heuristic rule behind the stabilization
diagram, the former are physical and the latter are spuriouspoles.

Figure 2 shows the stabilization diagram, obtain using a covariance-driven stochastic subspace identification
method1, for the perturbed data in the simulation example. The vertical dotted lines correspond to the modes

1The authors are thankful to Bart Peeters from LMS, Leuven forproviding the necessary software for plotting the stabilization
diagram.
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that stabilize. The method detects 6 stabilizing modes, corresponding to frequencies 0.0225Hz, 0.0638Hz,
0.0797Hz, 0.0866Hz, 0.1116Hz, and 0.1358Hz. The ones at 0.0638Hz and 0.0797Hz correspond to the
physical modes, however, the other four are spurious.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

5

10

15

20

25

30

35

40

s

s s
s s
s s s
s s
s s
s s
s s
s s
s s
s s

s s s
s s

s s s s s s
s s s s
s s s s

s s
s s s s s

s s
s s s s s s
s s s s s s s

s s s
s s s s s s s s s
s s s s s

s s s
s s s s s s s s s s
s s s s s s
s s s s s s
s s s s s s
s s s s s s s s

s s s
s s s s s s

s s s s s
s s s s s s s
s s s s s s
s s s s s s
s s s s s

v
v

v v v
v v v
v v v v
v v v
v
v v v
v v v

v v v
v
v v v

v v
v

v v v v
v

v v v v
v v v

v v
v
v v v v v v v

v v
v v v v
v v v v
v v v v v v

v v v v v v
v v v v v
v v v v v v
v v v v v v v

o

o o

o

o
o o o
o o o

o o o o
o
o o

o o

o
o

o o
o o

o o o
o

o
o o o

o o
o o o o

o
o o o
o o o o o o

o o o
o o o o o o
o o o

oo o o
o o

o o o o
o o

o o

s

s

s

s

s
s

frequency, Hz

n(
B

)

Figure 2: Stabilization diagram for the example. “◦” pole that does not stabilize, “v” pole that stabilize in
frequency only, “s” pole that stabilize in frequency and mode shape (however note that in this example the
mode shape is a scalar because the system is single output).

5.2 The pole separation method of Kumaresan and Tufts

The model classL 1
0,l with distinct poles corresponds to the “sum of damped exponentials” model class,

considered by Kumaresan and Tufts [2]. The aim of the method,presented in [2], is to recover the data
generating system̄B from the datayd, without knowing its lagl or equivalently its ordern.

If the datayd were exact, then rank
(

HL(yd)
)

≤n, for all L, because by assumptionyd satisfies an autonomous
LTI system of ordern. Moreover, assuming thatyd is persistently exciting of orderl, rank

(

HL(yd)
)

= n,
for all L ≥ l. Consider the first timeL = l+ 1 whenHL(yd) becomes rank deficient and let the rows ofP̂
form a basis for its left null space, i.e.,

P̂Hl+1(yd) = 0.

Let B(P) = B̄ be a difference equation representation of the true data generating systemB̄ and let

P =
[

P0 P1 · · · Pl
]

, where P(ξ ) =:
l

∑
i=0

Piξ i
.

Due to the persistency of excitation assumption

rowspan(P̂) = rowspan(P).
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Therefore, with

P̂(ξ ) :=
l

∑
i=0

P̂iξ i
, where P̂ =:

[

P̂0 P̂1 · · · P̂l
]

, P̂i ∈ R
p×p

we have thatB(P̂) = B(P) = B̄ and

λ
(

B(P̂)
)

= λ
(

B(P)
)

.

In the scalar casep= 1, if P andP̂ are normalizedP0 = 1 andP̂0 = 1, moreover we have thatP = P̂.

With L > l+1, the Hankel matrixHL(yd) has a left kernel of dimensionLp−n. Let the rows ofP̂ form a
basis for that space. Assume for simplicity thatn = lp. (This assumption holds always in the scalar case
and generically in the multivariable case.) Then there is a change of basis matrixT, such that

TP̂ =













P0 P1 · · · Pl 0 · · · 0

0 P0 P1 · · · Pl
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
0 · · · 0 P0 P1 · · · Pl













.

In a polynomial notation
P̂(ξ ) = S(ξ )P(ξ ),

where degree(S(ξ )) = L−l−1, so that

λ
(

B(P̂)
)

= λ
(

B(P)
)

∪λ
(

B(S)
)

.

DefineB̂ = B(P̂) to be the identified model. It contains the poles ofB (physical poles) and theL−l−1
zeros ofS(spurious poles).

The choice ofS (and therefore the choice of the spurious poles) depends on the identification method being
used. For example, in the scalar case we are looking for a nontrivial solution P̂ ∈ R

1×L of the system
P̂HL(yd) = 0. In [2], the normalization̂P0 = 1 is used and theleast normsolution of the resulting system of
equations is chosen. The least norm solution is shown to havethe property that the spurious poles are outside
the unit circle. Moreover, their exact locations depend only onL andT and not onyd.

The fact that the spurious poles corresponding to the least norm solutionP̂ are outside the unit circle is used
to separate them from the physical poles. The physical polesof a stable systemB̄ are inside the unit circle
and can be distinguished from the spurious poles. Figure 3 shows the poles plot of a 20th order system
identified by the method of Kumaresan and Tufts. The poles aremarked by crosses, the zeros by circles, and
the four poles ofB̄ by squares. The only identified poles that are stable are the physical poles, so that they
can be detected by the method of Kumaresan and Tufts.

5.3 The singular value analysis in Kung’s algorithm

Kung’s algorithm [3] is a realization algorithm: it computes a state space representation of a system from its
impulse response. Algorithms for impulse response realization, however, can be used for autonomous system
identification by a trivial substitution, so Kung’s algorithm is applicable in the setting of our simulation
example.

A feature that makes Kung’s algorithm extremely popular in system identification and signal processing
is that it allows to compute very good approximate models in the case when the data are not exact. The
reason for this is that in the infinite time case (T = ∞) Kung’s algorithm corresponds to the balanced model
reduction method, which is known to be a very effective heuristic for model reduction. In the finite time
case, Kung’s algorithm performsfinite-timebalanced model reduction. In many cases, finite-time balanced
model reduction is virtually as good as its infinite-time counterpart.
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Figure 3: Poles plot for the system identified by the method ofKumaresan and Tufts.
× — poles of the identified system,� — physical poles.

In Kung’s algorithm, the order selection is done on the basisof the singular values of the Hankel matrix
HL(yd), where the parameterL is chosen large enough compared to the lag of the true data generating
system. (For example,L can be chosen, so thatHL(yd) is nearly square.) Figure 4, right, shows the singular
values plot ofH20(yd). The first four singular values are much larger than the remaining singular values,
which indicates that there is a very good approximate model of ordern = 4. Computing an approximate
model in the model classL 1

0,4 by Kung’s method, we obtain an approximation of the true poles, which is
correct up to the 4th digit.

Balanced model reduction has been used for spurious poles detection in [1].

5.4 The principal angle analysis in output-only subspace id entification

Similar to the order selection in Kung’s algorithm, in output-only subspace identification the system order
is chosen from what are called principal angles (between thesubspaces spanned by the past and the future
data). Figure 4, left, shows the principal angles computed by the N4SID method when evoked with the data
in the example. Four of the principal angles are close to 0◦, while the others are close to 90◦. This is again
an indication that there is a very good model of ordern= 4.

5.5 The misfit–complexity trade-off in a maximum likelihood identification

Finally, we consider an optimization-based identificationmethod that is the maximum likelihood method
in the output error model (5). In this case, an indication fora relevant model class is given by the misfit–
complexity trade-off curve. This curve shows the fitting error (misfit) of the identified model and the data as
a function of the model order and typically has an “L” shape. Agood model class is indicated by the corner:
it indicates a simple model that fits still well the data. Figure 5 shows the misfit–complexity trade-off curve
for the data in the example. The order of the true data generating system is easy to infer from the curve:
models of order 4 or higher achieve virtually the same fit and models of order less than 4 have significantly
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Figure 4: Left: Singular values ofH20(yd). Right: Principal angles in output-only subspace identification.

higher misfit with the data. Therefore, the simplest model that fits well the data is of order 4, which is the
true system’s order.
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Figure 5: Order selection from the misfit–complexity trade-off curve.

6 Conclusions

A basic presumption used in spurious poles detection methods, based on stabilization diagrams, is that as
the model order increases, the estimation accuracy improves. This presumption is not universally valid. It
depends on

1. the identification method being used, and

2. how much the model order is increased.

For example, for the Yule-Walker estimation method it is a well known rule-of-thumb that the approximation
accuracy is highest for model order about 2/3 the data length, which is typically much more than the intended
model order. Therefore, a subsequent model reduction step is needed. For the maximum likelihood methods,
however, the increased number of parameters is likely to deteriorate the results due to the increased number
of tunable parameters and the resulting increased danger ofconvergence to a local minimum.

Once a model of complexity higher than intended is estimated, the next step is to perform model reduction
in order to obtain a model of certain desired lower complexity. Model reduction is as hard as the identifica-
tion step itself; optimal model reduction as optimal approximate system identification, in general, requires
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a nonconvex optimization. In addition, it is not a priori clear why the two step procedure (first identify a
high order model and then do model reduction) should be superior over the direct procedure. In fact, from
an optimization point of view, the direct identification of an optimal low complexity model can not be out-
performed. An advantage of the two step procedure, however,is the existence of effective heuristic methods
for performing the two steps separately. This is exploited in the methods of Kumaresan and Tufts, Kung, and
the subspace identification methods.
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