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Abstract

In this paper we consider the following problem for hidden Markov models: given a minimal hidden Markov model, derive conditions for
another hidden Markov model to be equivalent and give a description of the complete set of equivalent models. A distinction is made between
quasi- and positive hidden Markov models and between Mealy and Moore hidden Markov models. We derive a condition for two positive Mealy
models to be equivalent and give a description of the complete set of Mealy models that are equivalent to a given Mealy model. We show that
under certain conditions minimal quasi-Moore models are unique up to a permutation of the states. We derive a condition for two positive Moore
models to be equivalent and give a description of the complete set of Moore models equivalent to a given Moore model. Finally, we compare the

results for hidden Markov models and linear Gaussian systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) were introduced in the
literature in the late 1950s [2]. HMMs are used extensively
in engineering applications, such as speech processing,
image processing, and bioinformatics. Despite the success in
applications, many questions remain unanswered. An example
of an open problem is the realization problem: given the
string probabilities of finite length strings, find all hidden
Markov models that realize these string probabilities. The
realization problem can be split up into three subproblems. The
first is the realizability problem: derive conditions for string
probabilities to be realizable by an HMM. In [13] conditions
for the realizability of string probabilities are derived. The
second subproblem is the realization problem itself: given
realizable string probabilities, find a corresponding hidden
Markov model. Partial solutions for this problem are given
in [1,6,11,13]. The third subproblem concerns the question of
finding all possible realizations that are equivalent to a given
realization. For Gauss—Markov systems, where both the states
and observations take values in finite-dimensional real vector
spaces, this problem is solved in [5]. However, for hidden

* Corresponding author. Tel.: +32 16328666; fax: +32 16321986.
E-mail address: bart.vanluyten @esat.kuleuven.be (B. Vanluyten).

0167-6911/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2007.10.004

Markov models not much is known about the equivalence
problem. In this paper, we consider the equivalence problem
for hidden Markov models.

The structure of the paper is as follows. In Section 2 we
introduce Moore and Mealy hidden Markov models and their
quasi-forms and also describe a procedure to find a minimal
quasi-Mealy model equivalent to a given positive model. In
Section 3 we describe the complete set of equivalent Mealy
models, both for the quasi- and positive cases. In Section 4
we show that, under certain conditions, the class of equivalent
quasi-Moore hidden Markov models consists of only one ele-
ment up to a permutation of the states and subsequently we give
a description of the set of equivalent positive Moore models. In
Section 5 we summarize the results concerning the equivalence
sets, and in Section 6 we compare the results with the linear
Gaussian case. In Section 7, we draw some conclusions.

The following notation is used: if S is a set, then |S| denotes
its cardinality. R is the set of nonnegative real numbers, > and
> are “elementwise larger than or equal to” and “elementwise
larger than” respectively. If X is a matrix, then X; ; denotes its
(i, j)th element, X; . denotes the ith row and X;.; . the matrix
formed by the ith to the jth row of X. Analogous notations
are used for selecting columns instead of rows. With ¢ we de-
note the column vector with all elements equal to 1, that is e =
[11...1]". The dimension of ¢ is clear from the context. With
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I we denote the unit matrix of appropriate size. With % we de-
note an element, a subvector or a submatrix of a matrix of which
the exact values are unimportant. Finally vec(X) is a row vector
where the elements are row-wise scanned from the matrix X.

2. Moore and Mealy HMM

Hidden Markov models are used to model finite-valued
processes y defined on the time axis N. They assume the
existence of an underlying finite-valued Markov process x,
called the state process, on which the output process depends
in a probabilistic manner. In this section, we introduce two
different types of HMMs: Moore HMMs and Mealy HMMs.
We also introduce the so-called quasi-forms of these two types
of models. We also discuss conversions between Moore and
Mealy models. Finally, we describe a procedure to find a
minimal quasi-Mealy model equivalent to a positive Mealy
model.

2.1. Mealy HMM

A Mealy HMM assumes that the state generated at time
t + 1 and the output symbol generated at time ¢ depend
probabilistically on the state at time 7. A Mealy HMM is
specified by the quadruple (X, Y, I, 7 (1)) where:

e X with |X]| < oo is the state alphabet and Y with |Y| < oo
the output alphabet. Without loss of generality, we identify
X={L2,...,X|}.

o IT is amapping from Y to R with Iy .= Y~y IT(y)
is a stochastic matrix, i.e. IIxe = e. The element II; ;(y) is
Px(t+1)=j,y() = y|lx(@) = i), that is the probability
of going from state i to state j while generating the output
symbol y. The matrix [Ix is called the transition matrix of
the HMM.

e (1) is a vector in le_il for which 7 (1)e = 1. It is called the
initial state distribution. The element 77; (1) is P(x(1) = i),
that is the probability that the initial state is i.

The number of states |X| is called the order of the
HMM. The model is called stationary if the state distribution
is the same at every time instant, i.e. if the initial state
distribution vector is a left eigenvector of the transition matrix
corresponding to the eigenvalue 1: 7 (1) IIx = m(1).

Denote by Y* the set of finite strings with symbols from
the set Y (including the empty string) and by y = y1y2...yy
an output sequence from Y*, where |y| denotes the length of
y. Let P : Y* + [0, 1] be string probabilities, defined as
P@y) = Py(A) = y1,y@) = y2,....y(yD = yjyp- Of
course, the string probabilities satisfy P(¢) = 1, where ¢
denotes the empty string, and Zer P(yy) = P(y) where yy is
the concatenation of the string y with the symbol y. The string
probabilities generated by a Mealy HMM (X, Y, I1, (1)) are
given by

P(y) = (DI (y)e,

where y = yiy2...yy
Iy (y2) ... I (yjy)-

€ Y* and where II(y) =

Two Mealy HMMs (X, Y, I, (1)) and (X', Y, IT’, 7’(1))
with string probabilities P and P’, respectively, are said to
be equivalent if P = P’. A Mealy HMM (X, Y, II, 7 (1))
is called minimal if for any other equivalent Mealy model
X', Y, IT’, /(1)) it holds that |X| < |X'|.

In the Mealy realization problem, we are given output string
probabilities P and the problem is to find a Mealy HMM
(X,Y, II, 7 (1)) that generates the string probabilities P. The
realization problem is hard because of the positivity constraints
on (1) and II. For that reason, one often (first) solves the
quasi-realization problem, which is exactly the same problem
as the realization problem but without the positivity constraints.
However, the quasi-model which is found from the quasi-
realization procedure retains some of the interesting properties
of a positive model [12].

A quasi-Mealy HMM is defined by (Q, Y, A, ¢, b), where
Q is the quasi-state alphabet and Y 1is the output alphabet.
b is a column vector in RIQ A is a mapping from Y to
RICXIQ, where Ag = Y ,cy A(y) is a quasi-stochastic
matrix, i.e. Agh = b. The matrix A is called the quasi-state
transition matrix. ¢ is a row vector in RIQ called the quasi-
initial state distribution for which ¢b = 1. Notice that A, ¢
and b of a quasi-Mealy model (Q, Y, A, c, b) are the analogues
of II, m(1) and e of a positive Mealy model (X, Y, I, w(1)).
The string probabilities generated by a quasi-Mealy HMM
(@Q,Y, A, c, b) are given by

P(y) = cA(y)b,

where y = y1y2...yy € Y* and where A(y) = A(y1)A(y2)
... A(yly). Equivalence and minimality of quasi-Mealy HMMs
are defined in an analogous way as for positive Mealy HMMs.
The order of a minimal quasi-HMM is lower than or equal to
the order of a minimal equivalent positive HMM.

Now define the O(c, A)-matrix in R®*!Q and the C(A, b)-
matrix in RIQx% of 4 quasi-Mealy HMM (Q, Y, A, ¢, b) as

Oi..(c, A) == cA(u;), (D
C..j(A,b) == A(vj)b, 2
where u; is the ith element of a first ordering u = (ur, k =

1,2,...) of the strings of Y* and v; is the jth ele-
ment of a second ordering v = (v, k = 1,2,...)
of the strings of Y*. Typically, in the first ordering
the strings are ordered lexicographically from right to
left, which gives (¢,0, 1,00, 10,01, 11, 000, 100, ...) for
Y = {0,1}. In the second ordering the strings are or-
dered lexicographically from left to right, which means
(¢,0,1,00,01, 10, 11, 000, 001, ...) for Y = {0, 1}. In the
case where Y = {0, 1} the matrices O(c, A) and C(A, b) are

C
cA(0)
cA(1)

cA00) | »
cA(10)

O(C, A) =

C(A,b) =[b AOb A()b AOD)b AO)b ]
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It can be proven that a quasi-Mealy HMM is minimal if and
only if the matrices C(A, b) and O(c, A) have full row and full
column rank respectively.

2.2. Moore HMM

In a Moore HMM, the generation of the next state and the
generation of the output are assumed to be independent. A
Moore HMM is specified by (X, Y, Ik, B8, w(1)). As before,
X and Y are the state and output alphabets. The matrix IIx €
le_glx IX] with IIxe = e is the state transition matrix, defined as
(UIx)ij = P(x(t +1) = jlx(t) = i). B is a mapping from Y
to ]le_gl, such that g; (y) = P(y(t) = y|x(¢) = i). It is required
that Y, B(y) = e. The vector 7(1) € RI is the initial state
distribution defined as m; (1) = P(x(1) = i). Suppose we have
an ordering (yx,k = 1,2,...,|Y|) of the output symbols of
the set Y, then the map B can be represented by a matrix, called
the output matrix B defined as B = [B(y1) By v)]:
with Be = e. An equivalent description of the Moore HMM is
therefore given by (X, Y, IIx, B, #(1)). The number of states
|X] is the order of the Moore model.

String probabilities generated by a Moore HMM (X, Y, IIx,
B, (1)) are given by

P(y) = n(D)diag(B(y1)Ix - - - diag(B(y|y))) [ xce,

where y = yjy2---y|y| € Y*. Equivalence and minimality of
Moore models are defined in an analogous way as for Mealy
HMMs.

We define a quasi Moore HMM as (Q, Y, A, A, c) or as
Q. Y, Ag, L, c), where Q is the quasi-state alphabet and Y
is the output alphabet. Ag € RIVXIQ with Age = e is the
quasi-state transition matrix. A is a mapping from Y to RIQ for
which 3. A(y) = e. The vector ¢ € R/ for which ce = 1 is
the quasi-initial state distribution. The quasi-output matrix L
is defined as L := [A(y1) A(yjv))]. with Le = e. Notice
that Ag, A, L and ¢ of a quasi-Moore model Q,Y, AQ, A, 0)
are the analogues of I, 8, B and m (1) of a positive Moore
model (X, Y, Ik, B, 7(1)).

String probabilities generated by a quasi-Moore HMM
(Q,Y, Aq, A, ¢) are given by

P(y) = c diag(A(y1))Aq . . - diag(A(yy)) Age,

where y = y1y2...y)y € Y*. Equivalence and minimality
of quasi-Moore HMMs are defined in an analogous way as
for Mealy HMMs. Equivalence between (quasi-) Moore and
(quasi-) Mealy models is defined analogously.

2.3. Conversions between Moore and Mealy models

It can be shown that the expressive power of Moore HMMs
and Mealy HMMs is the same [13], meaning that a finite-
valued process is realizable with a Moore HMM if and only if
it is realizable with a Mealy HMM. However for a given finite
process the order of a minimal Mealy model does not exceed
the order of a minimal Moore model.

Converting a Moore model (X,Y, I, 8, 7(1)) into a
Mealy model (X, Y, I7, 7(1)) is always possible, using

1I(y) = diag(B(y))IIx.

However, the obtained Mealy model can be nonminimal, even
if the Moore model is minimal.

Converting a Mealy model in a Moore model can be done
by connecting a state of the Moore model to every state
transition of the Mealy model and then calculating the state
transition probabilities and the output probabilities. Typically,
this approach leads to a nonminimal Moore model even if the
Mealy model is minimal.

In Section 3, we show that, under certain conditions, a
(quasi-) Mealy model with two outputs can always be converted
into a quasi-Moore model with the same number of states.

2.4. Conversion from positive Mealy to minimal quasi-Mealy
model

In this section we describe a method to reduce a nonminimal
quasi-Mealy model. Because a positive Mealy model is
typically nonminimal as a quasi-Mealy model, the method can
also be used to find a minimal quasi-Mealy model which is
equivalent to a given (minimal or nonminimal) positive Mealy
model.

As mentioned before, a quasi-Mealy model (Q, Y, A, ¢, b)
is minimal if and only if the matrices C(A, b) and O(c, A)
defined by (2) and (1) have full row and full column rank
respectively.

Given a nonminimal Mealy model (Q, Y, A, ¢, b) finding an
equivalent minimal Mealy model can be done in two steps. In
the first step one determines an equivalent quasi-Mealy model
(Q°,Y, A€, ¢¢, b®) for which C(c®, A) has full row rank and
in the second step one determines an equivalent quasi-model
(Qc°,Y, A, ¢, b<?) for which C(A, b®) and O(c°, A“)
have full row and full column rank respectively. We now
describe both steps subsequently.

It is clear that for a quasi-Mealy model (Q,Y, A, ¢, b)
every nonsingular matrix T e RIQXIQ gives rise to
an equivalent quasi-Mealy model (Q, Y, TAT !, ¢T~!, Th).
Now let (Q, Y, A, ¢, b) be such that

rank C(A, b) =r < |Q]

then it can be shown that there exists a nonsingular matrix
R such that the equivalent Mealy model (Q,Y, A" =
RAR™ L, ¢/ = ¢cR~!, b’ = Rb) has the form

1Ql-r

[ Wy ey,

g el

r

Any realization of this form has the property that the rth order
subsystem (Q¢, Y, A€, ¢, b°) is equivalent with the system
(Q, Y, A, c, b) and that C(A€, b°) has full row rank.
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Now notice that

1QI-r
C(AC, bC) r

which suggests a procedure to compute the transformation R.
Indeed, R is such that RC(A, b) has its first |Q] — r rows equal
to 0. Such a transformation R can be found using the Singular
Value Decomposition (SVD).

We now describe an algorithm, inspired by [8] to find the
transformation R directly from the system matrices without

computing the C-matrix. Therefore, we first define the matrix
P for the model (Q, Y, A, ¢, b) as

C(A',b') = RC(A,b) = |:

P(A.D) = [AaG®D) - A )

A A:,|@|(Y('Yl))|b] '

Algorithm 1. Given the quasi-model (Q, Y, A, ¢, b) with the

corresponding matrix P, run the following steps.

(1) Set (Q',Y,A",c,b) = (QY,A,c,b), PP = P,i =
IX]- Y|+ 1and j = |Q].

(2) If every element of P]. ji is equal to O then goto step 5.

(3) Find a transformation R; = [R'{ 1@0, ] such that the vector
=]
R; P.j is of the form [0 0 x x]—r where the

number of 0’s is equal to j —1 and the number of x’s is equal
to |Q| — j + 1. Transform (Q', Y, A’, ¢/, b’) into (Q', Y,
RiA/Ri_l, c/Ri_l, R;b) and recalculate the matrix P’.

(4) Decrease i by 1, and decrease j by 1. If j = 0 goto step 6.
If j > 0, go to step 2.

(5) Increase i by 1. Goto step 2.

(6) Calculate Ras R = R;R;_1 ... RyR;.

So far we described a method to find for a given nonminimal
Mealy model (Q, Y, A, ¢, b) an equivalent quasi-Mealy model
(Q°, Y, A€, ¢¢, b®) for which C(c®, A®) has full row rank. We
now give a procedure to determine an equivalent quasi-model
(Q,Y, A, ¢, b“?) for which C(A, b°) and O(c*°, A?)
have full row and full column rank respectively. For this second
step, suppose that it holds for (Q°, Y, A€, ¢, b°) that

rank O(c%, A®) =5 < |Q°| =1,

then it can be shown that there exists a nonsingular matrix
S such that the equivalent Mealy model (Q°,Y, A% =
SAST!, ¢ = ¢°S71, b = Sb) has the form

£ *

0] A°(y)

bl'li 3

This realization has the property that the sth order subsystem
(Q°, Y, A°, ¢, b“°) is equivalent with the system (Q, Y, A,
¢, b) and that C(A°, b“°) has full row rank and that O(c?, A<)
has full column rank, i.e. the subsystem (Q“°, Y, A, ¢, b“°)

Ay) = e Vy €Y,

is minimal. The procedure to find the transformation S is dual to
the procedure to find the transformation R as described before.

By combining both the steps, we have that for every
nonminimal Mealy model (Q,Y, A,c,b) there exists a
transformation 7 such that

Ql-r r—s

* [0 0 Ql-r
TAWT = | % | % * s Yy € Y,
Jo|avw |- )
_0 QI QI—r r-a s
To=| % | vuu , (‘I'l={* oicm].

The transformation 7 can be computed from R and § by

(170
T__O S]R.

3. Equivalence for Mealy HMMs

In this section we investigate the set of equivalent Mealy
HMMs. Suppose we are given a minimal Mealy HMM, how
is the set of all equivalent Mealy HMMs characterized? Of
course, given a certain quasi- or positive Mealy model, one
can always obtain an equivalent model by permuting the states.
However, there are many more equivalent models than the ones
obtained by permuting states. Below we give a description of
the complete set of equivalent models both for the quasi-Mealy
case as for the positive Mealy case.

3.1. Equivalence for quasi-Mealy HMMs

For quasi-Mealy HMMs the equivalence of realizations is
described by the following proposition [13].

Proposition 1. Given a minimal quasi-Mealy model (Q, Y, A,
¢, b). The quasi-Mealy model (Q,Y, A’, ¢’, b') is an equivalent
model, if and only if there exists a nonsingular matrix T, such
that

VyeY:A(y) =TAWNT ',

¢ =cT™, “)
b =Tb.

Define a vectorized quasi-Mealy HMM as a vector o € R",
where n = |Y| - X7 4+ 2 [X]
o = [vec(A(y")), ..., vec(Ay D)), e, b1

Now, the following theorem can be proven as a consequence of
Proposition 1.

Theorem 1. The set of (vectorized) quasi-Mealy models
equivalent to a given quasi-Mealy model (Q,Y, A, ¢, b), is a
semialgebraic set in R", where n = |Y| - |X|> +2 - |X|.
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Proof. The nonsingularity constraint on the matrix 7 in
Proposition 1, can be written as

det(T) # 0.

From Proposition 1, the set of (vectorized) quasi-Mealy models
is a semialgebraic set as it is a projection of a semialgebraic set
(see Appendix). W

It also follows from the Appendix, that the semialgebraic set
of (vectorized) quasi-Mealy models equivalent to a given quasi-
Mealy model can be constructed, i.e. the quantifier in (4) can be
eliminated.

It also follows from Proposition 1 that a quasi-Mealy model
@, {yV,y?}, A, ¢, b) with two outputs, can be converted
into an equivalent quasi-Moore model with the same number
of states (Q, {y(]), y(z)}, AQ, A, ¢), under the condition that
A(yD) and A(y®) have full rank and A(y)A(y®)~! has
real eigenvalues. Indeed, for the quasi-Moore model to exist,
there need to exist a nonsingular matrix 7 € RIQ*IQl a matrix
Ag € RIQIXIQ and two vectors k(y(l)) and A(y(z)) in RIQ such
that

Tb =e,
TAGM)T™! = diag(h(y'")) Ag.
TAGG®)T™! = diag(h(y'?)) Ag.

Such matrices exist if a real diagonal matrix D exists such that
TAYNT™! = DTAGP)T! or that AGW)AyP)~! =
T~!'DT. The matrix D follows from an eigenvalue decompo-
sition of A(y)A(y?)~!, because A(y)A(y?)~! has real
eigenvalues. Moreover, because eigenvectors are determined up
to a constant, T can always be chosen such that Th = e. For
Mealy HMMs with more than two outputs the above result
does not hold. In general, a minimal quasi-Moore model equiv-
alent to a minimal quasi-Mealy model, has more states than the
Mealy model.

3.2. Equivalence for positive Mealy HMMs

We now describe the equivalence sets for positive Mealy
models. We first deal with a special situation where the Mealy
model is minimal as a quasi-Mealy model, where we say that
a model is minimal as a quasi-Mealy model, if there does not
exist any equivalent quasi-Mealy model of lower order. Next we
consider the most general case, where the order of the minimal
Mealy model is larger than or equal to the minimal quasi-Mealy
order.

For the situation where the Mealy model is minimal as a
quasi-Mealy model, we prove the following proposition.

Proposition 2. Given a minimal Mealy model (X, Y, I, (1))
which is minimal as a quasi-Mealy model. The Mealy model
X, Y, II', 7' (1)) is equivalent if and only if there exists a

nonsingular matrix T € RE>XI gych that

VyeY: I'(y) =THyT™,

7'(1) =x(HT™,

Te=e, (5)
VyeY: II'(y) >0,

7'(1) > 0.

Proof. The proposition basically follows from Proposition 1.
For the ‘if’-case, it remains to be proven that (X, Y, IT’, 7/(1))
fullfilling (5) satisfies the consistency conditions of Mealy
models. To see this, first note that 7’(1)e = 7 ()T le =
m(l)e = 1. Next, from

Y IMye=) THHT 'e=T|> Hy)|e=Te=e
eY

yeY yeY
it follows that } "y IT'(y) is a stochastic matrix. ~ W

In the same way as in the proof of the proposition,
it can be proven that if (X,Y, I, (1)) is stationary
(ie. w(1) Zer II(y) = m(1)), then (X, Y, II', n/(1)) is also
stationary. By defining a vectorized Mealy HMM as a vector
o € R", where n = |Y]| - [X]2 + [X]

o = [vec(IT(yV)), ..., vec(I (y'¥M)), m(D]T,

we can prove the following theorem which is a consequence of
Proposition 2.

Theorem 2. The set of (vectorized) Mealy models equivalent
to a given Mealy model (X, Y, I, (1)) which is minimal as
a quasi-Mealy model, is a semialgebraic set in R", where

n=1Y] [X]*+X|.
Proof. The proof is analogous to the proof of Theorem 1. W

For the most general situation, where the order of the
minimal Mealy model is larger than or equal to the minimal
quasi-Mealy order, we prove the following proposition.

Proposition 3. Given a minimal Mealy model (X, Y, II, 7 (1)).
The Mealy model (X,Y, II', ' (1)) is an equivalent model if
and only if there exist positive scalars r, r' and s, nonsingular
matrices T and T' € R¥*XI and a minimal quasi-Mealy
model ({1, ...,s},Y, A, c“°, b“°) such that

|X]-r r—s

|0 0 1| —r

VyeY:TIyT ' =| *|*| « il §
x| 0] A°(y)
VyeY:T'II'y)T'"!
P . (6)
ANy 0 0 3| —r*
=| A®BD(y) [ A®N(y) | API(Y) | e s
A% | 0 A(y)
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Ql-r r—s s 0 | igies
()T = {* 0 ‘ (1) ] Te=|+ | v |

Ql=r' ri—s s 0

()T = { [ o] eq) ]

VyeY:II'(y) >0,
7'(1) = 0,

2.2) .3) b _ o
2 [a%2 @ AP @] |0 | =P

y

Proof. The proof follows basically from the procedure for
obtaining a minimal quasi-Mealy model from a positive Mealy
model described in Section 2.4. For the ‘if’-case, it remains
to be proven that (X, Y, II’, #/(1)) fullfilling (6) satisfies the
consistency conditions of Mealy models. To prove that 7'(1)
has element sum equal to 1, one can see that 7' (1)e = ¢“b*° =
m(1)e = 1. Next, Zy II'(y)e = e if and only if

ALD () 0 0 0 0
A%V a®D( APV 6P =162 (D)
y A(S, 1) (y) 0 Ac{) (y) bCO bC()

This condition is true if and only if Zy A(y)°b* = b°°, which
is true because Zy II(y)e=e N

If the original model is stationary (i.e. w(1) Zer Iy =
(1)), then an equivalent model is not necessarily stationary.
By adding the condition

1,1
[ ] [ﬁo,ngﬂ = ®)

y

to (6), a stationary model will give rise to an equivalent
stationary model.

To check in practice whether two Mealy models are
equivalent, one can use Proposition 3 as follows. First find
for both Mealy models, an equivalent minimal quasi-Mealy
model using the procedure of Section 2.4. Next check whether
there exists a transformation that transforms the first quasi-
model into the second quasi-model. If such a transformation
exists, the positive models are equivalent, otherwise, they are
not equivalent.

As a consequence of Proposition 3, we now have the
following theorem.

Theorem 3. The set of (vectorized) Mealy models equivalent
to a given minimal Mealy model (X,Y,II,n(1)), is a
semialgebraic set in R, where n = |Y| - |X|% + |X].

Proof. The proof is analogous to the proof of Theorem 1. W

4. Equivalence for Moore HMMs

In this section we investigate the set of equivalent Moore
HMMs. As is the case with Mealy models, one can always

obtain a model equivalent to a given quasi- or positive Moore
model by permuting the states of the original model. However,
much more equivalent models are possible. We investigate
subsequently the quasi-Moore and the positive Moore case.

4.1. Equivalence for quasi-Moore HMMs

We first deal with a special, though important, class of quasi-
Moore models: quasi-Moore models which are minimal as a
quasi-Mealy model.

Given a quasi-Moore model that is minimal as a quasi-
Mealy model, then we show that under certain conditions every
equivalent quasi-Moore model corresponds to a permutation of
the states of the given model.

Theorem 4. Let (Q,Y, Ag, L,c) be a quasi-Moore HMM,
which is minimal as a quasi-Mealy model. If all the states
of the quasi-Moore model have a different output distribution
(i.e. no two rows of L are equal to each other) and if the state
transition matrix Aq has full rank, then every minimal quasi-
Moore model that is equivalent to the given quasi-Moore model
is obtained by permuting the states of the original model.

Proof. Suppose that (Q, Y, A(@, L', ¢’) is equivalent to and of
the same order as (Q, Y, AqQ, L, c). Then from Theorem 1,
there exists a nonsingular matrix 7" such that

Vy € Y : diag(X' (y)) A = Tdiag(h(y)) AT ", 9)
 =cT 1,
e=Te. (10)

Since Ag has full rank, it follows that A(’@ has full rank, so it
follows from (9) that there exist nonsingular matrices 7' and S
such that

Vy € Y : diag(X'(y)) = Tdiag(A(y))S™",

11
Al =SAQT . (an

For the model (Q,Y, A(/@, L', ¢, it must hold that Zer T
diag(A(y))S~! = I, which gives T = S. It follows that

vy € Y : diag(\ (y)) = Tdiag(A(y)T .

Together with Te = e and with the fact that all states of the
Moore model have a different output distribution, this allows
us to conclude that 7' can only be equal to a permutation
matrix. W

If in a quasi-Moore HMM, there exist states with the same
output distribution, and if all the other conditions of Theorem 4
are fulfilled, then there exists a set of equivalent Moore models
(apart from the models obtained by permuting the states).
Suppose, for instance, that the output distribution of the first
state equals the output distribution of the second state. In that
case the transformation 7 of Eq. (9) is of the form

T 0
T=P [ 0 I] , (12)
where P is a permutation matrix and 7" € R?>*? a nonsingular
matrix with 7’e = e. This representation gives a complete
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description of the equivalence set. Notice that all the elements
of the set of equivalent Moore models have the same output
matrix L (up to a permutation of the states). They only differ in
the state transition matrix Ag.

From Section 3, we know that, under some general
conditions, a quasi-Mealy model with two outputs can be
converted into an equivalent quasi-Moore model with the same
number of states. So, under general conditions, every minimal
quasi-Moore model with two outputs is minimal as a quasi-
Mealy HMM. From Theorem 4 we conclude that every minimal
quasi-Moore model with two outputs, with a full rank transition
matrix and with a different output distribution for each state,
has no equivalent minimal quasi-Moore representations except
trivial ones. However, the theorem is also useful for HMMs
with more than two outputs. Consider for example the Moore
model (X, Y, Ik, B, 7 (1)) with

0.8 0.1 0.1 03 03 04
IIx=103 03 04/, B=101 01 08],
0.2 0.2 0.6 02 0.6 02

7(1) = [0.5405 0.1622 0.2973].

It is possible to show that the order of an minimal equivalent
quasi-Mealy model equals 3. This allows us to conclude that the
Moore model is minimal as a quasi-Mealy model. In addition
all the rows of B are different and ITx has full rank, such that we
conclude from Theorem 4 that the only way to obtain a minimal
Moore equivalent to the given model is by permuting the states.

Now we consider equivalence for general quasi-Moore
models of which the order is larger than or equal to the order of
an equivalent minimal quasi-Mealy model.

Proposition 4. Consider the minimal quasi-Moore model
(Q,Y, Aq, L, ¢). The quasi-Moore model (Q, Y, A(@, L', c)is
an equivalent model if and only if there exist positive scalars r,
r' and s, nonsingular matrices T and T' € REXEXI gnd a
minimal quasi-Mealy model ({1, ..., s}, Y, A, ¢, b°) such
that

|X|-r r—s

Vy € Y: Tdiag(M(y)AQT ' =| * | *| = a5 b

[ 0| A”(y)
Vy € Y : T'diag(X' (y) AT~
— _— .
A(] ')(y) 0 0 1%|—r
ACD(y) | ACA(y) | ACI(y) | o,
A(:&l)(y) 0 A“’(y)
1Q]—-r r—s & l 19| -+
er= [ * | 0] e?(1) ]3 Te=| % | s ,
bfﬁ
et s s B g
dT1 = [ e | 0 | (1) } L Te=|p@

b('!)

Le=e,

22 @31 [07] Z po 13
D[ A | | =0, (13)
y

Proof. The proof is analogous to the proof of Proposition 3.
]

The same remark as in Proposition 3 concerning stationarity
holds. An equivalent model to a stationary model is not
necessarily stationary. Stationarity can be imposed by adding
condition (8) to the set of conditions (13). Define a vectorized
quasi-Moore HMM as a vector o € R", where n = |X|?> + |X] -
Y[+ 1D

o = [vec(Ag), vec(L), c]T.

The following theorem is a direct consequence of Proposition 4.

Theorem 5. The set of (vectorized) quasi-Moore models equiv-
alent to a given minimal quasi-Moore model (Q,Y, Ag, L, ¢, b)
is a semialgebraic set in R", where n = |X|? + |X| - (Y] + 1).

Proof. The proof is analogous to the proof of Theorem 1. W
4.2. Equivalence for Moore HMMs

We now consider the equivalence of positive Moore models.
If the Moore model is minimal as a quasi-Mealy model, then
we are in the situation of Theorem 4, and hence there exist only
trivial equivalent Moore models. In this section, we consider the
general case when the order of the Moore model is larger than or
equal to the order of a minimal equivalent quasi-Moore model.
We do not consider the situation where the order of the Moore
model equals the order of a minimal equivalent quasi-Moore
model separately, as this does not give rise to an simplified
description of the equivalence in contradiction to the case for
Mealy models.

Proposition 5. Consider a minimal Moore model (X, Y, IIx,
B, (1)). The quasi-Moore model (X,Y, II;, B', /(1)) is an
equivalent model if and only if there exist positive scalars r,
r' and s, nonsingular matrices T and T' € RXIXXI and g
minimal quasi-Mealy model ({1, ...,s}, Y, A, ¢, b“°) such
that

|X]—-r r—s

* | 0 0 | —r
VyeY: Tdiag(,B(y))HXT_1 = *|* * £y 3

x| 0| A=(y)
Vy € Y : Tdiag(B'(y)) I T~

A(”)(Y) 0 0 X"

A(?.l)(y) A(z.z)(y) A(Z.:{)(Y) ; ;

ABD(y) 0 A*(y)

Q-+ r—s 0 e
w(l)T*‘:{*‘oh@(l)}, Te=| * | ru ,
b-L‘ﬂ
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minimal quasi Mealy models

@ unique quasi
Moore model

a

minimal quasi Mealy models

quasi Moore model3

O

minimal quasi
Mealy models

minimal quasi
Moore models

C

Fig. 1. The three main cases concerning the equivalence classes of quasi-Mealy and Moore models.

Q- ri-s e 0 | -

DT~ = [cf” ‘ 0| (1) ] Te=[p@| ., ,
4o
I, B, 7'(1) > 0,
Be=ce,
»@

Y [AP2) A ()] [b} =b?. (14)
y

Proof. The proof is analogous to the proof of Proposition 2.
|

The same remark concerning stationarity holds as for
Proposition 3. Defining a vectorized Moore HMM as a vector
o € R", where n = |X|> + |X| - (Y| + 1)

o = [vec(ITx), vec(B), m(1)] ",

leads to the following theorem, which is an immediate
consequence of Proposition 5.

Theorem 6. The set of (vectorized) Moore models equivalent
to a given minimal Moore model (X,Y, ITx, B, 7(1)), is a
semialgebraic set in R", where n = |X|*> + |X| - (Y| + 1).

Proof. The proof is analogous to the proof of Theorem 2. W
5. Summary of the results concerning equivalence sets

We now summarize the results concerning the equivalence
sets for quasi- and positive HMMs of Moore and Mealy type.

In Fig. 1, we consider quasi-Markov models. First of all, as
described in Theorem 1 there exists a set of equivalent quasi-
Mealy models. The order of a minimal equivalent quasi-Moore
model is either equal to the order of the minimal quasi-Mealy
model (Fig. 1(a),(b)), or larger than the order of the minimal
quasi-Mealy model (Fig. 1(c)). If in the first case, every state
of the Moore model has a different output distribution and
the transition matrix has full rank, then the Moore model is
unique by Theorem 4 (Fig. 1(a)). Otherwise there exists a set
of equivalent Moore models described by a transformation of
the form (12) (Fig. 1(b)). If the order of a minimal equivalent
quasi-Moore models is larger than the order of the quasi-
Mealy model, then there exists a class of quasi-Moore models
described by Proposition 4 and Theorem 5.

In Fig. 2, we consider Mealy models. From Theorem 1 it
follows that there exists a set of equivalent quasi-Mealy models.
The order of an equivalent minimal positive Mealy model is
either equal to the order of the minimal quasi-Mealy model

minimal quasi
Mealy models

minimal positive

minimal quasi Mealy models Mealy models

minimal positive
Mealy models

a b

Fig. 2. The two main cases concerning the equivalence classes of quasi- and
positive Mealy models.

minimal quasi minimal positive
Moore models Moore models

OHE

Fig. 3. The two main cases concerning the equivalence classes of quasi- and
positive Moore models.

minimal quasi Moore models

minimal positive
Moore models

a

(Fig. 2(a)), or larger than the order of the minimal quasi-Mealy
model (Fig. 3(b)). In the first case the set of equivalent positive
Mealy models is described by Proposition 2 and Theorem 2,
while in the second case the set is described by Proposition 3
and Theorem 3.

In Fig. 3, we consider Moore models. In general, minimal
quasi-Moore models form a set described by a transformation
of the form (12), or by Proposition 4 and Theorem 5. Under
certain conditions this set has only one element (Theorem 4).
The order of an equivalent minimal positive Moore model is
either equal to the order of the minimal quasi-Moore model
(Fig. 3(a)), or larger than the order of the minimal quasi-Moore
model (Fig. 3(b)). In both the cases the set is described by
Proposition 5 and Theorem 6.

6. Comparison with linear Gaussian case

We now compare the results for HMMs with stationary
Gauss—Markov models. It turns out that the situation for
stationary Gauss—Markov systems is very analogous to the
situation for quasi-HMM:s (Fig. 1).

The state and output process for Gauss—Markov processes
take values in a finite-dimensional real vector space, in contrast
to HMMs, where the output and state process take values in
finite sets. In addition, for Gauss—Markov models the state and
output process are typically vector processes, which is not the
case for HMMs. Gauss—Markov systems are given by

x(t+1) =Ax(®) +w(),
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y() = Cx() +v(@),

where x () € R" with n the order of the Gauss—Markov model,
y(t) € R? and where A is Schur. Next,

S
(g w)-[¢ om

where E(X) denotes the expected value of X, and where §, is
the Kronecker delta, i.e. §,, = lifand only if p =g, 6,5 =0
otherwise. As a shorthand notation for a Gauss—Markov system,
weuse (A,C, O, R, S).

First notice that this is the analogon of a Mealy model since
the generation of the next state is dependent on the output
given the present state. A Moore model corresponds to the case
S = 0. For Gauss—Markov models we do not make a distinction
between positive and quasi-models.

Let A : Z4 +— RP*? be the autocovariance of y, defined
as A(t) = E(y(t + 1)y(t)"). By defining P = E(x(H)x(t)")
and G = E(x(t + l)y(t)T), the autocovariance generated by
the Gauss—Markov model (A, C, Q, R, S) can be calculated as

P=APA" 4+ Q,
A(0) = CPCT +R,
G =APC" +S,
A@t) = CA'7'G.

We say that two Gauss—Markov models with autocovari-
ances A and A’ are equivalent if A = A’. A Gauss—-Markov
model (A, C, Q, R, S) of order n is minimal if for any other
equivalent model (A", C’, Q’, R’, S’) of order n’, it holds that
n<n.

Now one can easily see that for Mealy as well as
for Moore models, an equivalent model is obtained by
changing the basis in the state space as x + Tx,
with T nonsingular. The equivalent model is then given by
(TAT_I, crt, TQTT, R, TS). This state transformation is
the analogon of the permutation of the states which is always
possible for quasi-HMM:s.

However, again analogous to the quasi-hidden-Markov case,
for Mealy Gauss—Markov systems, there are more equivalent
models than those obtained by permuting the states. Indeed, it
can be proven [5] that for a given A, C, G and A(0), i.e. for
a given autocovariance sequence and given state space basis,
every P > 0 which fullfills

P—APAT | G-APCT -
GT—CPAT | A —cpcT | =7

where X > 0 means that X is nonnegative definite, gives rise
to an equivalent model (A, C, P — APAT, A(0) — CPCT, G —
APCT). This observation is the analogon of the fact that for
quasi-Mealy HMMs one has many equivalent models which are
not obtained by permuting states.

For quasi-Moore HMMs on the other hand, under certain
conditions, there exists only one equivalent model to a given
model (Theorem 4). We prove here the analogous theorem for
Gauss—Markov models.

Theorem 7. For a minimal Moore Gauss—Markov model
(A, C, O, R,0) the following holds: if C has full column rank
and A full rank, then there does not exist any minimal Moore
model which is equivalent to the given Moore model and which
cannot be formed from the given model by performing a change
of basis in the state space.

Proof. From the fact that § = 0 we find that G — APCT = 0,
and from the fact that C has full column rank and A full
rank, we find that P = A_IG(C T)T, where X1 denotes the
Moore—Penrose pseudo-inverse of X. So for a given state space
basis there is only one possible choice of P, which proves the
theorem. W

The condition that C has full column rank (condition of
Theorem 7) is equivalent to the condition that a different state
at two time instants gives a different output distribution at these
time instants. This corresponds to the condition for HMMs of
Theorem 4 which requires every state to have a different output
distribution. The fact that A has full rank is the analogon of
the fact that for HMMs [IIx has full rank. We conclude that
Theorem 7 is the Gauss—Markov equivalent of Theorem 4.

7. Conclusions

In this paper we considered the following problem for
HMMs: given a minimal HMM, describe the set of all
equivalent HMMs of the same order. For quasi Mealy HMMs,
necessary and sufficient conditions for two models to be
equivalent are already proven in literature. We give necessary
and sufficient conditions for two positive Mealy models to
be equivalent as well as a description of the complete set
of all equivalent Mealy models. We also prove that, under
certain conditions, the set of minimal quasi Moore models
equivalent to a given minimal quasi Moore model consists of
only one element (up to a permutation of the states). Next,
we derive necessary and sufficient conditions for two positive
Moore models to be equivalent as well as a description of the
complete set of all equivalent Moore models. Finally, we give
a comparison with the situation for Gauss—Markov systems
showing that the equivalence sets for hidden Markov models are
analogous to the equivalence sets for Gauss—Markov models.
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Appendix. Semialgebraic sets — Tarski—Seidenberg quan-
tifier elimination

In this appendix, we summarize the principle of Tarski—
Seidenberg and the relation to semialgebraic sets. This
summary is based on [3,4].

A semialgebraic subset of R" is the subset of [x1, ..., xn]"
in R" satisfying a boolean combination of polynomial
equations and inequalities with real coefficients. In other words,
the semialgebraic subsets of R” form the smallest class S.A,, of
subsets of R” such that:

e If g is a polynomial in n variables, then {x € R" : g(x) =
0} € SA, and {x e R" : g(x) > 0} € SA,.

e IfAcSA,and B € SA,,then AUB, ANB and A\ B are
in SA,.

As a consequence of the Tarski—Seidenberg principle [9,10],
the class of semialgebraic sets is closed under projection.

Theorem 8. Let A be a semialgebraic subset of R" and P :
R" > RP, the projection on the first p coordinates. Then P(A)
is a semialgebraic subset of RP.

Now consider a first-order formula over the reals having the
form

Q1xV e Ry (QixD e R Py, xD, ... xD),  (15)

where Q,,A =1, ...,/ is a quantifier: either 3 (“there exists”)
orV (“for all”), where y = [y1, ..., yno]T are free variables and
where P (y, x) L xDyisa quantifier-free Boolean formula,
i.e. a combination of atomic predicates. The atomic predicates
are supposed to be of the form g, (v, xD x(l))AKO, K =
1,..., k, where g, : Hlxzo R™ +— R is a polynomial of degree
at most d > 2 and 4; is one of the following relations >, >, =,
#, < and <. P(y,x(l), ..., xDy is determined by a Boolean
function P : {0, 1} + {0, 1} and a function B : H&:o R™ >
{0, l}k,where P =PoB,andforkc =1,...,k

1 if g (v, x(l), e, x<l))AKO,

B MmOy .
o x 7 x ) 0 otherwise.

It is clear that the solution set in R of (15) is a semialgebraic
set as it is the projection of a semialgebraic set in Hazo R,

It can now be shown [7,9,10], that the semialgebraic set
can be constructed, i.e. the first-order formula (15) can
be written in an equivalent form without quantifiers. The
operations that are needed to eliminate the quantifiers are
restricted to additions, subtractions, multiplications, divisions,
comparisons and the evaluation of Boolean functions. In [7], an
algorithm for quantifier elimination is described that requires

at most (kd )20(” [T, na multiplications and additions, and at
most (kd)O(ZA "4) calls to IP. The method requires no divisions.
The quantifier elimination algorithm constructs a quantifier-free
formula of the following form

m  Nu

\/ /\ h;w (y)prOs

n=1v=1

where m < (kd)2*"TL.m. | where n, < k)2’ T for
uw = 1,...m, where the degree of each of the polynomials

. o(l .
hyy is at most (kd)? OTL.m and where each A, is one of
the following relations >, >, =, #, < and <.
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