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MIMO Instantaneous Blind Identification Based on
Second Order Temporal Structure

Jakob van de Laar, Marc Moonen,Fellow, IEEE,and Piet SommenMember, IEEE

Abstract—Blind identification is a crucial subtask in signal
processing problems such as Blind Signal Separation (BSS) and
Direction Of Arrival (DOA) estimation. This paper presents
a procedure for Multiple-Input Multiple-Output Instantaneous
Blind Identification based on second order temporal statisti-
cal variabilities in the data, such as non-whiteness and non-
stationarity. The procedure consists of two stages. Firstly, based
on a number of assumptions on the statistical structure and
diversity of the source signals and mixing system, and using
subspace techniques, the problem is reformulated in a particular
way such that each column of the unknown mixing matrix
satisfies a system of multivariate homogeneous polynomial or
‘polyconjugal’ equations. Then, this nonlinear system is solved
by means of a so-called homotopy method. The two-stage blind
identification procedure also allows to estimate the mixing matrix
for several scenarios with more sources than sensors, something
that is often believed to be impossible with second order statistics.
Finally, the procedure is applied to the Instantaneous Blind Signal
Separation of speech signals.

Index Terms—Blind identification/separation, temporal struc-
ture, homogeneous system, homotopy, Second Order Statistics.

I. I NTRODUCTION

I N this paper, we consider the so-calledMultiple-Input
Multiple-Output (MIMO) Instantaneous Blind Identifica-

tion (MIBI) problem. In this problem, a number of mutually
statistically independent source signals are mixed by a MIMO
instantaneous mixing system and only the mixed signals are
available, i.e. both the mixing system and the original source
signals are unknown [5]. The goal of MIBI is to recover the
instantaneous MIMO mixing system, or its parameters such
as in the case of DOA estimation, from the observed mixtures
of the source signals only. Fig. 1 shows the MIBI problem
setup forS source andD sensor signals. The source, sensor
and additive noise signals are denoted bys1[n], . . . , sS [n],
x1[n], . . . , xD[n] and ν1[n], . . . , νD[n] respectively. The in-
stantaneous mixing system is modeled by a real- or complex-
valued matrixA of size D × S. A problem closely related
to MIBI is Instantaneous Blind Signal Separation (IBSS)
[4], [5], where the goal is to separate mutually statistically
independent source signals from their observed instantaneous
mixtures only. Contrary to MIBI, the main interest in IBSS is
in the source signals instead of the mixing system. In fact,
once MIBI has been performed, the source signals can be
recovered (approximately) by applying the (pseudo-)inverse of
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Fig. 1. MIMO Instantaneous Blind Identification setup.

the estimated mixing system to the observed mixtures. In this
paper, the main focus is on MIBI, while IBSS is considered
as an application.

Many researchers have investigated the use of second order
statistics for IBSS [2], [3], [6], [9], [10], [15], [20]. The
majority of the available algorithms is based on the (Gen-
eralized) Eigenvalue Decomposition or Joint Approximate
Diagonalization of two or more sensor correlation matrices
of the form Rx[n1, n2] , E{x[n1]x[n2]H} with x[n] the
observation vector (see also Section II). For example, see
AMUSE [15], SOBI [2], and also [6], [9], [10]. All those
algorithms employ sensor correlation matrices containing the
sensor correlation values arranged in the same ‘conventional’
manner. In our work we arrange the available sensor corre-
lation values in a particular fashion that allows a different
and natural formulation of the problem and the estimation of
more columns than sensors. It is widely recognized that many
possible applications exist for MIBI and IBSS, see e.g. [4],
[5], and the references therein. Examples of (parameterized)
MIBI can be found in source localization problems, which
are crucial to many sensor array systems, such as radar
and sonar. Examples of IBSS can be found in the field
of biomedical engineering, where the goal is e.g. to reveal
independent sources in biological signals like EEG’s or ECG’s.
Other examples can be found in the separation of speech
signals, images, etc. Although many practical problems can
be described more adequately by more complex MIMO Blind
Identification models such as convolutive and/or non-linear
models, MIBI can often be used as a good starting point, e.g.
for a frequency domain approach in the convolutive case.

This work is a continuation and elaboration of our previous
work presented in [16]–[19]. In [16], a practical algorithm
based on Second Order Statistics (SOS) and the Generalized
Eigenvalue Decomposition (GEVD) was given for the real-
valued ‘square MIBI’ case withD = S. In [17], we gener-
alized the underlying concepts to real-valued MIBI exploiting
the temporal structure in the data of some arbitrary fixed order.
Although we briefly touched upon the more general case with
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complex-valued mixing system and source signals, arbitrary
order statistics, and arbitrary conjugation patterns, in [18] the
main focus was on the development of the so-called TIME-
MUSIC algorithm for Direction Of Arrival estimation which
involves a parameterized mixing matrix. In [19] we provided
a homotopy method for estimating the mixing matrix from
the derived system of equations for the real-valued SOS case.
In this paper, we consider real- and/or complex-valued MIBI
based on exploiting the Second Order Temporal Structure
(SOTS) with arbitrary conjugation pair (see Section III), and
again use a homotopy method for estimating the columns of
the mixing matrix.

The outline of this paper is as follows. Firstly, the structure
and assumptions of the MIBI model are explained in Sec-
tions II and III respectively. The derivation of the system of
homogeneous polynomial equations is presented in Section IV,
and some of the algebraic and geometric properties are high-
lighted. Then, in Section V we present a homotopy method
for solving the system of equations. In Section VI the theory
is applied to two MIBI scenarios with three sensors, one with
three and the other with four speech source signals. Finally,
conclusions are discussed in Section VII.

II. MIBI MODEL STRUCTURE

A block diagram of the MIBI problem setup is shown
in Fig. 1. S mutually statistically independent but otherwise
unknown source signals are mixed by an unknown MIMO
linear instantaneous mixing system, which is represented by
the matrix A, and only D sensor signalsx1[n], . . . , xD[n]
corrupted byD additive noise signalsν1[n], . . . , νD[n] are
observed. Both the signals and the mixing system may be
real- or complex-valued. For convenience and without loss
of generality it is assumed that all signals are zero-mean.
Mathematically, the MIBI observation model can be written
as follows:

x[n] =
S∑

j=1

aj sj [n] + ν[n] = As[n] + ν[n] ∀ n ∈ Z ,

(II.1)
where:

x[n],




x1[n]
...

xD[n]


, s[n],




s1[n]
...

sS [n]


, ν[n],




ν1[n]
...

νD[n]


, aj ,




aj
1
...

aj
D




are column vectors of sensor signals, source signals, addi-
tive noise signals and mixing elements respectively. Let the
symbolsCM , CN , andCN

M denote the spaces of complex-
valued length-M column vectors, length-N row vectors, and
M ×N -matrices respectively.RM , RN , andRN

M are defined
similarly for real-valued quantities. The vectorsx[n], ν[n], and
a1, . . . ,aS are elements ofRD orCD, whereas the vectors[n]
is an element ofRS or CS . The unknown mixing matrixA
is an element ofRS

D or CS
D, and can be written in terms of

its columns asA =
[
a1 · · · aS

]
. Sometimes we refer to the

mixing matrix as thearray response matrix, and to its columns
as thearray response vectors. Subscript and superscript indices
are used to index the components of a column and row vector

respectively. Furthermore, the symboln denotes discrete time.
According to (II.1), thei-th sensor signalxi[n] is given by:

xi[n] =
S∑

j=1

aj
isj [n]+νi[n] ∀n ∈ Z, ∀ 1 ≤ i ≤ D , (II.2)

whereaj
i denotes the instantaneous transfer coefficient from

thej-th source to thei-th sensor,sj [n] thej-th source signal at
discrete timen, andνi[n] the i-th noise signal at discrete time
n. From Eq. (II.1), it follows directly that two indeterminacies
are inherent to the MIBI model [4], [5], viz. the norms and
order of the mixing matrix columns and the source signals
cannot be resolved. This means that the columns and source
signals can only be recovered up to a scaling factor and a
permutation. Taking into account these indeterminacies, the
goal of MIBI is to recover the columns of the mixing system
in arbitrary order and with arbitrary nonzero norms. The
indeterminacies are by no means problematic because for blind
applications the most relevant information is in the ‘directions’
of the columns, or the waveforms of the source signals, rather
than in their magnitudes or order.

III. MIBI MODEL ASSUMPTIONS

To be able to exploit theSecond Order Temporal Structure
(SOTS) in the data several assumptions have to be made
that mainly serve two purposes. Firstly, they ensure that
sufficient temporal structure is present in the source signals,
and secondly that the noise signals have a ‘simpler’ temporal
structure than the source signals. The assumptions are formu-
lated in terms of correlation functions that we will define soon;
see Equations (III.1) and (III.2). A (complex-valued) two-
dimensional correlation function can be defined in different
ways corresponding to the pattern in which its arguments are
conjugated. Such a conjugation pattern is represented by a
conjugation pair, and is written in the upper-right corner of the
considered symbol or function. The most suitable conjugation
pair for a particular application depends on the type of signals
involved. In the derivations in this paper it is assumed without
loss of generality that a specific conjugation pair(c1, c2)
has been chosen and fixed subsequently, wherec1 and c2

can either be ‘∗’, which means conjugation, or ‘◦’, which
means no conjugation. For example, let

(
vi1 [n1]

)c1 be the
i1-th component of a length-G time dependent random vector
v[n] at time indexn1 that is conjugated according toc1, and let(
vi2 [n2]

)c2 be defined similarly. Then, the correlation function
of

(
vi1 [n1]

)c1 and
(
vi2 [n2]

)c2 is defined as follows:

rv,c1c2
i1i2

[n1, n2] , E
{(

vi1 [n1]
)c1

(
vi2 [n2]

)c2
}

∀ 1 ≤ i1, i2 ≤ G, ∀n1, n2 ∈ Z . (III.1)

Likewise, the two-dimensional correlation function of the
i-th component of a length-G time dependent random vector
v[n] at time indexn1 that is conjugated according toc1, and
the j-th component of another length-P random vectorw[n]
at time n2 that is conjugated according toc2, is denoted by
rvw
ij [n1, n2] and defined as follows:

rvw
ij [n1, n2] , E

{(
vi[n1]

)c1
(
wj [n2]

)c2
}

∀ 1 ≤ i ≤ G, ∀ 1 ≤ j ≤ P, ∀n1, n2 ∈ Z . (III.2)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

Let Ωs\ν,c1c2
n1n2 be the so-called Noise-Free Region Of Support

(ROS) in the domain of time index pairs(n1, n2) on which
all correlation functions considered in this paper are defined.
Then, the assumptions defining the ROS and underlying the
MIBI method presented in the sequel can be formulated as
follows:

AS1: The source signals have zero cross-correlation functions
on the Noise-Free ROSΩs\ν,c1c2

n1n2 :

rs,c1c2
j1j2

[n1, n2] = 0 ∀ 1 ≤ j1 6= j2 ≤ S ;

AS2: The source auto-correlation functions are linearly indepen-
dent on the Noise-Free ROSΩs\ν,c1c2

n1n2 :

S∑
j=1

ξjrs,c1c2
jj [n1, n2] = 0 =⇒ ξj = 0 ∀ 1 ≤ j ≤ S ;

AS3: The noise signals have zero auto- and cross-correlation
functions on the Noise-Free ROSΩs\ν,c1c2

n1n2 :

rν,c1c2
i1i2

[n1, n2] = 0 ∀ 1 ≤ i1, i2 ≤ D ;

AS4: The cross-correlation functions between the source and
noise signals are zero on the Noise-Free ROSΩ

s\ν,c1c2
n1n2 :

rνs,c1c2
ij [n1, n2] = rsν,c1c2

ji [n1, n2] = 0

∀ 1 ≤ i ≤ D, ∀ 1 ≤ j ≤ S .

IV. FORMULATING MIBI AS THE PROBLEM OF SOLVING A

SYSTEM OF HOMOGENEOUS POLYCONJUGAL EQUATIONS

Using the assumptions made in the previous section, in
this section we will show that the array response vectors
a1, . . . ,aS satisfy a well-structured system ofD-variate ho-
mogeneous so-calledpolyconjugalequations of degree two,
thereby ‘projecting’ the MIBI problem onto a mathematical
problem, the solution of which yields estimates of the array
response vectors. In the course of our derivation we highlight
the algebraic structure of the problem formulation.

A. Subspace matrix definition and structure

We start our derivation by expressing the sensor correlation
functions in terms of the mixing matrix elements and source
auto-correlation functions. Several sensor correlation function
values are then arranged in the so-called subspace matrix in a
particular fashion. UsingAS1-AS4 it follows that the sensor
correlation functions can be expressed in terms of the mixing
matrix elements and source auto-correlation functions as:

rx,c1c2
i1i2

[n1, n2] =
S∑

j=1

(
aj

i1

)c1
(
aj

i2

)c2
rs,c1c2
jj [n1, n2]

∀ (n1, n2) ∈ Ωs\ν,c1c2
n1n2

, 1 ≤ i1, i2 ≤ D . (IV.1)

Suppose that we have specified a Noise-Free ROSΩs\ν,c1c2
n1n2

by a set ofN time pairs as follows:

Ωs\ν,c1c2
n1n2

=
{
(n1, n2)1, . . . , (n1, n2)N

}

=
{
(n1

1, n
1
2), . . . , (n

N
1 , nN

2 )
}

, (IV.2)

where(n1, n2)q = (nq
1, n

q
2) is theq-th time pair ofΩs\ν,c1c2

n1n2 ,
and N ≥ S. Note that we can choose the time pairs in such
a way that the non-whiteness and/or non-stationarity of the

source signals is exploited. Let the(D)2×N subspace matrix
Cx,c1c2

D be defined as follows:

Cx,c1c2
D ,

[
rx,c1c2

D [n1
1, n

1
2] · · · rx,c1c2

D [nN
1 , nN

2 ]
]

=




rx,c1c2
11 [n1

1, n
1
2] · · · rx,c1c2

11 [nN
1 , nN

2 ]
...

. ..
...

rx,c1c2
DD [n1

1, n
1
2] · · · rx,c1c2

DD [nN
1 , nN

2 ]


 , (IV.3)

where theq-th column is given by:

rx,c1c2
D [nq

1, n
q
2] , E

{(
x[nq

1]
)c1 ⊗ (

x[nq
2]

)c2
}

(IV.4)

with ⊗ denoting the Kronecker product. Hence, the elements
of rx,c1c2

D [nq
1, n

q
2] and the rows ofCx,c1c2

D are stacked in
‘Kronecker order’. The linear space spanned by the rows of the
subspace matrixCx,c1c2

D is called thesignal subspace. Thus,
the dimensiondx,c1c2

D of the signal subspace equals the rank
of the subspace matrix. Similarly to Eq. (IV.3), theS × N
source auto-correlation matrixCs,c1c2

S is defined as follows:

Cs,c1c2
S ,

[
rs,c1c2

S [n1
1, n

1
2] · · · rs,c1c2

S [nN
1 , nN

2 ]
]

=




rs,c1c2
1 [n1

1, n
1
2] · · · rs,c1c2

1 [nN
1 , nN

2 ]
...

. ..
...

rs,c1c2
S [n1

1, n
1
2] · · · rs,c1c2

S [nN
1 , nN

2 ]


 , (IV.5)

where theq-th column is given by:

rs,c1c2
S [nq

1, n
q
2] , E

{(
s[nq

1]
)c1¯ (

s[nq
2]

)c2
}

, (IV.6)

with ¯ denoting the element-wise product. The linear space
spanned by the rows of the source auto-correlation matrix is
called thesource subspace. Thus, the dimensionds,c1c2

S of the
source subspace equals the rank of the source auto-correlation
matrix. From Equations (IV.1), (IV.3) and (IV.5) it follows that:

Cx,c1c2
D = Ac1c2

D,¦ Cs,c1c2
S , (IV.7)

whereAc1c2
D,¦ is the so-called second orderKhatri-Rao product

of A with conjugation pairc2 = (c1, c2), which is defined as:

Ac1c2
D,¦ ,

[(
a1

)c1⊗ (
a1

)c2 · · · (
aS

)c1⊗ (
aS

)c2
]
. (IV.8)

Hence, thej-th column of this matrix equals the Kronecker
product of thej-th column ofA conjugated according toc1

with the j-th column ofA conjugated according toc2.

B. Dimensions of signal and source subspaces

We now show how the signal subspace dimensiondx,c1c2
D

depends on the mixing matrix and the source signal properties.
First, from assumptionAS2 it follows that the source auto-
correlation matrix in Eq. (IV.5) has full rank. Hence, the source
subspace dimension equals the number of sources:

ds,c1c2
S , rank

(
Cs,c1c2

S

)
= S . (IV.9)

Using the fact that the rank of a matrix is unchanged upon
either left or right multiplication by a nonsingular matrix [11],
and thatCs,c1c2

S has full rank, it follows from Eq. (IV.7) that:

dx,c1c2
D , rank

(
Cx,c1c2

D

)
= rank

(
Ac1c2

D,¦
)
. (IV.10)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 4

Hence, the signal subspace dimensiondx,c1c2
D equals the

rank of the Khatri-Rao product matrixAc1c2
D,¦ . Essentially our

subspace approach to MIBI is based on the fact that we can
compute or estimate the (properties of the) various subspaces
of the unknown matrixAc1c2

D,¦ from the known matrixCx,c1c2
D .

The rank of the Khatri-Rao product matrix has been studied
in several works, e.g. [7], [13], [21].

C. Deriving the system of polyconjugal equations

If the number of rows of the subspace matrixCx,c1c2
D

is larger than the dimensiondx,c1c2
D of the signal subspace

spanned by its rows, thenCx,c1c2
D has a non-zero left null

spaceNl
(
Cx,c1c2

D

)
. Defining a matrixΦ such that its rows

form a basis for the complex conjugate
(Nl

(
Cx,c1c2

D

))∗
of the

left null spaceNl
(
Cx,c1c2

D

)
of Cx,c1c2

D , it follows that:

ΦCx,c1c2
D = 0 . (IV.11)

The matrixΦ can be determined directly from the Singular
Value Decomposition (SVD) ofCx,c1c2

D by choosing and
conjugate transposing the left singular vectors that correspond
to (near-)zero singular values. The maximum number of
linearly independent rows ofΦ equals the dimensionQc1c2

D,S

of Nl
(
Cx,c1c2

D

)
and is given by the difference between the

number of rows ofCx,c1c2
D and its rank [11]:

Qc1c2
D,S , dim

(Nl
(
Cx,c1c2

D

))
= (D)2 − dx,c1c2

D . (IV.12)

Substituting Eq. (IV.7) into Eq. (IV.11) yields:

ΦCx,c1c2
D = ΦAc1c2

D,¦ Cs,c1c2
S = 0 . (IV.13)

BecauseCs,c1c2
S has full rank due toAS2, it follows that:

ΦAc1c2
D,¦ = 0 . (IV.14)

This system describes the relation between theunknownco-
efficients of the mixing matrixA and theknowncoefficients
of the matrixΦ. Let ϕ̃q ∈ C(D)2

(
R(D)2

)
be theq-th row

of Φ, let z ∈ CD be a vector of variables with the same
size as a column ofA, and define the functionsf c1c2

D,1 (z), . . .,
fc1c2

D,Q
c1c2
D,S

(z) as follows:

f c1c2
D,q (z) , ϕ̃q ·

[
(z)c1⊗ (z)c2

] ∀ 1 ≤ q ≤ Qc1c2
D,S .

(IV.15)
Then, (IV.14) states that all columnsa1, . . . , aS of A satisfy:

fc1c2
D,q (aj) = 0 ∀ 1 ≤ q ≤ Qc1c2

D,S , 1 ≤ j ≤ S . (IV.16)

Hence, at this pointthe MIBI problem has been ‘projected’
onto the problem of solving the following system of equations
for the columns of the mixing matrixA:

{
f c1c2

D,q (z) = 0
}

1≤q≤Q
c1c2
D,S

. (IV.17)

By ‘projected’ we mean that the system of equations follows
from our MIBI problem definition and formulation, but not
necessarily the other way around. We refer to Alg. 1 for a
summary of the results that we have developed so far, and
Section VI for examples.

Algorithm 1 D×S MIBI exploiting Second Order Temporal
Structure with arbitrary conjugation pair(c1, c2).

1: Estimate sensor correlation functions for time index
tuples(n1, n2) in Noise-Free ROSΩs\ν,c1c2

n1n2 ;

2: Arrange these values in subspace matrixCx,c1c2
D ;

3: Compute SVD ofCx,c1c2
D and split result into signal and

noise subspace parts as follows:

Cx,c1c2
D = UΣ(V)∗ = UsΣs

s(Vs)∗ + UνΣν
ν(Vν)∗ ;

4: Let Φ be a matrix whose rows span complex conjugate
left null space

(Nl
(
Cx,c1c2

D

))∗
of Cx,c1c2

D :

Φ , (Uν)H ;

5: With each rowϕ̃q of Φ for 1 ≤ q ≤ Qc1c2
D,S associate a

D-variate homogeneous polyconjugal of degree2:

f c1c2
D,q (z) , ϕ̃q ·

[
(z)c1⊗ (z)c2

]
;

6: The following system remains to be solved for the
columns of the mixing matrix (see Alg. 2 on the follow-
ing page):

{
f c1c2

D,q (z) = 0
}

1≤q≤Q
c1c2
D,S

.

All functions in system (IV.17) have the same specific form.
Firstly, from the definition in (IV.15) it is clear that each func-
tion f c1c2

D,q (z) = f c1c2
D,q (z1, . . . , zD) is aD-variate ‘polynomial-

like’ function containing product terms of degree two. Strictly
speaking,fc1c2

D,q (z) is only a polynomial in z1, . . . , zD if
(c1, c2) = (◦, ◦) because for(c1, c2) ∈ {(◦, ∗), (∗, ◦), (∗, ∗)}
the product terms (also) contain conjugates of the variables.
Therefore, in general we refer to a function of the type defined
by f c1c2

D,q (z) as a ‘polyconjugal’. From (IV.15) it follows
directly that each functionf c1c2

D,q (z) in (IV.17) is a D-variate
polyconjugal of degree two, which ishomogeneous of degree
two with conjugation pair(c1, c2), meaning that:

f c1c2
D,q (ηz) = (η)c1(η)c2f c1c2

D,q (z) ∀ η ∈ C, ∀ z ∈ CD .

(IV.18)
This property implies the following:

f c1c2
D,q (v) = 0 =⇒ fc1c2

D,q (ηv) = 0 ∀ η ∈ C . (IV.19)

Hence, if v is a solution of (IV.17), then so isηv for all
η ∈ C. This is compatible with the scaling indeterminacy
inherent to MIBI, see also Section II. It also implies that the
norms of the solutions of system (IV.17) can be chosen arbi-
trarily. Algebraically, the zero contour level of each function
fc1c2

D,q (z1, . . . , zD) defines aconein theD-dimensional Euclid-
ian space. Hence, geometrically, solving (IV.17) is equivalent
to finding the one-dimensional intersections betweenQc1c2

D,S

cones in aD-dimensional Euclidian space, where ideally
each intersection is a one-dimensional linear subspace that
corresponds to a column of the mixing matrix. We refer to
Section VI for examples.
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V. SOLVING THE SYSTEM OF POLYCONJUGAL

EQUATIONS BY HOMOTOPY

In this section we summarize the main ideas behind so-
called homotopy methods. The resulting algorithm will be
employed in the examples presented in the next section for
solving systems of the form (IV.17); see also [19]. Homotopy
methods provide a deterministic means for solving a system
of nonlinear equations. They are based on the so-called path
following or continuation techniques. Excellent discussions
can be found in several articles and books, e.g. [1], [8], [12],
[14]. The rationale behind homotopy methods is to smoothly
deform the known solutions of a known (and possibly simple)
start system into the desired solutions of the target system, see
also Alg. 2. The start and target systems are embedded in a
family of systems, called the homotopy, and then all members
in the family are solved in a sequential and iterative manner.
Since each new system is close to the previous system, under
some mild uniqueness and smoothness conditions its solutions
deviate only slightly from those of the previous system and
each path converges to a geometrically isolated solution [1],
[12]. Here, we denote a general target system byp(z) = 0
and assume thatp : CP → CP . Furthermore, its solution
set is denoted byP, i.e. P , {zp ∈ CP | p(zp) = 0}.
Similarly, we denote the start system byg(z) = 0 with
g : CP → CP , and its solution set is denoted byG, i.e.
G , {zg ∈ CP | g(zg) = 0}. This system is constructed
in such a way that it has the same structure and number
of solutions as the target systemp(z) = 0. In Alg. 2 we
summarize the homotopy method that we will use in the next
section. The pathC is a simple curve in the complex plane that
has to be predefined by the user. The continuation parameter
λ ∈ C follows C from λ0 to λe with λ0 6= λe. Here, we use
the arcC , {cos(θ) +  3

10 sin(θ) | 0 ≤ θ ≤ π} with starting
point λ0 = 1 and end pointλe = −1. The constantsγg ∈ C
and γp ∈ C are randomly chosen fixed constants that serve
to avoid singularities and crossings along the different paths.
The parameterMaxNnwtIt defines the maximum number of
Newton corrector steps.

VI. EXAMPLES WITH THREE SENSORS

In this section the steps of Alg. 1 and 2 are performed for
two MIBI examples withD = 3 sensors, a real-valued mixing
system, and real-valued source signals, so that visualization
of the procedure and results is possible. In the first example
three and in the second four speech source signals are mixed
according to Model (II.1) with mixing matrices given by (VI.2)
and (VI.4) respectively. For convenience, and without loss
of generality, the columns ofA have unit Euclidian norm.
Since the mixing system and source signals are real-valued
the conjugation pair(c1, c2) is irrelevant and will be omitted
from the notation. All speech source signals are sampled at8
kHz, and the noise signalsν1[n], ν2[n] andν3[n] are mutually
statistically independent white Gaussian noise sequences with
variance 0.1. The number of time samples in all signals
involved is10000, which equals1250 milliseconds. In each ex-
ample we exploit both the non-stationarity and non-whiteness
by using sensor correlation values for different times and

Algorithm 2 Overview of homotopy continuation method.

1: Define pathC and initializeγg, γp, MaxNnwtIt, etc.;

2: Construct start systemg(z) = 0;

3: Embedg(z) andp(z) in convex homotopy:

h(z, λ) = γg(λ−λe)g(z)+γp(λ−λ0)p(z) ∀ λ ∈ C ;

4: Compute solutions of start systemg(z) = 0 and store
them in setG;

5: for all zg ∈ G do
z := zg;

for λ = λ0 → λe alongC do

% Euler predictor step:
dz
dλ = −[∇zh

]−1 · ∂λh;
z := z + ∆λ · dz

dλ ;

% Newton corrector steps:
λ := nextλ from C;

for m = 1 → MaxNnwtIt do

∆z := −[∇zh
]−1 · h;

z := z + ∆z;

end for
end for
Store solutionzp = z in setP;

end for
ReturnP;

different lags. To do so, the signal sequences are partitioned
into disjoint blocks consisting of2000 samples, and for each
block the one-dimensional sensor correlation functions are
computed for lags1, 2 and 3. Lag zero is omitted because
the corresponding correlation values are noise-contaminated.
Because the number of available samples is10000, the number
of blocks equals5. Hence, in total for each sensor correlation
function 15 values are estimated and employed. Calling the
block index b with 1 ≤ b ≤ 5, and the lag indexk, the
employed Noise-Free ROS in the domain of block-lag pairs
(b; k) used here is:

Ωs\ν
b;k =

{
(1; 1), (1; 2), (1; 3), . . . , (5; 1), (5; 2), (5; 3)

}
.

For each block the sensor correlation values are estimated
from the sensor signals by averaging products of the form
xi1 [n]xi2 [n− k] with k = 1, 2, 3 over the block length.

Note that the Kronecker productz⊗ z in the definition of
fc1c2

D,q (z) in Eq. (IV.15) is a vector of length(D)2 = 9 that
contains only1

2D(D + 1) = 6 different products, viz.z1z1,
z1z2, z1z3, z2z2, z2z3, andz3z3. Combining the coefficients
of ϕ̃q corresponding to equal products, and also combining the
corresponding rows of the subspace matrix yields a system of
1
2D(D + 1)− dx

D equations of the following form:

fp(z1, z2, z3) ,
D∑

i1=1

D∑

i2=i1

αi1i2
p zi1zi2 , (VI.1)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Source signals

s1[n]

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Source signals

s2[n]

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Time index [n]

s3[n]

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Sensor signals

x1[n]

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Sensor signals

x2[n]

0 2000 4000 6000 8000 10000

−10

−5

0

5

10

Time index [n]

x3[n]

Fig. 2. Speech sources (left) and their noise-contaminated mixtures (right)
for 3× 3 example.

where the coefficientsα11
p , α12

p , α13
p , α22

p , α23
p , α33

p for p =
1, . . . , 1

2D(D + 1) − dx
D follow from the SVD of the cor-

responding ‘reduced subspace matrix’.

A. Three mixtures of three speech signals

The sensor signals are obtained from (II.1) with:

A =




0.5774 0.4082 0.8083
0.5774 −0.8165 0.1155
0.5774 −0.4082 −0.5774


 . (VI.2)

Fig. 2 shows the source signalss1[n], s2[n] ands3[n] at the left
side, and the three noise-contaminated mixturesx1[n], x2[n]
and x3[n] at the right side. Using only the sensor data the
functions in the system to be solved can be obtained by means
of Alg. 1. Eq. (IV.10) implies thatdx

D = 3. Hence, there are
1
2D(D + 1) − dx

D = 3 functions of the form (VI.1) in the
system, which becomes{f1(z1, z2, z3) = 0, f2(z1, z2, z3) =
0, f3(z1, z2, z3) = 0}. Because all quantities involved are
real-valued, the surfaces describing the zero contour levels
are conventional quadric cones in three-dimensional space.
In Fig. 3 we have depicted the intersections of each cone
with the unit sphere in different colors/grey shades. Those
intersections are a kind of ‘ellipses on the sphere’ that we will
call ‘spherical ellipses’. Note that each intersection consists
of two parts that are point-symmetric with respect to the
origin. The black arrows represent the ideal columns ofA,
whereas the grey arrows are the opposites of the black ones.
The figure shows that the columns ofA point to the points
denoted by the black and grey dots where three spherical
ellipses intersect each other. Hence, the array response vectors
are determined uniquely by the intersections induced by the
system of equations. The magenta arrows and dots indicate the
columns ofA as estimated by Alg. 2. The start system that
we use is exactly similar to the target system with the unit-
norm constraint added. The coefficients of the homogeneous
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Fig. 3. Zero contour spherical ellipses off1(z1, z2, z3), f2(z1, z2, z3) and
f3(z1, z2, z3) for 3× 3 example.

part of the start system can be obtained by computing the left
null space of the second order Khatri-Rao product (IV.8) of
a known matrix (here we have chosen the identity matrix).
Alg. 2 yields the following estimate ofA:

Â =




0.5666 −0.4089 −0.8116
0.5773 0.8195 −0.1219
0.5878 0.4015 0.5713


 .

Because our purpose is to demonstrate MIBI and IBSS, and
not noise reduction, we apply the inverse ofÂ to the noise-free
sensor signals to recover the source signals (recall however,
that Â has been estimated from the noisy sensor data):

y[n] = Â−1
(
x[n]− ν[n]

)
. (VI.3)

Fig. 4 shows the source signals at the left side (see also Fig. 2),
and the noise-free estimated source signals at the right side.
It is evident that the signals are well-separated. As a measure
of performance, we compute the total transfer matrix from the
source to the output signals:

T , Â−1A =




0.9971 −0.0082 −0.0082
−0.0002 −0.9919 −0.0022
−0.0153 −0.0090 −1.0006


 .

It can readily be seen that this total transfer matrix is approx-
imately equal to the identity matrix with two ‘flipped’ signs.
This is also clear from Fig. 4. Listening to the separated signals
confirmed that the separation was successful.

B. Three mixtures of four speech signals

Appending one column to the mixing matrix in (VI.2) gives:

A =




0.5774 0.4082 0.8083 −0.1690
0.5774 −0.8165 0.1155 −0.5071
0.5774 −0.4082 −0.5774 0.8452


 . (VI.4)
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Fig. 4. Speech sources (left) and noise-free estimated source signals (right)
for 3× 3 example.

Using one additional speech signal we again compute the three
sensor signals by means of (II.1). Nowdx

D = 4 and there are
only 1

2D(D + 1) − dx
D = 2 functions of the form (VI.1) in

the system. Similarly to Fig. 3, in Fig. 5 we have depicted the
intersections of each zero contour level (cone) with the unit
sphere in different colors/grey shades. Using Alg. 2 yields the
following estimate ofA:

Â =




0.8200 −0.4079 −0.1740 −0.5762
0.1331 0.8156 −0.5061 −0.5595

−0.5567 0.4103 0.8447 −0.5958


 .

Again we see that the estimated columns, which are indicated
in Fig. 5 by the magenta arrows and dots, approximately
equal the ideal ones and are determined uniquely by the two
intersecting cones.

C. Number of identifiable columns for real-valued scenario

As we have seen in the examples above, geometrically,
solving a system consisting of homogeneous polynomial
equations of degree two in three variables is equivalent
to finding the intersections between the corresponding two-
dimensional quadric hypersurfaces that are embedded in a
three-dimensional Euclidian space. Ideally, each intersection
is a one-dimensional subspace that corresponds to a col-
umn of the mixing matrix. In a three-dimensional Euclidian
space at least two two-dimensional surfaces are required
for uniquely defining one-dimensional intersections. Alge-
braically, this means that the dimension of the solution set of
a system of two homogeneous polynomial equations in three
variables generally is one-dimensional. Since for the3 × 3
example above the system contains three equations, the one-
dimensional solutions sets corresponding to the three columns
of the mixing matrix are overdetermined. In other words, one
degree of freedom is left unused, which, as we have seen
for the 3 × 4 example, can be exploited to determine one
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Fig. 5. Zero contour spherical ellipses off1(z1, z2, z3) andf2(z1, z2, z3)
for 3× 4 example.

more column. Because at least two cones are required for
determining one-dimensional solutions sets, no more than four
columns can be identified with three sensors and second order
statistics. Using the same reasoning we can deduce that for
real-valued MIBI the maximum number of columns that can
be identified withD sensors and SOS equals:

Smax = 1
2D(D + 1)− (D − 1) . (VI.5)

VII. C ONCLUSIONS

We have presented a procedure for exploiting Second Or-
der Temporal Structure such as non-whiteness and/or non-
stationarity in the source signals for performing MIMO In-
stantaneous Blind Identification (MIBI). Based on a number of
assumptions and using subspace techniques, the MIBI problem
has been reformulated in a particular way such that each
column of the unknown mixing matrix satisfies a system of
multivariate polyconjugal equations. The assumptions under-
lying the problem formulation have been defined on a Noise-
Free Region Of Support and mainly serve to ensure that the
source signals are mutually unrelated, that sufficient temporal
structure is present in the source signals, that the source and
noise signals are mutually unrelated, and that the noise signals
have a simpler temporal structure than the source signals. This
latter property has been employed for eliminating the effect
of additive sensor noise on the mixing matrix estimation. The
resulting nonlinear system of equations was solved by means
of a homotopy method. The two-stage identification procedure
can also handle several scenarios with more sources than sen-
sors. For complex-valued systems and signals, the procedure
can deal with arbitrary conjugation patterns chosen in accor-
dance with the characteristics of the signals involved. Finally,
we have demonstrated the principles by means of examples.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

REFERENCES

[1] E. Allgower and K. Georg,Introduction to Numerical Continuation
Methods, ser. Classics in Applied Mathematics. Philadelphia: SIAM,
2003.

[2] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique based on second order statistics,”
vol. 45, no. 2, pp. 434–444, 1997.

[3] S. Choi and A. Cichocki, “Blind separation of nonstationary and
temporally correlated sources from noisy mixtures,” inProc. IEEE
Workshop on Neural Networks for Signal Processing (NNSP 2000),
Sydney, Australia, Dec. 2000, pp. 405–414.

[4] A. Cichocki and S.-I. Amari,Adaptive Blind Signal and Image Process-
ing: Learning Algorithms and Applications. John Wiley and Sons, Inc.,
2002.

[5] A. Hyvärinen, J. Karhunen, and E. Oja,Independent Component Analy-
sis, ser. Wiley Series on Adaptive and Learning Systems for Signal
Processing, S. Haykin, Ed. New York: John Wiley and Sons, Inc.,
2001.

[6] M. Joho and H. Mathis, “Joint diagonalization of correlation matrices by
using gradient methods with application to blind signal separation,” in
Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop
(SAM 2002), Washington D.C., USA, Aug. 2002, pp. 273–277.

[7] C. Khatri and C. Rao, “Solutions to some functional equations and their
applications to characterization of probability distributions,”Sankhya:
The Indian Journal of Statistics, Series A, Part 2, vol. 30, pp. 167–180,
1968.

[8] T. Li, “Numerical solution of multivariate polynomial systems by
homotopy continuation methods,”Acta Numerica, no. 6, pp. 399–436,
1997.

[9] U. Lindgren and A.-J. van der Veen, “Source separation based on second
order statistics - an algebraic approach,” inProc. IEEE SP Workshop on
Stat. Signal and Array Proc., Corfu, Greece, Jun. 1996, pp. 324–327.

[10] L. Molgedey and H. Schuster, “Separation of independent signals using
time-delayed correlations,”Physical Review Letters, vol. 72, no. 23, pp.
3634–3637, Jun. 1994.

[11] T. Moon and W. Stirling,Mathematical Methods and Algorithms for
Signal Processing. Prentice Hall, 2000.

[12] A. Morgan,Solving polynomial systems using continuation for engineer-
ing and scientific problems. Englewood Cliffs, New Jersey: Prentice
Hall, 1987.

[13] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear
decomposition ofN -way arrays,”Journal of chemometrics, vol. 14, pp.
229–239, 2000.

[14] A. Sommese and C. Wampler,The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science. World Scientific,
2005.

[15] L. Tong, R. Liu, V. Soon, and Y. Huang, “Indeterminacy and identi-
fiability of blind identification,” IEEE Trans. on Circuits and Systems,
vol. 38, no. 5, pp. 499–509, May 1991.

[16] J. van de Laar, “Instantaneous blind source separation based on the
exploitation of temporal correlations and nonstationarity,” inProc. 14th
Annual Workshop on Circuits, Systems and Signal Processing (ProRISC
2003), Veldhoven, The Netherlands, Nov. 2003, pp. 391–398.

[17] ——, “On MIMO instantaneous blind identification based on the
exploitation of the time structure of signals using arbitrary-order cu-
mulants,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP 2004), Montreal, Quebec, Canada, May 2004, pp.
549–552.

[18] ——, “TIME-MUSIC DOA estimation based on the exploitation of
some arbitrary-order temporal structure in the data,” inProc. 3rd IEEE
Sensor Array and Multichannel Signal Processing Workshop (SAM
2004), Barcelona, Spain, Jul. 2004, pp. 308–312.

[19] ——, “MIMO Instantaneous Blind Identification based on Second Order
Temporal Structure and Homotopy Method,” inProc. 9th International
Workshop on Acoustic Echo and Noise Control (IWAENC 2005), Eind-
hoven, The Netherlands, Sep. 2005, pp. 241–244.

[20] S. van Gerven and D. van Compernolle, “On the use of decorrelation in
scalar signal separation,” inProc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP 1994), Adelaide, Australia, 1994, pp.
57–60.

[21] M. Vanderveen, A.-J. van der Veen, and A. Paulraj, “Estimation of
Multipath Parameters in Wireless Communications,”IEEE Trans. Signal
Process., vol. 46, no. 3, pp. 682–690, Mar. 1998.


