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MIMO Instantaneous Blind Identification Based on
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Abstract—Blind identification is a crucial subtask in signal :' v1[n] 1
processing problems such as Blind Signal Separation (BSS) and : ) )\ :
Direction Of Arrival (DOA) estimation. This paper presents i 51[”]5_’ Mixing ® x1[n]
a procedure for Multiple-Input Multiple-Output Instantaneous : i system '

. v . . . 1
Blind Identification based on second order temporal statisti- ! i A EE
cal variabilities in the data, such as non-whiteness and non- i ss[n] \+/ > zp[n]
stationarity. The procedure consists of two stages. Firstly, based : ~——
on a number of assumptions on the statistical structure and (R Unknown .........V.Li[.”.].':

diversity of the source signals and mixing system, and using
subspace techniques, the problem is reformulated in a particular Fig. 1.
way such that each column of the unknown mixing matrix
satisfies a system of multivariate homogeneous polynomial or
‘polyconjugal’ equations. Then, this nonlinear system is solved

by means of a so-called homotopy method. The two-stage blind the estimated mixing system to the observed mixtures. In this

identification procedure also allows to estimate the mixing matrix paper, the main focus is on MIBI, while IBSS is considered
for several scenarios with more sources than sensors, somethlngas an application.

that is often believed to be impossible with second order statistics. . .
Finally, the procedure is applied to the Instantaneous Blind Signal ~ Many researchers have investigated the use of second order

Separation of speech signals. statistics for IBSS [2], [3], [6], [9], [10], [15], [20]. The
Index Terms—Blind identification/separation, temporal struc- majority of the available algorithms is based on the (Gen-

ture, homogeneous system, homotopy, Second Order Statistics.eralized) Eigenvalue Decomposition or Joint Approximate
Diagonalization of two or more sensor correlation matrices

of the form R*[ny,ns] £ E{x[n1]x[ns]7} with x[n] the
observation vector (see also Section Il). For example, see
] ) ) AMUSE [15], SOBI [2], and also [6], [9], [10]. All those

N this paper, we consider the so-callddultiple-Input  5140rithms employ sensor correlation matrices containing the
I Multiple-Output (MIMO) Instantaneous Blind Identifica-gansor correlation values arranged in the same ‘conventional
tion (MIBI) problem. In this problem, a number of mutuallyynanner. In our work we arrange the available sensor corre-
;tatistically indep.epdent source signals are mi?<ed b){ a MIMQtion values in a particular fashion that allows a different
instantaneous mixing system and only the mixed signals &f§q natural formulation of the problem and the estimation of
available, i.e. both the mixing system and the original sourggsre columns than sensors. It is widely recognized that many
signals are unknown [5]. The goal of MIBI is to recover thesssiple applications exist for MIBI and IBSS, see e.g. [4],
instantaneous MIMO mixing system, or its parameters sugl) and the references therein. Examples of (parameterized)
as in the case of DOA estimation, from the observed mixturgfs| can be found in source localization problems, which
of the source signals only. Fig. 1 shows the MIBI problergre crycial to many sensor array systems, such as radar
setup forS source andD sensor signals. The source, sensq{nq sonar. Examples of IBSS can be found in the field
and additive noise signals are denoted dyn,...,ss[n],  of piomedical engineering, where the goal is e.g. to reveal
a1[nl,...,xp[n] and viln],...,vp[n] respectively. The in- jqependent sources in biological signals like EEG’s or ECG's.
stantaneous mixing system is modeled by a real- or compl@her examples can be found in the separation of speech
valued matrixA. of size D x S. A problem closely related gjgnals, images, etc. Although many practical problems can
to MIBI is Instantaneous Blind Signal Separation (IBSS}g described more adequately by more complex MIMO Blind
[4], [5], where the goal is to separate mutually statisticalliyengification models such as convolutive and/or non-linear
independent source signals from their observed instantanegiisjels, MIBI can often be used as a good starting point, e.g.
mixtures only. Contrary to MIBI, the main interest in IBSS gy 4 frequency domain approach in the convolutive case.
in the source signals instead of the mixing sy;tem. In fact, This work is a continuation and elaboration of our previous
once MIBI has been performed, the source signals can pgy. nresented in [16]-[19]. In [16], a practical algorithm
recovered (approximately) by applying the (pseudo-)inverse pisq 4 on second Order Statistics (SOS) and the Generalized

J. van de Laar is with the Digital Signal Processing Group of Philip@genvaIue Decomposition (QEVD) was given for the real-
Research Laboratories, Eindhoven, The Netherlands. valued ‘square MIBI' case withD = S. In [17], we gener-

M. Moonen is with the Electrical Engineering Department of the Katholiekg|ized the underlying concepts to real-valued MIBI exploiting
Universiteit Leuven, Leuven, Belgium.

P. Sommen is with the Electrical Engineering Department of the Techni_'acm:e temporal Str_UCture in the data of some arbitrary fixed Ord.er'
Universiteit Eindhoven, Eindhoven, The Netherlands. Although we briefly touched upon the more general case with

MIMO Instantaneous Blind Identification setup.

I. INTRODUCTION
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complex-valued mixing system and source signals, arbitramgspectively. Furthermore, the symbotlenotes discrete time.
order statistics, and arbitrary conjugation patterns, in [18] tiecording to (I1.1), thei-th sensor signat;[n| is given by:
main focus was on the development of the so-called TIME- s

MUSIC algorithm for Direction Of Arrival estimation which ;[n] = Zagsj [n]4vi[n] YneZ V1<i<D,(I.2)
involves a parameterized mixing matrix. In [19] we provided i=1

a homotopy method for estimating the mixing matrix from

the derived system of equations for the real-valued SOS C@\jvlgere a; denotes the instantaneous transfer coefficient from
i

) ) € j-th source to the-th sensors; [n] the j-th source signal at
In this paper, we consider real- and/or complex-valued Ml . . ; : . )
" screte timen, andy; [n] thei-th noise signal at discrete time
based on exploiting the Second Order Temporal StrlJCtureFrom Eq. (1.1), it follows directly that two indeterminacies
(SOTS) with arbitrary conjugation pair (see Section Ill), and’ g. (.4, y

. N are inherent to the MIBI model [4], [5], viz. the norms and
again use a homotopy method for estimating the columns O o . .
- . order of the mixing matrix columns and the source signals
the mixing matrix.

. . . . cannot be resolved. This means that the columns and source
The outline of this paper is as follows. Firstly, the structuré. .

. : . signals can only be recovered up to a scaling factor and a
and assumptions of the MIBI model are explained in Sec- : . ) S
: : o ermutation. Taking into account these indeterminacies, the
tions Il and Il respectively. The derivation of the system o

) i . . . Ryal of MIBI is to recover the columns of the mixing system
homogeneous polynomial equations is presented in Section

. . . .In "arbitrary order and with arbitrary nonzero norms. The
and some of the algebraic and geometric properties are high- L . )
. . : determinacies are by no means problematic because for blind
lighted. Then, in Section V we present a homotopy methag

. . . applications the most relevant information is in the ‘directions’
for solving the system of equations. In Section VI the theor .
f the columns, or the waveforms of the source signals, rather

is applied to two MIBI scenarios with three sensors, one wi : . .
an in their magnitudes or order.

three and the other with four speech source signals. Finally,
conclusions are discussed in Section VII. [1l. MIBI MODEL ASSUMPTIONS
To be able to exploit th&econd Order Temporal Structure
1. MIBl MODEL STRUCTURE (SOTS)in the data several assumptions have to be made

A block diagram of the MIBI problem setup is shownihal mainly serve two purposes. Firstly, they ensure that
in Fig. 1. S mutually statistically independent but otherwis@Ufficient temporal structure is present in the source signals,
unknown source signals are mixed by an unknown Mim@nd secondly that the noise signals have a ‘smpler’ temporal
linear instantaneous mixing system, which is represented juCture than the source signals. The assumptions are formu-
the matrix A, and only D sensor signalss[n],. ..,z p[n] lated in terms of correlation functions that we will define soon;
corrupted byD additive noise signals[n],...,vp[n] are S€€ Equations (lll.1) and (IIl.2). A (complex-valued) two-
observed. Both the signals and the mixing system may gimensional corrglatlon function can be_deflned in different
real- or complex-valued. For convenience and without [o¥YS corresponding to the pattern in which its arguments are
of generality it is assumed that all signals are zero-medgPniugated. Such a conjugation pattern is represented by a

Mathematically, the MIBI observation model can be writte§onjugation paiy and is written in the upper-right corner of the
as follows: considered symbol or function. The most suitable conjugation

s pair for a particular application depends on the type of signals

_ i _ involved. In the derivations in this paper it is assumed without
x[n] Z;a silnl +vlnl = Asin] + v[n] Vnez, loss of generality that a specific conjugation péifi, cz)
= (.1) has been chosen and fixed subsequently, wherand c;
where: can either be %', which means conjugation, oro”, which

p means no conjugation. For example, fet;, [ni])”" be the

z1{n] s1[n] vi[n] , a1 i1-th component of a length- time dependent random vector
x[n] £ cslp]£] 1| )& ,al & v|[n] at time index; that is conjugated according ¢, and let
zp[n] ssn] vp[n] o (vi,[n2]) be defined similarly. Then, the correlation function

_ _ of (vi, [n1])”" and (v;,[n2]) is defined as follows:
are column vectors of sensor signals, source signals, addi-

tive noise signals and mixing elements respectively. Let the i g, ny] £ E{(vil[nl])cl (s, [ng])cz}
symbolsC,;, CV, and C}; denote the spaces of complex- .

V1< <G, V Z . 1.1
valued lengthd/ column vectors, lengttv row vectors, and Stz 560, VN, ng € (I1.1)
M x N-matrices respectivelyR ,;, R, andRY, are defined Likewise, the two-dimensional correlation function of the
similarly for real-valued quantities. The vectot8:], v[n], and i-th component of a lengtt- ime dependent random vector
al,... a% are elements dk, or Cp, whereas the vectafn] V[n] at time indexn, that is conjugated according tq, and
is an element oRs or Cs. The unknown mixing matrixA. ~ the j-th component of another lengfi-random vectorw ]
is an element ofR$ or C$, and can be written in terms ofat time ny that is conjugated according 9, is denoted by

its columns asA = [a' - a%]. Sometimes we refer to the7ij" [71,n2] and defined as follows:
mixing matrix as tharray response matrpand to its columns vy = E{( I ])cl< n ]) ,2}
as thearray response vectorSubscript and superscript indices Tag ML T2 = vitml]) - ({Wjlnz

are used to index the components of a column and row vector V1 <i<G,V1<j<P, Vni,ny €7Z. (1n.2)
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Let 3\ pe the so-called Noise-Free Region Of Supposource signals is exploited. Let th®)2 x N subspace matrix
(ROS) in the domain of time index paif®;,n2) on which C7““ be defined as follows:
all correlation functions considered in this paper are defined.

z,c1C2 A T,c1c27,01 1 z,cic2(, N N
Then, the assumptions defining the ROS and underlying th&p = [r5 21, m3) rp g, ny]]
MIBI method presented in the sequel can be formulated as i ng,ng) e g, nd]
follows: = : : , (IV.3)
AS1: The source signals have iero cross-correlation functions T}E)’g@[ 11[7715] 7‘7;’(,’3102 [H{V,név]
H _ v,c1ca .,
on the Noise-Free ROS7," ™ where theg-th column is given by:
02,2l =0 V1< #j2 < S N
e . , . . r; g, nd) £ E{(x[n({])p1 ® (x[ng])c2} (Iv.4)
AS2: The source auto-correlation functions are linearly indepen-
dent on the Noise-Free RA8,)5'**: with @ denoting the Kronecker product. Hence, the elements
s of r;““[n{,nd] and the rows ofC};“ are stacked in
Zgjrjflc? [n1,n2] =0 = & =0V1<j<8; ‘Kronecker order’. The linear space spanned by the rows of the
=1 subspace matrixC7;“'* is called thesignal subspaceThus,
. H Z,C1C H
AS3:The noise signals have zero auto- and cross-correlation the dimensiond ;™™ of the_S'Q”a' subspace equals the rank
functions on the Noise-Free RAE,\%5¢ : of the subspace matrix. Similarly to Eq. (IV.3), tlex N

e source auto-correlation matri€y“** is defined as follows:
ot 2[711,712] =0 V1 §i1,i2 < D;

P12

) ) Qs;crez L reez nl nl ... pyace nN nN
AS4:The cross-correlation functions between the source and S [ s na § 7 H
. . . §,C1C: S,C1C:
noise signals are zero on the Noise-Free RS, > ry 2 [nt, ni) r7 2 ndV nl]

,,,.1":970162 [nh 'I’LQ] _ rs,l,”clc2 [n1,n2] — 0 = : ., . 3 (|V5)
“ I rEa it nl] oo pyee [nN nN]

V1i<i<D, V1<j<85. S 1702 S 15772
where theg-th column is given by:
IV. FORMULATING MIBI AS THE PROBLEM OF SOLVING A € 9 Y

5 A Cc1 ()
SYSTEM OF HOMOGENEOUS POLYCONJUGAL EQUATIONS rynd nd) & E{(s[nf]) © (s[ng)) } 7 (IV.6)
Using the assumptions made in the previous section, in

this section we will show that the array response vectofdth © denoting the element-wise product. The Imear space
al,...,aS satisfy a well-structured system d-variate ho- spanned by the rows of the source auto-correlation matrix is

H : 5,C1C2
mogeneous so-calledolyconjugal equations of degree tWO,called thesource subspac&hus, the dimensiony of the _
thereby ‘projecting’ the MIBI problem onto a mathematicaPOU"c® subspace equals the rank of the source auto-correlation
prObIem, the solution of which y|e|dS estimates of the arra{g)atrlx. From Equatlons (lVl), (|V3) and (|V5) it follows that:

response vectors. In the course of our derivation we highlight
the algebraic structure of the problem formulation.

x,c1cC s,c1C
CH? = A% Oy, (IV.7)

where A2 is the so-called second ordkhatri-Rao product

A. Subspace matrix definition and structure of A with conjugation paitc, = (1, 2), which is defined as:
We start our derivation by expressing the sensor correlation A
cicy A 1\¢1 1)\¢2 S\ C1 S €2
functions in terms of the mixing matrix elements and source Do = {(a ) @ (@)t e (a%) e (a%) } - (IV.8)

auto-correlation functions. Several sensor correlation functiop, .. thej-th column of this matrix equals the Kronecker

values are then arranged in the so-called subspace matrix iﬂrgduct of thej-th column of A conjugated according to,
particular fashion. UsingAS1-AS4 it follows that the sensor with the j-th column of A conjugated according to,

correlation functions can be expressed in terms of the mixing

matrix elements and source auto-correlation functions as: _ _ _
B. Dimensions of signal and source subspaces

5
rieng,me] = > (al))7 (al,) r5 % 0, nol We now show how the signal subspace dimensigfi'
j=1 depends on the mixing matrix and the source signal properties.
YV (n1,n9) € QZ\%CUQ’ 1<iy,ia<D. (Iv.1) First, from assumptiomASZ it follows that the source auto-
n correlation matrix in Eq. (IV.5) has full rank. Hence, the source
Suppose that we have specified a Noise-Free mg;;m subspace dimension equals the number of sources:
by a set of NV time pairs as follows: ceien A s ere
dg™™ = rank (CS’ ! 2) =35. (IV.9)

be\ll’:{glcz = {(nl?nQ)lv e (nlvnQ)N}

— {(n!,nd) (n nl)} (V.2) U_sing the fac_t that th_e _ranl_< of a matrix_is unchang_ed upon
- 1752/ A0 752 S S : either left or right multiplication by a nonsingular matrix [11],

where (ny,n2)? = (n?,nd) is the g-th time pair Omi\lrﬁglcz’ and thatCy“'“ has full rank, it follows from Eq. (IV.7) that:

and N > S. Note that we can choose the time pairs in such
a way that the non-whiteness and/or non-stationarity of the

dpre £ rank (C%’“CQ) = rank (A%fi) . (IV.10)
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Hence, the signal subspace dimensidfi > equals the Algorithm 1. D x S MIBI exploiting Second Order Temporal
rank of the Khatri-Rao product matriA;°2. Essentially our Structure with arbitrary conjugation paes, c2).

subspace approach to MIBI is based on the fact that we Cangstimate sensor correlation functions for time index
compute or estimate the (properties of the) various subspacegup,es(nh n») in Noise-Free ROSZZ\I”H;””Q;
of the unknown matrixA%° from the known matrixC5 .

The rank of the Khatri-Rao product matrix has been studi

& Arrange these values in subspace magy* <,

in several works, e.g. [7], [13], [21]. 3: Compute SVD ofC};“'* and split result into signal and
noise subspace parts as follows:
C. Deriving the system of polyconjugal equations CLee — U (V)" = USES (V)" + UYSY(V,)*;

If the number of rows of the subspace mati&;““
is larger than the dimensiod};“'“ of the signal subspace
spanned by its rows, the@7;“'“> has a non-zero left null

4: Let ® be a matrix whose rows span complex conjugate
left null space(Ni(C*))" of G

spaceN;(CH“?). Defining a matrix® such that its rows ® L (UHT,
form a basis for the complex conjuga®/ (C7***))" of the _ _ s .
left null spaceN;(C%c?) of %<, it follows that: 5: With each rowp, of ® for1 < q < Q3¢ associate a

D-variate homogeneous polyconjugal of degree

. o | f ) 2 @, ()@ ()]
The matrix ® can be determined directly from the Singular_ . .
Value Decomposition (SVD) ofC%* by choosing and 6: The following sy;t_em remains to be solved for the
conjugate transposing the left singular vectors that corresponc{:Ol“mns ‘_Jf the mixing matrix (see Alg. 2 on the follow-
to (near-)zero singular values. The maximum number of ing page):
linearly independent rows oP equals the dimensiorj)%fs2 {ffj{ff (z) = 0}1<(<Qqc2
of Mi(C5™*?) and is given by the difference between the ' =I=%p.s
number of rows ofC7;“*“* and its rank [11]:

dCy= =0. (IV.11)

cicz2 A s T,C1C2 _ 2 T,C1C2
Qp,§ = dim (NI(CD )) =(D)" —dp - (V12) All functions in system (IV.17) have the same specific form.
Substituting Eq. (IV.7) into Eq. (IV.11) yields: Firstly, from the definition in (IV.15) it is clear that each func-

tion f)*(z) = 55 (21, .., 2p) is aD-variate ‘polynomial-
P CE 7 =@ AR C? =0. (IV.13) like’ flgnction co(nt)ai_ning pl)roduct tlerms pfl degree two. St_rfictly
s.e1ca ) _ speaking, 322 z) is only a polynomial inzy,...,zp i
BecauseCy has full rank due toASZ, it follows that: (c1,¢5) = (0,0) because foc, ca) € {(0,%), (¥,0), (+,%)}
PAL2=0. (Iv.14) the product terms (also) contain conjugates of the variables.

Therefore, in general we refer to a function of the type defined
This system describes the relation betweenuhknownco- py i (z) as a‘polyconjugal’. From (1V.15) it follows
»q

efficients of the mixing matrixA. and theknowncoefficients gijrectly that each functiorff; (=) in (IV.17) is a D-variate

of the matrix®. Let g, € C)° (R(?)) be theg-th row polyconjugal of degree two, which ilsomogeneous of degree
of ®, letz € Cp be a vector of variables with the samawo with conjugation pair(c;, ¢;), meaning that:

size as a column oA, and define the functiong}; *(z), .. .,
fare2, ., (z) as follows:

DQps fogmz) =) m)*fhy(z) VneC vVzeCp.
ci1c2 A~ c1 c2 ci1c2 (IVl )
I5d (@) =@ [(2)"@(2)?] Vi<g< QDyS(I'V 15) This property implies the following:

S H . S
Then, (1V.14) states that all columne, ..., a° of A satisfy: fEew)=0 = ae(v)=0 YypeC. (IV.19)
i)y =0 V1<q¢<QPZ, 1<j<S. (V.16
Ip. (a) S1<Qbs =J= ( ) Hence, ifv is a solution of (IV.17), then so igv for all
Hence, at this pointhe MIBI problem has been ‘projected’s, ¢ C. This is compatible with the scaling indeterminacy
onto the problem of solving the following system of equationsherent to MIBI, see also Section Il. It also implies that the

for the columns of the mixing matri: norms of the solutions of system (IV.17) can be chosen arbi-
trarily. Algebraically, the zero contour level of each function
{foq(2) =0}, cgerea - (IV.17)  fpe2(z1,. .., 2p) defines aonein the D-dimensional Euclid-
I ian space. Hence, geometrically, solving (IV.17) is equivalent

By ‘projected’ we mean that the system of equations followts finding the one-dimensional intersections betwegh

from our MIBI problem definition and formulation, but notcones in aD-dimensional Euclidian space, where ideally
necessarily the other way around. We refer to Alg. 1 for @ach intersection is a one-dimensional linear subspace that
summary of the results that we have developed so far, atatresponds to a column of the mixing matrix. We refer to
Section VI for examples. Section VI for examples.
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V. SOLVING THE SYSTEM OF POLYCONJUGAL AIgorithm 2 Overview of homotopy continuation method.

EQUATIONS BY HOMOTOPY 1: Define patfC and initializev,, ~y,, MaxNnwtIt, etc.;
In this section we summarize the main ideas behind se- Construct start systeg(z) = 0;

called homotopy methods. The resulting algorithm will be
employed in the examples presented in the next section for
solving systems of the form (IV.17); see also [19]. Homotopy 1z, \) = Yg(A=Ae) 8(2)+7(A—Xo) p(2) YAeC;
methods provide a deterministic means for solving a system ]
of nonlinear equations. They are based on the so-called p4iH-ompute solutions of start systegiz) = 0 and store
following or continuation techniques. Excellent discussions themin set;;
can be found in several articles and books, e.g. [1], [8], [12}: for all z, € G do
[14]. The rationale behind homotopy methods is to smoothly 7= 17,
deform the known solutions of a known (and possibly simple)
start system into the desired solutions of the target system, see

Embedg(z) andp(z) in convex homotopy:

for A = \g — )\ alongC do

also Alg. 2. The start and target systems are embedded in a % Euler predigtor step:
family of systems, called the homotopy, and then all members 92 — —[V,h] - 9\h;
in the family are solved in a sequential and iterative manner. z:=z+ AX- %,‘

Since each new system is close to the previous system, under
some mild uniqueness and smoothness conditions its solutions
deviate only slightly from those of the previous system and

% Newton corrector steps:
A = next\ fromC;

each path converges to a geometrically isolated solution [1], form =1 — MaxNnwtIt do
[12]. Here, we denote a general target systemplfy) = 0 Az = f[vzhrl - h;
and assume thap : Cp — Cp. Furthermore, its solution z:=z+ Az’

set is denoted byP, i.e. P £ {z, € Cp | p(z,) = 0}.

Similarly, we denote the start system Ig(z) = 0 with end for

g : Cp — Cp, and its solution set is denoted Igy, i.e. end for _ . )
G £ {z, € Cp | g(z,) = 0}. This system is constructed detore solutiors,, = z in setp;
in such a way that it has the same structure and number eRZtu?::P'

of solutions as the target systep(z) = 0. In Alg. 2 we
summarize the homotopy method that we will use in the next
section. The patli is a simple curve in the complex plane that
has to be predefined by the user. The continuation parametifferent lags. To do so, the signal sequences are partitioned
A € C follows C from X to A, with Ag # A.. Here, we use into disjoint blocks consisting 2000 samples, and for each
the arcC £ {cos(6) + j2 sin(6) | 0 < 6 < «} with starting block the one-dimensional sensor correlation functions are
point Ao = 1 and end point\. = —1. The constants,, € C computed for lagsl, 2 and 3. Lag zero is omitted because
and v, € C are randomly chosen fixed constants that seréee corresponding correlation values are noise-contaminated.
to avoid singularities and crossings along the different patiBecause the number of available sampleiz00, the number
The parametel ez Nnwtlt defines the maximum number ofof blocks equal$. Hence, in total for each sensor correlation

Newton corrector steps. function 15 values are estimated and employed. Calling the
block indexb with 1 < b < 5, and the lag index, the
VI. EXAMPLES WITH THREE SENSORS employed Noise-Free ROS in the domain of block-lag pairs

In this section the steps of Alg. 1 and 2 are performed f(glr); k) used here is:

two MIBI examples withD = 3 sensors, a reaI-vaIueq mi>§ing' Q;\ku = {(1;1),(1;2), (1;3),...,(5; 1), (5;2), (5;3) } -

system, and real-valued source signals, so that visualization

of the procedure and results is possible. In the first examgter each block the sensor correlation values are estimated
three and in the second four speech source signals are mikedn the sensor signals by averaging products of the form
according to Model (11.1) with mixing matrices given by (VI.2)z;, [n] z;,[n — k] with k = 1, 2,3 over the block length.

and (V1.4) respectively. For convenience, and without loss . _—

of generality, the columns oA have unit Euclidian norm Note that the Kronecker produet? z in the d2ef|n|t|on of
’ - Cc1C2 H 1 —

Since the mixing system and source signals are real-valugéq (_Z) n qu' (V15) is a vec.tor of lengtt{D) - 9 that

the conjugation paifc;, c») is irrelevant and will be omitted CONtains only; D(D +1) = 6 different products, vizz, zi,

from the notation. All speech source signals are sampled af1?2: #1%3, 2272, 2223, and z;z3. Combining the coefficients
kHz, and the noise signals [n], v2[n] andus[n] are mutually of ¢, corresponding to equal products, and also combining the

statistically independent white Gaussian noise sequences V@%responding rows of the subspace matrix yields a system of
D(D + 1) — d¥, equations of the following form:

variance 0.1. The number of time samples in all signals
involved is10000, which equald 250 milliseconds. In each ex- D D
ample we exploit both the non-stationarity and non-whiteness fo(z1, 20, 23) 2 Z Z 04,”227;127;2 , (VI.1)
by using sensor correlation values for different times and =1 dp—in
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Source signals Sensor signals
10 10
5 5 1
s1(n] OM—W oW—W x1[n]
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Time index f] Time index fi]

Fig. 2. Speech sources (left) and their noise-contaminated mixtures (right)
for 3 x 3 example.

where the Coefficientsn}l,l,af %173 a22,2 a?ﬁ,aﬁg for p = Fig. 3. Zero contour spherical ellipses pf(z1, 22, 2z3), f2(21, 22, 23) and

3 ) )

1,...,1D(D + 1) — d% follow from the SVD of the cor- f3(21,22,2) for 3 x 3 example.

responding ‘reduced subspace matrix’.

part of the start system can be obtained by computing the left
A. Three mixtures of three speech signals null space of the second order Khatri-Rao product (IV.8) of
a known matrix (here we have chosen the identity matrix).
Alg. 2 yields the following estimate QA:

. 0.5666 —0.4089 —0.8116
A =105773 0.8195 —-0.1219
0.5878  0.4015  0.5713

Fig. 2 shows the source signalgn], s2[n] andss[n] atthe left  Because our purpose is to demonstrate MIBI and IBSS, and
side, and the three noise-contaminated mixturgl], z2[n] not noise reduction, we apply the inversefoto the noise-free
and z3[n] at the right side. Using only the sensor data theensor signals to recover the source signals (recall however,
functions in the system to be solved can be obtained by megfgt A has been estimated from the noisy sensor data):

of Alg. 1. Eqg. (IV.10) implies that/}, = 3. Hence, there are ~

1D(D + 1) — d}, = 3 functions of the form (VI.1) in the yln] = A7 (x[n] = v[n]) . (VI.3)
system, which become$§fi(z1, 22, z3) = 0, fa(21,22,23) = Fig. 4 shows the source signals at the left side (see also Fig. 2),
0, fa(z1, 22,23) = 0}. Because all quantities involved areand the noise-free estimated source signals at the right side.
real-valued, the surfaces describing the zero contour levétl$s evident that the signals are well-separated. As a measure
are conventional quadric cones in three-dimensional spaoéperformance, we compute the total transfer matrix from the
In Fig. 3 we have depicted the intersections of each coseurce to the output signals:

The sensor signals are obtained from (I.1) with:

0.5774  0.4082  0.8083
A= {05774 —0.8165 0.1155| . (V1.2)
0.5774 —0.4082 —0.5774

with the unit sphere in different colors/grey shades. Those 0.9971 —0.0082 —0.0082
intersections are a kind of ‘ellipses on the sphere’ thatwe will 12 A-14 — | _00002 —0.9919 —0.0022
call ‘spherical ellipses’. Note that each intersection consists _0.0153 —0.0090 —1.0006

of two parts that are point-symmetric with respect to the
origin. The black arrows represent the ideal columnsAof It can readily be seen that this total transfer matrix is approx-

whereas the grey arrows are the opposites of the black orfg&ately equal to the identity matrix with two ‘flipped” signs.
The figure shows that the columns 4f point to the points This is also clear from Fig. 4. Listening to the separated signals
denoted by the black and grey dots where three spheri€Qfirmed that the separation was successful.

ellipses intersect each other. Hence, the array response ve
are determined uniquely by the intersections induced by
system of equations. The magenta arrows and dots indicate th&PPending one column to the mixing matrix in (V1.2) gives:
columns of A as estimated by Alg. 2. The start system that 0.5774  0.4082  0.8083 —0.1690

we use is exactly similar to the target system with the unit- A = [0.5774 —0.8165 0.1155 —0.5071| . (VL.4)
norm constraint added. The coefficients of the homogeneous 0.5774 —0.4082 —0.5774  0.8452

:ﬁorﬁ'hree mixtures of four speech signals
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Fig. 4. Speech sources (left) and noise-free estimated source signals (right) 22 -1 -1 21
for 3 x 3 example.

Fig. 5. Zero contour spherical ellipses ff(z1, 22, z3) and fa(z1, 22, 23)
] N ) ) for 3 x 4 example.
Using one additional speech signal we again compute the three

sensor signals by means of (Il.1). Nelf, = 4 and there are

only 1D(D + 1) — d}, = 2 functions of the form (VI.1) in more column. Because at least two cones are required for

the system. Similarly to Fig. 3, in Fig. 5 we have depicted thgetermining one-dimensional solutions sets, no more than four

intersections of each zero contour level (cone) with the urd@blumns can be identified with three sensors and second order

sphere in different colors/grey shades. Using Alg. 2 yields tlsatistics. Using the same reasoning we can deduce that for

following estimate ofA: real-valued MIBI the maximum number of columns that can
0.8200 —0.4079 —0.1740 —0.5762 be identified withD sensors and SOS equals:

A= 01331 0.8156 —0.5061 —0.5595
—0.5567  0.4103  0.8447 —0.5958

Again we see that the estimated columns, which are indicated VIl. CONCLUSIONS

in Fig. 5 by the magenta arrows and dots, approximately\we have presented a procedure for exploiting Second Or-

equal the ideal ones and are determined uniquely by the t¢ler Temporal Structure such as non-whiteness and/or non-

intersecting cones. stationarity in the source signals for performing MIMO In-
stantaneous Blind Identification (MIBI). Based on a number of

C. Number of identifiable columns for real-valued scenario@Ssumptions and using subspace techniques, the MIBI problem
as been reformulated in a particular way such that each

As we have seen in the examples above, geometnca@;ﬂumn of the unknown mixing matrix satisfies a system of

solving a system consisting of homogeneous pOIyIqom'ﬁultivariate polyconjugal equations. The assumptions under-

equ'atu.)ns of Qegree t.WO in_three variables is equwale ng the problem formulation have been defined on a Noise-
to finding the intersections between the corresponding twg-

dimensional quadric hypersurfaces that are embedded i ree Region Of Support and mainly serve to ensure that the
. q yp ! "Ldtirce signals are mutually unrelated, that sufficient temporal
three-dimensional Euclidian space. Ideally, each intersecti

0
: . . Aucture is present in the source signals, that the source and
is a one-dimensional subspace that corresponds to a 0

umn of the mixing matrix. In a three-dimensional Euclidia

Smax= sD(D +1) — (D —1). (VI.5)

ise signals are mutually unrelated, and that the noise signals

t least two two-dimensional surf e r i:Pnﬁveasimpler temporal structure than the source signals. This
space al ‘east Wo two-dimensional surtaces are requingg, property has been employed for eliminating the effect
for uniquely defining one-dimensional intersections. Alge-

braicallv. this means that the dimension of the solution set of additive sensor noise on the mixing matrix estimation. The
Y: A sulting nonlinear system of equations was solved by means

a system of two homogeneous polynomial equations in thrSFa homotopy method. The two-stage identification procedure

variables generally is one-dimensional. Since for #he 3 can also handle several scenarios with more sources than sen-

example above the system contains three equations, the Ats. For complex-valued systems and signals, the procedure

d|men5|qn_al SOIU“‘.)”S sets correspo_ndlng to the three COI“”E%% deal with arbitrary conjugation patterns chosen in accor-
of the mixing matrix are overdetermined. In other words, on

dearee of freedom is left unused. which. as we have Se(?%nce with the characteristics of the signals involved. Finally,
9 ) i e have demonstrated the principles by means of examples.
for the 3 x 4 example, can be exploited to determine one
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